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Abstract

This work presents a modified Born-Infeld field theory and a numerical solution procedure to
compute electron-like solutions of this field theory in the form of rotating waves of finite self-energy.
For the well-known constants of real electrons, the computed solution results in a Born-Infeld
parameter of 5× 1022 V/m, which is consistent with previous work.

1 Introduction

About 90 years ago, Born and Infeld proposed a classical field theory, in which “particles of matter
are considered as singularities of the field and mass is a derived notion to be expressed by field
energy (electromagnetic mass)” [BIF34]. This led to the Born-Infeld model of electron-like particles
without magnetic moment [BIF34]. Since these particles are represented by an electrostatic solution,
they lack the internal clock hypothesized by de Broglie [dB25]. In previous works, I speculated that
both shortcomings could be addressed by two independent modifications of Born-Infeld field theory
[Kra23a, Kra23b].

This work combines these two modifications and proposes a numerical solution procedure for the
resulting modified Born-Infeld field theory. Using this procedure, the Born-Infeld parameter is esti-
mated to be 5 × 1022 V/m, which is consistent with the lower limit reported by Soff, Rafelski, and
Greiner [SRG73].

The rest of this paper is organized as follows. Section 2 introduces the Lagrangian density and the
corresponding field equations of the proposed model. Section 3 presents a numerical solution procedure
to compute rotating wave solutions with a single peak. Section 4 describes the use of this procedure
to compute the Born-Infeld parameter. Section 5 discusses results and future work, while Section 6
concludes this article.

2 Modified Born-Infeld Field Theory

This work employs the International System of Units (SI), basic Ricci calculus including Einstein
summation convention, and the Minkowski metric tensor η in the form diag(+1,−1,−1,−1). More
details about the notation are provided in previous work [Kra23a].

Compared to the Lagrangian density proposed by Born and Infeld [BIF34, Equation 2.11], the
Lagrangian density L (Aν , ∂µAν) of the proposed model includes two previously proposed modifications
[Kra23a, Kra23b], such that it becomes:

L (Aν , ∂µAν)
def
=

√
1− 1

b2
(∂µAν)(∂µAν)− 1 (1)

with the four-potential (A0, A1, A2, A3)
def
= (ϕ/c,Ax, Ay, Az) and the Born-Infeld parameter b, which

specifies a maximum field strength of the magnetic field B = ∇×A and electric field E/c = − ∂
∂tA/c−

∇ϕ/c.
The Euler-Lagrange equations are then:

0 = ∂µ

(
L (Aν , ∂µAν)

∂ (∂µAν)

)
− L (Aν , ∂µAν)

∂Aν
= ∂µ

−1

b2
∂µAν√

1− 1
b2 (∂

αAβ)(∂αAβ)
. (2)
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Thus:

0 = ∂µ
∂µAν√

1− 1
b2 (∂

αAβ)(∂αAβ)
with ν = 0, . . . , 3. (3)

3 Numerical Solution Procedure

The main motivation for the proposed Lagrangian is that it allows for a solution that for large distances
approximates the electric and magnetic fields of an electron, includes a peak of the field values that
is rotating with an electron’s Compton frequency on a circle of the radius of an electron’s reduced
Compton wavelength, and features a total field energy equal to the rest mass energy of an electron. In
order to compute this solution, specific values for all constants (including the Born-Infeld parameter),
appropriate boundary conditions (including the position of and field values at the peak), and an
appropriate time-dependency of all fields (letting the peak move at the speed of light on a circular
orbit) are assumed.

Due to these assumptions, the predictive power of the proposed model is unclear. (The only
“prediction” in this work is the computation of the Born-Infeld parameter reported in Section 4;
arguably this is not a prediction of an observable quantity.) However, the model is considered valuable
even without predictive power since it allows to study a classical field theory that not only models
classical features of electrons but also quantum mechanical features such as their Compton frequency.

On the most abstract level, the proposed numerical procedure is a hierarchical partial differential
equation solver that first computes a field solution on a coarse 1283 grid that covers the peak’s orbit,
and then interpolates the resulting solution to obtain boundary values that are used to solve the same
partial differential equation on a finer 1283 grid that represents a volume that is 43-times smaller than
the volume covered by the coarser grid and is centered around the peak of the solution. This refinement
step is repeated five times such that the full hierarchical grid includes six 1283 grid levels at different
resolutions.

Each grid level includes 1283 grid points with three 16-bit floating-point numbers representing
the A0, A1, and A2 components of the four-potential (the A3 component is assumed to be 0 as its
direction is orthogonal to the rotation plane) and one 16-bit floating-point number representing the

denominator a
def
=
√

1− (∂αAβ)(∂αAβ)/b2. In the current implementation on a graphics processing
unit, each 1283 grid level is represented by two 2048×1024 floating-point render textures such that all
grid points of one grid level may be processed in parallel by ping-pong rendering between two render
textures while boundary values may be computed by filtered look-ups in a render texture of the next
coarser grid level. Since the field solution is assumed to rotate around the center of the coarsest grid
level, time dependencies are not explicitly represented in the grid. Instead, only a three-dimensional
“frozen” solution is stored in memory, and time derivatives are approximated with central differences
by sampling a grid level at appropriately rotated positions. Spatial derivatives are approximated with
central differences between neighboring grid points.

On each hierarchy level, solutions are improved iteratively using a Jacobi method with a few
thousand iterations until the solution has converged sufficiently. Figure 1 visualizes a slice of a solution
for A0 = ϕ/c on the coarsest grid level.

Apart from steps for initialization, visualization, and tracking of convergence, each iteration consists
of the following four steps for all relevant grid points:

1. setting boundary values

2. filtering field values

3. approximating the denominator a
def
=
√
1− (∂αAβ)(∂αAβ)/b2

4. computing new field values with a single Jacobi iteration

Each step is discussed in detail in the following sections.

3.1 Setting Boundary Values

The boundary of each 1283 grid level consists of the grid point where the peak is located, four neigh-
boring grid points, and all grid points at a distance of 61 grid units or more from the center of the grid
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Figure 1: Visual representation of the electric po-
tential A0 = ϕ/c on the slice of the coarsest 1283

grid level including the (invisible) rotation center
in the center of the image and the off-center peak
to the right of the center.

level. (The grid unit ∆x is the distance in meters between the positions represented by two neighboring
grid points.) For the latter grid points on the coarsest grid level, A is set to 0 and ϕ is set based on
a Coulomb potential. For these grid points on finer grid levels, all field values are set based on values
interpolated from the field values near the corresponding position on the next coarser grid level.

On the coarsest grid level, the peak is located on the x-axis halfway between the center of the grid
and the edge of the grid. This position determines the value of the grid unit ∆x, which is given by
the reduced Compton wavelength of electrons divided by the number of grid points between the peak
and the center of the grid, which is also the rotation center of the field solution. On finer grid levels,
the peak is located at the center of the grid level.

On the coarsest grid level, ϕ at the peak is set to 1 and the units of ϕ are scaled such that a
Coulomb potential for an elementary charge is reproduced at the boundary. On finer grid levels, by
default, the value of ϕ at the grid level’s peak is multiplied with 4 compared to the next coarser grid
level in order to reproduce a Coulomb potential on all grid levels. However, there is an additional
scaling of ϕ on the finest levels as explained in the next paragraph.

The vector potential A is set to 0 at the grid point (i, j, k) of the peak. At the four neighboring grid
points in the i, j-plane, A is set to form a vortex, i.e., at the (i− 1, j, k) grid point, A is set to point
in the positive j direction; at the (i, j + 1, k) grid point, A is set to point in the positive i direction;
at the (i+ 1, j, k), A is set to point in the negative j direction; and at the (i, j − 1, k) grid point, A is
set to point in the negative i direction. The magnitude of A on the coarsest grid level is chosen such
that the solution at large distances approximates the magnetic dipole field of an electron. On finer
grid levels, by default, the magnitude of A is multiplied with 16 compared to the next coarser grid
level in order to reproduce a dipole field on all grid levels. If, however, the resulting magnitude of A
divided by the grid unit ∆x of a grid level is greater than the Born-Infeld parameter b (the maximum
field strength), then the magnitude of A is set to b×∆x. Compared to the default value, this may be
considered a scaling with a factor less than 1. The same scaling factor is applied to the default value
of ϕ at the peak position.

Limiting values of the four-potential at the peak to b × ∆x ensures that field strengths near the
peak may reach values up to b but not beyond. Notably, it also results in decreasing(!) values of
the components of the four-potential at the peak for sufficiently high grid levels as their grid unit ∆x
decreases for increasing level, which (in the limit of infinitely high grid levels) avoids discontinuities of
the field at the peak.

3.2 Filtering Field Values

After boundary values have been set, a 3× 3× 3 triangular kernel filter is applied to the field values of
all grid points. The purpose of this filter is to prevent cases where successive Jacobi iterations spread
and/or magnify discretization errors. Additionally, it helps distributing field energy that is injected
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at the peak position by the boundary condition. Furthermore, it tends to reduce field strengths near
the peak (which is numerically beneficial, in particular for the computation in the next step) without
lowering the maximum peak value of the four-potential that the solution may potentially reach.

3.3 Approximating the Denominator a

This step computes for each grid point (i, j, k) the denominator a
def
=
√

1− (∂αAβ)(∂αAβ)/b2, which
appears in the field equations (see Section 2) and stores the result for use in the next step. Values
less than 0.01 are replaced by 0.01 to prevent spreading of numerical errors. In terms of the electric
potential ϕ and the magnetic vector potential A, the denominator a = a(ϕ,A) is given by:

a(ϕ,A) =

√√√√1− 1

b2

((
1

c

∂

∂t
ϕ/c

)2

− (∇ϕ/c)
2 −

(
1

c

∂

∂t
A

)2

+ (∇Ax)
2
+ (∇Ay)

2
+ (∇Az)

2

)
(4)

As mentioned above, spatial derivatives are approximated with central differences between neighboring
grid points, for example:

∂

∂x
Ay

∣∣∣∣
(i,j,k)

≈ 1

2∆x
(Ay(i+ 1, j, k)−Ay(i− 1, j, k)) . (5)

Time derivatives are approximated with central differences by sampling appropriately rotated positions
(assuming that the field solution is rotating with the peak moving at the speed of light). If the position
rotated backward in time (by ∆t) is denoted by (i−∆t, j−∆t, k−∆t), then the future value of ϕ at (i, j, k)
after ∆t depends on the value of ϕ (in the “frozen” field) at the backward rotated position, i.e., the
future value at (i, j, k) is given by ϕ(i−∆t, j−∆t, k−∆t) (which rotates onto the position (i, j, k) after
∆t). The vector-valued field A presents the additional complication that the field value has to be
forward rotated itself, which may be specified with a rotation matrix R+∆t. Thus, the future value of
A after ∆t is R+∆tA(i−∆t, j−∆t, k−∆t). The past values are computed analogously with −∆t instead
of +∆t and vice versa. With these expressions, the time-derivative of, for example, Ay reads:

∂

∂t
Ay

∣∣∣∣
(i,j,k)

≈ 1

2∆t

(
(R+∆tA(i−∆t, j−∆t, k−∆t))y − (R−∆tA(i+∆t, j+∆t, k+∆t))y

)
. (6)

3.4 Computing New Field Values with a Single Jacobi Iteration

As mentioned above, the field equations (see Section 2) are solved using an iterative Jacobi method.
To this end, each field equation is discretized and solved for one of the components of the four-potential
at a specific grid position (i, j, k). As an example, the field equation

0 = ∂µ
∂µAν√

1− 1
b2 (∂

αAβ)(∂αAβ)
(7)

for ν = 2 is considered, which is solved for A2(i, j, k) = Ay(i, j, k). (The other field equations are
treated completely analogously.) In terms of the electric potential ϕ and the magnetic vector potential
A, the equation for ν = 2 reads:

0 =
1

c

∂

∂t

1
c

∂
∂tAy

a(ϕ,A)
− ∂

∂x

∂
∂xAy

a(ϕ,A)
− ∂

∂y

∂
∂yAy

a(ϕ,A)
− ∂

∂z

∂
∂zAy

a(ϕ,A)
(8)

Derivatives are discretized using finite differences between neighboring grid points. a(ϕ,A) is
approximated by the arithmetic mean of the values at those neighboring grid points. For example, one
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of the four terms on the right-hand side is approximated this way:

∂

∂x

∂
∂xAy

a(ϕ,A)
≈ 1

∆x

(
(Ay(i+ 1, j, k)−Ay(i, j, k))/∆x

(a(i+ 1, j, k) + a(i, j, k))/2
− (Ay(i, j, k)−Ay(i− 1, j, k))/∆x

(a(i, j, k) + a(i− 1, j, k))/2

)
(9)

=
(
(Ay(i+ 1, j, k)−Ay(i, j, k)) (a(i, j, k) + a(i− 1, j, k)) /2 (10)

− (Ay(i, j, k)−Ay(i− 1, j, k)) (a(i+ 1, j, k) + a(i, j, k)) /2
)

/
(
∆x2(a(i+ 1, j, k) + a(i, j, k))(a(i, j, k) + a(i− 1, j, k))/4

)
=

(
−Ay(i, j, k) (a(i− 1, j, k) + 2a(i, j, k) + a(i+ 1, j, k)) /2 (11)

+ Ay(i+ 1, j, k) (a(i, j, k) + a(i− 1, j, k)) /2

+ Ay(i− 1, j, k) (a(i+ 1, j, k) + a(i, j, k)) /2
)

/
(
∆x2(a(i+ 1, j, k) + a(i, j, k))(a(i, j, k) + a(i− 1, j, k))/4

)
≈

(
− 2a(i, j, k)Ay(i, j, k) +Ay(i+ 1, j, k) (a(i, j, k) + a(i− 1, j, k)) /2 (12)

+ Ay(i− 1, j, k) (a(i+ 1, j, k) + a(i, j, k)) /2
)

/
(
∆x2(a(i+ 1, j, k) + a(i, j, k))(a(i, j, k) + a(i− 1, j, k))/4

)
Approximating all four terms on the right-hand side of the field equation analogously results in

this approximation:

0 =
1

c

∂

∂t

1
c

∂
∂tAy

a(ϕ,A)
− ∂

∂x

∂
∂xAy

a(ϕ,A)
− ∂

∂y

∂
∂yAy

a(ϕ,A)
− ∂

∂z

∂
∂zAy

a(ϕ,A)
(13)

≈
(
− 2a(i, j, k)Ay(i, j, k) (14)

+ (R+∆tA(i−∆t, j−∆t, k−∆t))y (a(i, j, k) + a(i+∆t, j+∆t, k+∆t)) /2

+ (R−∆tA(i+∆t, j+∆t, k+∆t))y (a(i−∆t, j−∆t, k−∆t) + a(i, j, k)) /2
)

/
(
c2∆t2(a(i−∆t, j−∆t, k−∆t) + a(i, j, k))(a(i, j, k) + a(i+∆t, j+∆t, k+∆t))/4

)
−
(
− 2a(i, j, k)Ay(i, j, k) +Ay(i+ 1, j, k) (a(i, j, k) + a(i− 1, j, k)) /2

+ Ay(i− 1, j, k) (a(i+ 1, j, k) + a(i, j, k)) /2
)

/
(
∆x2(a(i+ 1, j, k) + a(i, j, k))(a(i, j, k) + a(i− 1, j, k))/4

)
−
(
− 2a(i, j, k)Ay(i, j, k) +Ay(i, j + 1, k) (a(i, j, k) + a(i, j − 1, k)) /2

+ Ay(i, j − 1, k) (a(i, j + 1, k) + a(i, j, k)) /2
)

/
(
∆x2(a(i, j + 1, k) + a(i, j, k))(a(i, j, k) + a(i, j − 1, k))/4

)
−
(
− 2a(i, j, k)Ay(i, j, k) +Ay(i, j, k + 1) (a(i, j, k) + a(i, j, k − 1)) /2

+ Ay(i, j, k − 1) (a(i, j, k + 1) + a(i, j, k)) /2
)

/
(
∆x2(a(i, j, k + 1) + a(i, j, k))(a(i, j, k) + a(i, j, k − 1))/4

)
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In order to apply the Jacobi method, this equation is solved for Ay(i, j, k), which results in:

Ay(i, j, k) ≈

((
(R+∆tA(i−∆t, j−∆t, k−∆t))y (a(i, j, k) + a(i+∆t, j+∆t, k+∆t)) /2 (15)

+ (R−∆tA(i+∆t, j+∆t, k+∆t))y (a(i−∆t, j−∆t, k−∆t) + a(i, j, k)) /2
)

/
(
c2∆t2(a(i−∆t, j−∆t, k−∆t) + a(i, j, k))(a(i, j, k) + a(i+∆t, j+∆t, k+∆t))/4

)
−
(
Ay(i+ 1, j, k) (a(i, j, k) + a(i− 1, j, k)) /2

+ Ay(i− 1, j, k) (a(i+ 1, j, k) + a(i, j, k)) /2
)

/
(
∆x2(a(i+ 1, j, k) + a(i, j, k))(a(i, j, k) + a(i− 1, j, k))/4

)
−
(
Ay(i, j + 1, k) (a(i, j, k) + a(i, j − 1, k)) /2

+ Ay(i, j − 1, k) (a(i, j + 1, k) + a(i, j, k)) /2
)

/
(
∆x2(a(i, j + 1, k) + a(i, j, k))(a(i, j, k) + a(i, j − 1, k))/4

)
−
(
Ay(i, j, k + 1) (a(i, j, k) + a(i, j, k − 1)) /2

+ Ay(i, j, k − 1) (a(i, j, k + 1) + a(i, j, k)) /2
)

/
(
∆x2(a(i, j, k + 1) + a(i, j, k))(a(i, j, k) + a(i, j, k − 1))/4

))
/ (

2a(i, j, k)

/
(
c2∆t2(a(i−∆t, j−∆t, k−∆t) + a(i, j, k))(a(i, j, k) + a(i+∆t, j+∆t, k+∆t))/4

)
− 2a(i, j, k)/

(
∆x2(a(i+ 1, j, k) + a(i, j, k))(a(i, j, k) + a(i− 1, j, k))/4

)
− 2a(i, j, k)/

(
∆x2(a(i, j + 1, k) + a(i, j, k))(a(i, j, k) + a(i, j − 1, k))/4

)
− 2a(i, j, k)/

(
∆x2(a(i, j, k + 1) + a(i, j, k))(a(i, j, k) + a(i, j, k − 1))/4

))

The field equations for ν = 0, 1, and 3 result in analogous equations for ϕ(i, j, k), Ax(i, j, k), and
Az(i, j, k).

An individual step of a naive Jacobi method consists of applying these equations to compute new
values for ϕ(i, j, k) and A(i, j, k) at all grid points. While this method is certainly not the most efficient
method to solve the field equations, it is (in the technical sense) embarrassingly parallel and, therefore,
very well suited for a straightforward implementation on graphics processing units.

4 Determining the Born-Infeld Parameter

Like other versions of Born-Infeld field theory, the proposed model includes a Born-Infeld parameter
b, which (in this work) specifies the maximum field strength of the magnetic field and the maximum
field strength of the electric field divided by c. For easier comparison with previous work, however,
the numeric value is specified in V/m, which is the value of b× c, i.e., the maximum field strength of
the electric field.

Determining the Born-Infeld parameter b is particularly interesting because all other constants of
the model (electric charge, magnetic moment, and Compton frequency of an electron as well as speed
of light) are well known constants of nature. As in previous work [BIF34], b is chosen such that the
total field energy of the field solution equals the rest mass energy of an electron. To this end, the
field’s energy density u is assumed to be given by

u
def
=

1

2a(ϕ,A)

(
ε0|E|2 + 1

µ0
|B|2

)
(16)
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with the vacuum permittivity ε0, vacuum permeability µ0, electric field strength E = −∂/∂tA−∇ϕ,
and magnetic field strength B = ∇ × A. The effect of the denominator a(ϕ,A) on the total field
energy of the solution turns out to be negligible.

In order to compute the total field energy of a field solution for a given value of parameter b, the
energy density u = u(i, j, k) is computed for each grid point (i, j, k) of all grid levels and multiplied
by the volume ∆x3 represented by each grid point. The resulting energy contributions are summed
except for grid points that are covered by finer grid levels in order to avoid double counting. (The
energy of the corresponding volume of the finest grid level is estimated based on the energy density at
its boundary; but the energy contribution of the finest grid level is negligible in any case.) The field
energy in the volume outside the coarsest grid level is estimated as one quarter of the energy of the
coarsest grid level (which turns out to be less than 1% of the total field energy).

The resulting total field energy is compared to the well-known rest mass energy of an electron, and
the parameter b is adjusted iteratively until the two energies match. This fitting process resulted in a
value of 5×1022 V/m for b× c, which is consistent with (i.e., greater than) the lower limit reported by
Soff, Rafelski, and Greiner [SRG73]. However, it should be noted that there are still various potential
sources of systematic errors; thus, the reported value should be considered an initial result that has to
be improved in future work.

5 Discussion and Future Work

The presented model of electrons features the same long-range electric and magnetic fields, and the
same Compton frequency as real electrons, as well as a field energy equal to the rest mass energy of real
electrons. In this sense, the model appears to constitute a substantial improvement over the original
model by Born and Infeld [BIF34]. Since the presented model leads to a numeric solution of the field
equations, many questions about the model may be studied by analyzing this numeric solution instead
of analyzing non-linear, non-separable field equations. While an analysis of the numeric solution cannot
replace an analysis of the field equations, it certainly may help forming hypotheses and testing them
for plausibility. Many of these questions relate to emerging features of the model, e.g., whether a
Lorentz-like force exists in the model; whether the Compton frequency is predicted by the model;
whether the model predicts a Bohr-Sommerfeld-like quantization condition; whether other solutions
of the field equations exist (for the same Born-Infeld parameter) that correspond to other charged
leptons; etc.

6 Conclusion

This work presents a modified Born-Infeld field theory and a numerical solution procedure, which was
successfully used to compute field solutions that may serve as models of electrons with realistic electric
charge, magnetic dipole moment, and Compton frequency. Furthermore, the proposed procedure was
used to adjust the Born-Infeld parameter such that the total field energy of the solution matches
the rest mass energy of electrons. The model raises many questions that might lead to a deeper
understanding of real electrons and quantum physics in general. Perhaps the presented model might
even provide new meaning to a quote by Richard Feynman from his answer to a question about the
possibility of future alternatives to quantum electrodynamics: “If it’s going to be any kind of a model,
it’s going to be at least as weird as this thing [i.e., quantum electrodynamics]” [Fey79].
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