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Abstract. We consider the homogeneous incompressible Navier-Stokes equations on periodic do-
main Td . For d ≥ 3 and s ≥ d

2
− 1, the equations are globally wellposed in the energy space

L∞
t Ḣs

x

(
R+;Td

)
∩L2

t Ḣ
s+1
x

(
R+;Td

)
in the critical sense if the initial data u0 is divergence free, mean

zero and u0 ∈ Ḣs
x

(
Td

)
. We use Strichartz estimates for the heat kernel, bilinear Strichartz estimates

to obtain an iteration scheme critically depending on the value of et4u0 in L2
t Ḣ

s
x

(
[0, T ] ;Td

)
norm.

Use such iteration scheme and the commutator estimate between operators et4u0 ·∇ and |∇|2k et4,
we can prove u is decreasing in Ḣk

x

(
Td

)
in time interval (δ, T ] where k is the smallest integer that

k ≥ s and for all δ, 0 < δ < T . The decay property guarantees the global existence and wellposedness.

1. introduction and main results

In this paper we consider the incompressible Navier-Stokes (NS) equation

(1.1)

∂tu−4u+∇p+∇ · (u⊗ u) = 0

∇ · u = 0

u(0, x) = u0

with periodic boundary conditions in x ∈ Td = Rd/ (2πZ)
d and kinematic viscosity 1. Where the

solution is a vector value function u : R+ × Td → Rd and u0 is a divergence free vector field, i.e.,
ξ · û0 (ξ) = 0. We also consider solutions normalized to have zero spatial mean, i.e.,

∫
Td u(t, x)dx = 0

or equivalently û (0) = 0. The pressure p can be eliminated from the system via Leray projections,
and so we view this equation as an evolution equation for u alone. If we take inner product of (1.1)
with u and integrate in time, we obtain the fundamental energy identity

(1.2)
1

2

∫
Td
|u (T, x)|2 dx+

∫ T

0

∫
Td
|∇u(t, x)|2 dxdt =

1

2

∫
Td
|u0(x)|2 dx

for suitable solutions. The solutions to (1.1) obey the Duhamel’s formula

(1.3) u(t) = et4u0 −
∫ t

0

e(t−s)4Pdiv (u(s)⊗ u(s)) ds,

here P is the Leray projector on to divergence free vector fields Pu = u−∇4−1∇ · u and et4 denotes
convolution with the heat kernel [2]. For divergence free vector fields u,v, we have div (u⊗ v) = u ·∇v.
Hence we can rewrite the equation (1.1) as

(1.4) ∂tu−4u+ P (u · ∇u) = 0.

Theorem 1. We have the following wellposedness theorem for NS (1.1): Let d ≥ 3, for u0 ∈ Ḣs
x

(
Td
)
,

divergence free and mean zero with s ≥ d
2−1, the NS (1.1) is globally wellposed in L∞t Ḣs

x

(
[0,∞);Td

)
∩

L2
t Ḣ

s+1
x

(
[0,∞);Td

)
in the critical sense.

Before we go forward, first define the Fourier coefficient and the Sobolev norm used in the paper.
We use X . Y , Y & X to denote the estimate X ≤ CY for an absolute constant C. If C depends on a

1
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parameter α, we denote the inequality by X .α Y . The Fourier coefficient on a torusTd := Rd/ (2πZ)
d

is given by

(1.5) û (ξ) =
1

(2π)
d
2

∫
Td
u (x) e−iξ·xdx, u (x) =

∑
ξ∈Zd

1

(2π)
d
2

û (ξ) eiξ·x,

for all ξ ∈ Zd.We also use the notation Fxu = û (ξ) and F−1
x û = u to denote Fourier transformation

and inverse Fourier transformation respectively in this paper. The homogeneous Sobolev norm Ḣs
x is

defined by

(1.6) ‖u‖Ḣsx(Td) :=

∑
ξ∈Zd
|ξ|2s |û (ξ)|2

 1
2

.

Since we only consider divergence free functions u in this paper, we only use homogeneous Sobolev
spaces. It is easy to see that ‖u‖Ḣsx(Td) ≤ ‖u‖Ḣrx(Td) whenever s < r. Also define the operator |∇|s by

(1.7) |∇|s u := F−1
x |ξ|

s
û (ξ)

for any s ∈ R. Also, the heat kernel et4u can be written as et4u := F−1
x e−t|ξ|

2

û (ξ). The inner
product related to Ḣs

x

(
Td
)
is denoted by

(1.8) 〈u, v〉Ḣsx×Ḣsx(Td) :=
∑
ξ∈Zd
|ξ|2s û (ξ)v̂ (ξ) .

The NS equation (1.1) has scaling symmetry, for L > 0 and u(t, x) is a solution to (1.1) on Td,

uL(t, x) :=
1

L
u

(
t

L2
,
x

L

)
is also a solution to the NS equation with domain scaling to TdL. The scaling property of s is given by

the equation ‖uL(t)‖Ḣsx(TdL) = L
d
2−1−s ‖u(t)‖Ḣsx(Td). When s = d

2−1, the Ḣ
d
2−1
x norm of uL is invariant

for all L > 0 . When s > d
2 − 1, the equation is sub-critical and we expect the high frequencies of the

solution to evolve linearly for all time. The Xs norm has scaling L
d
2−1−s for the solution to the NS

equation (1.1). Since the conservation law (1.2) is in super-critical and have no use to achieve global
regularity. In this paper, we will take advantage from the conservation quantity for the linear heat
equation, which can be applied to critical and sub-critical energy spaces: For any s ≥ 0, from a direct
computation there is the conservation quantity

(1.9)
∥∥eT4u0

∥∥2

Ḣsx(Td)
+ 2

∥∥et4u0

∥∥2

L2
t Ḣ

s+1
x ([0,T ];Td)

= ‖u0‖2Ḣsx(Td)

for ∀T > 0.
The proof of the theorem will follow the manner: First we apply a Strichartz estimate for the heat

kernel, and obtain the bound for the integral part of (1.3),∥∥∥∥∫ t

0

e(t−r)4P (u · ∇v) (r)dr

∥∥∥∥
Xs(I;Td)

. ‖u‖L2
t Ḣ

s+1
x (I;Td) ‖v‖L2

t Ḣ
s+1
x (I;Td) .

The local wellposedness can be obtained by setting up iteration scheme. Let u1 = et4u0. For n ≥ 2,
let un solve

(1.10)
∂tun −4un + P (un−1 · ∇un−1) = 0

un (0, x) = u0

If the sequence (un) converges, the limit is a solution of (1.1) with initial data u0. The global well-
posedness heavily rely on the decay property: For any integer k, k ≥ d

2 − 1 , and 0 < t1 < t2, we
have

‖u (t2)‖Ḣkx (Td) ≤ ‖u (t1)‖Ḣkx (Td) .



WELLPOSEDNESS FOR THE HOMOGENEOUS PERIODIC NAVIER-STOKES EQUATION 3

Moreover, ‖u (t2)‖Ḣkx (Td) = ‖u (t1)‖Ḣkx (Td) if and only if u is a zero solution. To obtain the decay
property, here we use the approach in [4] with some modification (See also [1] for a similar setting).
Observe that un − un−1 is an n-linear operator from the data space to the solution space; denote
it by Fn (u1, · · · , u1). Under appropriate convergence assumptions, one gets the following analytic
expansion for the solution u,

(1.11) u = u1 +

∞∑
n=2

Fn (u1, · · · , u1) .

By (1.9), if we can prove that 2 〈
∑∞
n=2 Fn (u1, · · · , u1) , u1〉Ḣkx + ‖

∑∞
n=2 Fn (u1, · · · , u1)‖2

Ḣkx
is small

enough in a short time interval [0, T ], the decay property follows. Let ε (T ) := ‖u1‖L2
t Ḣ

k+1
x ([0,T ];Td) ,

by the Strichartz estimate, for n ≥ 2 and some large constant C,

‖Fn (u1, · · · , u1)‖L∞t Ḣk+1
x ([0,T ];Td) ≤ C

n−1εn (T ) .

Hence choosing T small enough, the summation

(1.12)

∥∥∥∥∥
∞∑
n=2

Fn (u1, · · · , u1) (T )

∥∥∥∥∥
2

Ḣkx (Td)

+ 2

∣∣∣∣∣
∞∑
n=3

〈Fn (u1, · · · , u1) (T ) , u1 (T )〉Ḣkx×Ḣkx

∣∣∣∣∣ ≤ ε2 (T ) ,

which is small enough. The difficulties lies in estimates related to 〈F2 (u1, u1) , u1〉. Since we can only
obtain ‖F2 (u1, u1)‖L∞t Ḣk+1

x ([0,T ];Td) ≤ Cε
2 (T ) from Strichartz estimates and in general u1 can be large

in Hk
x

(
Td
)
. Thus, we decompose the bilinear form F2 (u1, u1) into two part: The non-symmetry part

B1 (u1, u1) and the symmetry part B2 (u1, u1). The non-symmetry part is with smallness . ε3 (T ) by
applying directly computations. For the symmetry part, we need to use commutator estimate to show
it is actually 0. For divergence free vector valued function u1, the operator u1 ·∇ and heat type kernel
|∇|2k et4 has the following commutator property

(1.13)
〈
u1,
[
|∇|2k et4, u1 · ∇

]
u1

〉
L2
x×L2

x(Td)
= 0.

With the aid of the commutator property, the decay property can be acheived.

2. the strichartz estimate for the heat kernel

Lemma 2. For d ≥ 3 , and any time interval I = [0, T ] ⊂ [0,∞) or I = [0,∞), and any u0(x) ∈
L2
x

(
Td
)
we have the homogeneous Strichartz estimates

(2.1)
∥∥et4u0

∥∥
L2
t Ḣ

1
x(I;Td)

≤ ‖u0‖L2
x(Td) ,

∥∥et4u0

∥∥
L∞t L

2
x(I;Td)

≤ ‖u0‖L2
x(Td)

the inhomogeneous Strichartz estimate for any f(t, x) ∈ L2
t,x

(
I;Td

)
,

(2.2)
∥∥∥∥∫ t

0

e(t−r)4f(s)dr

∥∥∥∥
L2
t Ḣ

2
x(I;Td)

≤ ‖f‖L1
t Ḣ

1
x(I;Td) ,

(2.3)
∥∥∥∥∫ t

0

e(t−r)4f(s)dr

∥∥∥∥
L∞t Ḣ

1
x(I;Td)

≤ ‖f‖L1
t Ḣ

1
x(I;Td) .

Proof. See also Tao’s work for u ∈ C0
tH

1
0

(
I;T3

)
. [10] for this estimate. By Parseval’s identity∑

ξ∈Zd |û0 (ξ)|2 = ‖u0‖L2
x(Td) , we have the following inequalities for homogeneous Strichartz estimates∥∥et4u0

∥∥
L2
t Ḣ

1
x(I;Td)

=

∫
I

∑
ξ∈Zd
|ξ|2 e−2|ξ|2t |û0 (ξ)|2 dt ≤

∑
ξ∈Zd

(∫ ∞
0

|ξ|2 e−2|ξ|2tdt

)
|û0 (ξ)|2 ,

and ∥∥et4u0

∥∥
L∞t L

2
x(I;Td)

= sup
t∈I

∑
ξ∈Zd

e−|ξ|
2t |û0 (ξ)|2 ≤

∑
ξ∈Zd
|û0 (ξ)|2 .
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For the inhomogeneous Strichartz estimates, let ϕ be any function in L2
tL

2
x

(
I;Td

)
and ‖ϕ‖L2

tL
2
x(I;Td) =

1, (2.2) can be interpret as the following equation

(2.4)
∥∥∥∥∫ t

0

e(t−r)4f(s)dr

∥∥∥∥
L2
t Ḣ

2
x(I;Td)

= sup
ϕ

∫
I

∫ t

0

Re
∑
ξ

|ξ|2 e−|ξ|
2(t−r)f̂ (r, ξ) ϕ̂(t, ξ)drdt.

We can rewrite the boundary of the time integrations into the following formula∫
I

∫ t

0

e−|ξ|
2(t−r)f̂ (r, ξ) ϕ̂(t, ξ)drdt =

∫ ∞
−∞

∫ ∞
−∞

1I(t− s) |ξ|2 e−|ξ|
2(t−r)1I(r)f̂(r, ξ)1I(t)ϕ̂(t, ξ)drdt,

after applying Young’s inequality on functions 1I(t − r) |ξ|2 e−|ξ|
2(t−r), 1I(r)f̂(r, ξ), and 1I(t)ϕ̂(t, ξ),

we have∣∣∣∣∫
I

∫ t

0

e−|ξ|
2(t−r)f̂ (r, ξ) ϕ̂(t, ξ)drdt

∣∣∣∣ ≤ ∥∥∥f̂(t, ξ)
∥∥∥
L1
t (I)
‖ϕ̂(t, ξ)‖L2

t (I)

(∫
I

|ξ|4 e−2|ξ|2rdr

) 1
2

.

Since
(∫

I
|ξ|4 e−2|ξ|2rdr

) 1
2 ≤

(∫∞
0

1
2 |ξ|

4
e−2|ξ|2rdr

) 1
2 ≤ 1√

2
|ξ|, by Hölder inequality, and (2.4), we

obtain (2.2). Applying the Minkowski’s inequality we can switch the order of integration over t with
the summation over ξ,

∥∥∥∥∫ t

0

e(t−r)4f(r)dr

∥∥∥∥
L2
t Ḣ

2
x(I;Td)

≤ sup
ϕ

∑
ξ∈Zd

1√
2
|ξ|
∥∥∥f̂(t, ξ)

∥∥∥2

L1
t (I)

 1
2
∑
ξ∈Zd
‖ϕ̂(t, ξ)‖2L2

t (I)

 1
2

≤ ‖f‖L1
t Ḣ

1
x(I;Td) .

For (2.3), for t− s ≥ 0 it is obvious that
∣∣e(t−s)4f (s)

∣∣ ≤ |f (s)|.∥∥∥∥∫ t

0

e(t−r)4f(r)dr

∥∥∥∥
L∞t Ḣ

1
x(I;Td)

≤ sup
t∈I

∫ t

0

∥∥∥e(t−s)4f (r)
∥∥∥
Ḣ1
x(Td)

dr ≤ ‖f (t, x)‖L1
t Ḣ

1
x(I;Td)

, we prove (2.3). �

Note that it is obvious that all the inequality coefficients in Lemma 2 are constants independent of
dimension d and s.

Lemma 3. Let d ≥ 3 , and any time interval I = [0, T ] ⊂ [0,∞) or I = [0,∞), and given u0 ∈ Ḣs
x

(
Td
)

, f ∈ L1Ḣs
x

(
I;Td

)
, s ∈ R, f and u0 are divergence free function. We have the following Strichartz

estimates:

(2.5)
∥∥et4u0

∥∥
Xs(I;Td)

≤ 2 ‖u0‖Ḣsx(Td) ,

(2.6)
∥∥∥∥∫ t

0

e(t−r)4f(r)dr

∥∥∥∥
L∞t H

s
x(I;Td)

≤ ‖f‖L1
t Ḣ

s
x(I;Td) ,

(2.7)
∥∥∥∥∫ t

0

e(t−r)4f(r)dr

∥∥∥∥
L2
tH

s+1
x (I;Td)

≤ ‖f‖L1
t Ḣ

s
x(I;Td) .

Proof. If we substitute u0 and f by |∇|s u0 and |∇|s f in Lemma 2, we can obtain the following
Strichartz estimates in L∞t Hs

x

(
I;Td

)
, L2

tH
s+1
x

(
I;Td

)
and L1

t Ḣ
s
x

(
I;Td

)
spaces without any difficulty.

�
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3. proof of the theorem

Let d
2 −1 ≤ s ≤ d

2 and d ≥ 4. Let u0 be a divergence free, mean zero vector value, and ‖u0‖Ḣsx(Td) =

M <∞. By the standard iteration scheme and (1.3), let u1 = et4u0, and

(3.1) un = et4u0 −
∫ t

0

e(t−s)4P (un−1(r) · ∇un−1(r)) dr.

It is easy to verify that for divergence free and mean zero vector field u, v, we have that eit4u and
P (u · ∇v) = Pdiv (u⊗ v) are also divergence free and mean zero. Therefore if un is divergence free
and mean zero, un+1 is also divergence free and mean zero. Here define the bilinear form B (u, v) by

(3.2) B (u, v) (t) :=

∫ t

0

e(t−s)4P (u (s) · ∇v (s)) ds.

Lemma 4. Let u, v ∈ Xs
(
I;Td

)
for some time interval [0, T ] with s > d

2 − 1 and d ≥ 3. Then theres
is the bound for the bilinear form B,

(3.3) ‖B (u, v) (t)‖Xs(I;Td) .s,d ‖v‖L2
t Ḣ

s+1
x (I;Td) ‖u‖L2

t Ḣ
s+1
x (I;Td) .

Proof. By Bersteins type inequalities, we have |∇sfg| .s |(∇sf) g| + |f∇sg| . Using standard dyadic
frequency decomposition, the deritivate can be move to the high frequency function. Here we omit the
detail proof, from Bersteins type inequalities and taking summation over all frequency decomposition,
|∇s (f∇g)| .s

∣∣f∇s+1g
∣∣+
∣∣g∇s+1f

∣∣ for all s ≥ 0. Hence the estimate holds

(3.4) ‖P (u · ∇v)‖Ḣsx(Td) . ‖u‖L∞x (Td) ‖v‖Ḣs+1
x (Td)+‖v‖L∞x (Td) ‖u‖Ḣs+1

x (Td) . ‖v‖Ḣs+1
x (Td) ‖u‖Ḣs+1

x (Td) .

The second inequality comes from Sobolev embedding ‖f‖L∞x (Td) .s,d ‖v‖Ḣs+1
x (Td) for s > d

2 − 1.
Applying above inequality to the bilinear form B (u, v),

‖B (u, v)‖Xs(I;Td) . ‖P (u · ∇v)‖L1
t Ḣ

s
x(I;Td)

.
∫ T

0

‖v (r)‖Ḣs+1
x (Td) ‖u (r)‖Ḣs+1

x (Td) dr . ‖v‖L2
t Ḣ

s+1
x (I;Td) ‖u‖L2

t Ḣ
s+1
x (I;Td) .

The estimate at the scaling critical regularity s = d
2 − 1 will require using bilinear wave estimate

technique. The proof is shown in the Appendix. Here we directly quote the result that

(3.5) ‖P (u · ∇v)‖
Ḣ
d
2
−1

x (Td)
. ‖u‖

Ḣ
d
2
x (Td)

‖v‖
Ḣ
d
2
x (Td)

.

The same argument can be applied to the special case s = d
2 − 1. �

Proposition 5. Let d ≥ 3 and s ≥ d
2 − 1. For any u0 ∈ Ḣs

x

(
Td
)
, the equation (1.1) is locally

wellposed in Xs
(
I;Td

)
for some time interval [0, T ]. The value of T is depending on the value of

‖u1‖L2
t Ḣ

s+1
x (I;Td).

Proof. First we prove the local wellposedness in the scaling critical norm. The iteration (3.1) converges
in Xs

(
I;Td

)
where I = [0, T ], T > 0, and s ≥ d

2 − 1. We will choose the value T later. To compute
the difference between un+1 and un, let Dn := P (un · ∇un − un−1 · ∇un−1), and separate it into two
parts:

Dn = P (un − un−1) · ∇un + Pun−1 · ∇ (un − un−1) .

With bilinear form B defined as in (3.2), the integration un+1 − un = −
∫ t

0
e(t−r)4Dn (r) dr can be

written as
∫ t

0
e(t−r)4Dn (r) ds = B (un − un−1, un) +B (un−1, un − un−1). By (3.3),

‖un+1 − un‖Xs(I;Td) .
(
‖un‖L2

t Ḣ
s+1
x (I;Td) + ‖un−1‖L2

t Ḣ
s+1
x (I;Td)

)
‖un − un−1‖L2

t Ḣ
s+1
x (I;Td) .
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Let ‖u1‖L2
t Ḣ

s+1
x (I;Td) = ε0 and assume that ‖un‖L2

t Ḣ
s+1
x (I;Td) < 2ε0 for all n > 1. Since limt→0+ ‖u1‖L2

t Ḣ
s+1
x ([0,t];R+) =

0, we can choose T small enough that ε0 < 1
16C , where C is a constant only depend on d,

(3.6) ‖un+1 − un‖Xs(I;Td) < 4Cε0 ‖un − un−1‖L2
t Ḣ

s+1
x (I;Td) <

1

4
‖un − un−1‖L2

t Ḣ
s+1
x (I;Td) .

By the contraction mapping un converges to a solution u ∈ Xs
(
I;Td

)
, which also obeys the required

Lipschitz property for local wellposedness. Note that by induction we have the following bound

(3.7) ‖un − un−1‖Xs(I;Td) ≤ (4C)
n−1 ‖u1‖nL2

t Ḣ
s+1
x (I;Td) = (4C)

n−1
εn0 .

The assumption bound on I holds by applying (3.7)

(3.8) ‖un‖L2
t Ḣ

s+1
x (I;Td) ≤

n∑
i=2

‖ui − ui−1‖L2
t Ḣ

s+1
x (I;Td) + ‖u1‖L2

t Ḣ
s+1
x (I;Td) <

1

3
ε0 + ε0 < 2ε0

for all n ≥ 1.
The uniqueness and dependence on initial data can be obtained by the following inequality. Assume

u and v are two solutions to (1.1) on time interval I = [0, T ] with initial data u0 and v0 respectively,
there is the bound

‖u− v‖Xs(I;Td) .
∥∥et4u0 − et4v0

∥∥
Xs(I;Td)

+
(
‖u‖L2

t Ḣ
s+1
x (I;Td) + ‖v‖L2

t Ḣ
s+1
x (I;Td)

)
‖u− v‖L2

t Ḣ
s+1
x (I;Td) .

If we take subinterval I ′ = [0, t′] ⊂ I small enough that ‖u‖L2
t Ḣ

s+1
x (I′;Td) , ‖v‖L2

t Ḣ
s+1
x (I′;Td) ≤

1
4C . By

subtract 1
2 ‖u− v‖L2

t Ḣ
s+1
x (I′;Td) on both side and (2.5), ‖u− v‖Xs(I;Td) .

∥∥et4u0 − et4v0

∥∥
Xs(I;Td)

.

‖u0 − v0‖Ḣsx(Td) . �

3.1. Decay property of u (t). For the global wellposedness, first we prove that on a small time
interval the solution u obtained by above iteration scheme is decreasing in Ḣs

x

(
Td
)
norm where s ≥ d

2−1

and s = k for some integer k. Let s ≥ d
2 − 1. From the observation of [1][4], the first approximation of

the solution to the corresponding linear equation given by B (u1, u1) has the worst property. Indeed,
the solution u can be written as the summation of linear part u1, the first approximation part B (u1, u1),
and the remainder E.

(3.9) u (t) = u1 (t)−B (u1, u1) (t) + E (t) ,

where u1 = et4u0. Recall that ‖u1‖L2
t Ḣ

s+1
x (I;Td) = ε0. Taking Ḣs

x inner product by using (3.9) at a
given time T > 0,

‖u (T )‖2Ḣsx(Td) ≤ ‖u1 (T )‖2Ḣsx(Td) + 2
∣∣∣〈u1 (T ) , B (u1, u1) (T )〉Ḣsx×Ḣsx(Td)

∣∣∣+R (T ) ,

where
R (t) := ‖B (u1, u1) (t)‖2Ḣsx(Td) + ‖E (t)‖2Ḣsx(Td)

+ 2 ‖B (u1, u1) (t)‖Ḣsx(Td) ‖E (t)‖Ḣsx(Td) + 2 ‖u1 (t)‖Ḣsx(Td) ‖E (t)‖Ḣsx(Td) .

From the iteration scheme (3.7), we have ‖E (T )‖Ḣsx(Td) .s,d ε
3
0. By (3.3), ‖B (u1, u1) (T )‖Ḣsx(Td) .s,d

ε20. Let ‖u0‖Ḣsx(Td) = M ≥ 0. If we choose the time interval to be small enough such that ε0 ≤
(1 + C (s, d))

−1
(1 +M)

−1, where C (s, d) is some constant only depending on s and d. Therefore the
bound holds for R (T ),

(3.10) R (T ) . ε40 + ε60 + 2ε50 + 2Mε30 ≤ ε20.

Notice that if u0 is a non-zero function, there exists T > 0 that for all t ∈ (0, T ), R (t) < ε20. The
equality holds only for zero function if the time interval is carefully choose. It is suffice to show the
decay in short time by showing the inner product between u1and the first approximation B (u1, u1) in
Ḣs
x × Ḣs

x

(
Td
)
is small enough. If

∣∣∣〈u1 (T ) , B (u1, u1) (T )〉Ḣsx×Ḣsx(Td)

∣∣∣ ≤ ε20 , the following proposition
holds.
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Proposition 6. Let d ≥ 3, s ≥ d
2 − 1 and s = k for some integer k. If u is a solution to (1.1) and

locally wellposed in Xs
(
[0, T ] ;Td

)
for some T > 0, ‖u (t)‖Ḣsx(Td) is decreasing on [0, T ].

Proof. We start from decomposedB (u1, u1) into two partB1 (u1, u1) andB2 (u1, u1) . LetN (ξ, ξ − η) :=
P [û0 (ξ − η) · (−iξ) û0 (η)],

̂B (u1, u1) (t, ξ) =
∑
η∈Zd

∫ t

0

e−(t−r)|ξ|2e−r|ξ−η|
2−r|η|2N (ξ, ξ − η) dr.

Therefore we decompose the B (u1, u1) into the remainder part B1 (u1, u1) and the symmetry part
B2 (u1, u1).

(3.11) ̂B1 (u1, u1) (t, ξ) :=

∫ t

0

(
e−(t−r)|ξ|2 − e−r|ξ|

2
) ∑
η∈Zd

e−r|ξ−η|
2−r|η|2N (ξ, ξ − η) dr,

(3.12) ̂B2 (u1, u1) (t, ξ) =
∑
η∈Zd

∫ t

0

e−r|ξ|
2−r|ξ−η|2−r|η|2N (ξ, ξ − η) dr.

Since the hsξ is taking summation over individual ξ, for each ξ ∈ Zd,
∣∣∣e−(t−r)|ξ|2 − e−r|ξ|2

∣∣∣ ≤ ∣∣∣1− e−t|ξ|2 ∣∣∣
for all r ∈ [0, t]. For each ξ,

∣∣∣ ̂B1 (u1, u1) (t, ξ)
∣∣∣ . ∣∣∣1− e−t|ξ|2∣∣∣ ∫ t0 ∣∣∣∑η∈Zd e

−r|ξ−η|2−r|η|2N (ξ, ξ − η)
∣∣∣ dr.

Applying the inequality to the original inner product 〈u1 (T ) , B1 (u1, u1) (T )〉Ḣsx×Ḣsx(Td),∣∣∣∣∣∣
∑
ξ∈Zd
|ξ|2s û1 (t) ̂B1 (u1, u1) (t)

∣∣∣∣∣∣
≤

∑
ξ∈Zd
|ξ|2s

∣∣∣(1− e−t|ξ|
2
)
û1 (t)

∣∣∣2
 1

2

∑
ξ∈Zd
|ξ|2s

∣∣∣∣∣∣
∫ t

0

∣∣∣∣∣∣
∑
η∈Zd

e−r|ξ−η|
2−r|η|2N (ξ, ξ − η)

∣∣∣∣∣∣ dr
∣∣∣∣∣∣
2


1
2

Note that e−t|ξ|
2
∣∣∣1− e−t|ξ|2 ∣∣∣ ≤ ∣∣∣1− e−2t|ξ|2

∣∣∣ ≤ 1 ,therefore the first factor can be bounded by ε0. By
Minkowski’s inequality we can switch the order of integration over t with summation in ξ in the second
factor, the factor can be bounded by

∫ t
0
‖P (u1 · ∇u1) (r)‖Ḣsx(Td) dr. By (3.4),∫ t

0

‖P (u1 · ∇u1) (r)‖Ḣsx(Td) dr . ‖u1‖2L2
t Ḣ

s+1
x (I;Td) = ε20.

Hence there is the smallness bound

(3.13)
∣∣∣〈u1 (t) , B1 (u1, u1) (t)〉Ḣsx×Ḣsx

∣∣∣ . ‖u1‖L2
t Ḣ

s+1
x (I;Td)

∫ t

0

‖P (u1 · ∇u1) (r)‖Ḣsx(Td) dr . ε
3
0.

In the next lemma, we are going to show that
∣∣∣〈u1 (t) , B2 (u1, u1) (t)〉Ḣkx×Ḣkx

∣∣∣ = 0 where k is some

non-negative integer. By taking t1 small enough, u (t) decreasing in Ḣs
x

(
Td
)
is obtained by (1.9)

‖u (t1)‖2Ḣsx(Td) ≤ ‖u1 (t1)‖2Ḣsx(Td) + 2ε20 = ‖u0‖2Ḣsx(Td) .

For any t in the interval [0, t1], the same argument gives us ‖u (t)‖Ḣsx(Td) ≤ ‖u0‖Ḣsx(Td). The argument
can also be applied to any subinterval of [0, t1], which gives us the decay in time. By repeating the
argument at time tn, there is the new time interval [tn, tn+1], tn+1 > tn, with the same decay property.
By the uniform bound ‖u (tn)‖Ḣsx(Td) ≤ ‖u0‖Ḣsx(Td), the argument can be applied until we obtain decay
property on [0, T ]. Moreover, the equality ‖u (tn)‖Ḣsx(Td) = ‖u0‖Ḣsx(Td) holds if and only if u0 ≡ 0. �
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For the estimate of B2, it is the same as estimate of
∫ t

0

〈
et4u1 (r) , u1 (r) · ∇u1 (r)

〉
Ḣsx×Ḣsx(Td)

dr by
Parseval’s indentity. We are going to prove when k is a non-negative integer,

〈
et4v, v · ∇v

〉
Ḣsx×Ḣsx(Td)

=〈
|∇|2k et4v, v · ∇v

〉
L2
x×L2

x(Td)
= 0 for all divergence free vector value functions v with suitable regular-

ity. By choose v = er4u0, the decay property is proved. Notice that the operator v·∇ is skew symmetry
in L2

x, 〈g, v · ∇f〉L2
x×L2

x(Td) = −〈v · ∇g, f〉L2
x×L2

x(Td) for all vector value functions f and g in L2
x

(
Td
)
.

Meanwhile, the operator |∇|2s et4 is symmetry,
〈
g, |∇|2k et4f

〉
L2
x×L2

x(Td)
=
〈
|∇|2k et4g, f

〉
L2
x×L2

x(Td)
.

Hence
〈
|∇|2k et4v, v · ∇v

〉
L2
x×L2

x(Td)
= 1

2

〈
v, |∇|2k et4 (v · ∇v)− v · ∇

(
|∇|2k et4v

)〉
L2
x×L2

x(Td)
. It is

suffice to show the commutator estimate

(3.14)
〈
v,
[
|∇|2k et4, v · ∇

]
v
〉
L2
x×L2

x(Td)
= 0.

Here if X, Y are two operators, the bracket is defined by [X,Y ] := XY − Y X. Recall that the heat

kernel operator on Rd can be defined as convolution with function 1

(4πt)
d
2
e−
|x|2
4t , the heat kernel on Td

can also be expressed as

(3.15) et4f (x) :=
∑
k∈Zd

∫
Td

1

(4πt)
d
2

e−
|x−y+2πk|2

4t f (y) dy.

The convolution form (3.15) is equivalent to the definition using Fourier transformation. By applying
the differentiation to x variable in (3.15), the kernels for operator |∇|2k et4can be obtained. The
y variable and k can be treated as constants. By the computation of k = 1, we may assume that
the kernels can be written as summation of e−

|x|2
4t |x|2j with coefficients. Applying derivative to the

function e−
|x|2
4t |x|2j where j is a positive integer,

4
(
e−
|x|2
4t |x|2j

)
=

(
1

4t2
|x|2(j+1) − d+ 2

2t
|x|2j +

(
4j2 − 4j + 2dj

)
|x|2(j−1)

)
e−
|x|2
4t ,

which complete the mathematical induction. Given a non-negative integer k, by induction the operator
|∇|2k et4 can be expressed as

(3.16) |∇|2k et4f (x) =
∑
k∈Zd

∫
Td

1

(4πt)
d
2

e−
|x−y+2πk|2

4t

 k∑
j=0

Cj (t, d) |x− y + 2πk|2j
 f (y) dy,

where Cj (t, d) is a polynomial of t−1. Hence the heat type kernel K for |∇|2k et4 is defined as

(3.17) K (t, x, y) :=
∑
k∈Zd

1

(4πt)
d
2

e−
|x−y+2πk|2

4t

 k∑
j=0

Cj (t, d) |x− y + 2πk|2j
 .

On the torus Td, the operator |∇|2k et4 applying on a given function f can be written as convolution
with the kernel K, |∇|2k et4f (x) =

∫
Td K (t, x, y) f (y) dy.

Lemma 7. Let s ≥ d
2 − 1 and s = k for some integer k. Let bilinear form B2 be defined as in (3.12),

and u1 (t) = et4u0 where t > 0 and u0 ∈ Ḣs
x

(
Td
)
is divergence free. Then we have

(3.18) 〈u1 (t) , B2 (u1, u1) (t)〉Ḣsx×Ḣsx(Td) = 0.

Proof. If we can prove (3.14), (3.18) can be obtained. The commute estimates for operator |∇|2k et4
with v ·∇ is easier to be proved by using convolution form. The following equation holds by written the
operator |∇|2k et4v in convolution form, v (x) · ∇

(
|∇|2k et4v

)
(x) =

∫
Td v (x) · ∇xK (t, x, y) v (y) dy.
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Using the property divv = 0 and the periodic boundary value in integration by parts,

|∇|2k et4 (v · ∇v) (x) =

∫
Td
K (t, x, y) v (y) · ∇yv (y) dy

=
(((((((((((((((

−
∫
Td
K (t, x, y) [divyv (y)] v (y) dy −

∫
Td

[v (y) · ∇yK (t, x, y)] v (y) dy.

Taking the inner product with v (x) in L2
x

(
Td
)
, switching x with y and applying the skew symmetry

property ∇xK (t, x, y) = −∇yK (t, x, y),〈
v (x) , |∇|2k et4 (v · ∇v) (x)

〉
L2
x×L2

x(Td)
= −

∫
Td

∫
Td

[v (y) · ∇yK (t, x, y)] v (y) · v (x) dydx

=

∫
Td

∫
Td

[v (x) · ∇xK (t, x, y)] v (x) · v (y) dydx =
〈
v (x) , v (x) · ∇ |∇|2k et4v (x)

〉
L2
x×L2

x(Td)
.

Therefore (3.14) is proved. �

For any s′ > 0 and f ∈ L2
x

(
Td
)
, there is the smoothing effect for the heat operator,

∥∥et4f∥∥
Ḣs′x (Td)

.

t−
s′
2 ‖f‖L2

x(Td). Using the smoothing effect for the heat operator et4, we can proof that the global
wellposedness holds for any s ≥ d

2 − 1 and s is not an integer. Given u0 ∈ Ḣs
x

(
Td
)
, by applying

Proposition 5, there exists a solution u to (1.1) and locally wellposed in Ḣs
x

(
Td
)
on some time interval

[0, T ] with T > 0. Here we pick integer k such that k is the smallest integer k > s. The iteration
scheme and contraction mapping in Proposition 5 can be applied to Ḣk

x

(
Td
)
spaces if we prove the

first iteration of u1 (t) is in Ḣk
x

(
Td
)
when t > 0. By smoothing effect and 0 < k − s < 1,

‖B (u1, u1) (t)‖Ḣkx (Td) . ‖u1‖2L2
t Ḣ

k
x ([0,t];Td) .

∫ t

0

(
r−

k−s
2 ‖u0‖Ḣsx

)2

dr .s t
1−k+s ‖u0‖2Ḣsx .

The contraction mapping holds for t small enough, therefore the solution u ∈ L∞t Ḣk
x

(
[δ, T ] ;Td

)
for

any 0 < δ < T . Using Proposition 6, ‖u (T )‖Ḣsx(Td) ≤ ‖u (T )‖Ḣkx (Td) ≤ ‖u (δ)‖Ḣkx (Td). Applying
the same argument at time T again, the solution is wellposed on an extended time interval with
‖u (t)‖Ḣsx(Td) ≤ ‖u (δ)‖Ḣkx (Td). The maximal time interval of existence can be extended to [0,∞) due
to that it is impossible to have some finite time T , limt→T ‖u (t)‖Ḣsx(Td) =∞.

Remark 8. The extend the proof to non-homogeneous NS equations and NS equations onRd, see [9].
Other regularity and wellposedness theory can also be found in this paper and its references as well.

4. Appendix–bilinear strichartz estimates for wave equations on torus

In this section we use ũ to denote the Fourier transformation both in time and space,

(4.1) ũ (τ, ξ) =
1

(2π)
d
2

∫ ∞
−∞

∫
Td
u (t, x) e−iξ·xe−itτdxdt,

where ξ ∈ Zd, τ ∈ R. For the scaling critical exponent s+ 1 = d
2 , there is no Sobolev embedding from

L∞x
(
Td
)
into Ḣ

d
2
x

(
Td
)
when d > 1. To obtain the inequality (3.3), we need to take advantage of the

null form structure of P (u · ∇v). The null form Q (u, v) represent arbitrary linear combinations, with
constant real coefficients of the null forms

(4.2) Q (u, v) = ∂iu∂jv − ∂ju∂iv.
The nonlinearity P (u · ∇v) for divergence free vector value functions u, v can be represented as
P (u · ∇v) = Q

(
|∇|−1

u, v
)
. By applying bilinear Strichartz estimates for the wave equation, the

inequality (3.5) can be acheived. Here the bilinear estimates following the work by Klainerman and
Machedon [6] on R× R3, Klainerman, Selberg [8], Foschi and Klainerman [3] on R× Rd when d ≥ 2.
A similar results for bilinear estimates on compact manifold without boundary can be found in Hani’s
work [5].
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Define the operator wα− and wα+ on scaling torus Td as

(4.3) Ft,xwα− (u) := (2π)
− d2

∑
ξ∈Zd
||τ | − |ξ||α ũ (τ, ξ) ,

and

(4.4) Ft,xwα+ (u) := (2π)
− d2

∑
ξ∈Zd
||τ |+ |ξ||α ũ (τ, ξ) ,

where α ∈ R. The proof starts with re-prove a subset of wave operator bilinear STrichartz estimates
on torus and use the bilinear Strichartz estimates to obtain (3.5). In this section, the bilinear estimates
are performed on the extra time variable t′, where (t′, x) ∈

[
− 1

2 ,
1
2

]
×Td. The original equation u (t, x)

on R+ × Td is extended to a new domain
[
− 1

2 ,
1
2

]
× R+ × Td with the equation

(4.5) u (r, t, x) := cos (r |∇|)u (t, x) ,

where the operator is defined by Fx cos (r |∇|)u (x) = cos (r |ξ|) f̂ (ξ) . It is obvious that �ru ≡ 0 and
u (0, t, x) ≡ u (t, x), where �r := ∂2

r +4. Let uT (r, x) = u (r, T, x) be the function of r, x at a fixed
time T , uT (r, x) is a homogeneous wave function on

[
− 1

2 ,
1
2

]
×Td. The initial data for the equation is

given by uT (0) = u (T ), ∂ruT (0) = 0. Taking integral on both side of the differential equation with
respect to r and x

|P (uT · ∇uT ) (0)|2 = |P (uT · ∇uT ) (r)|2 −
∫ r

0

∂r′ |PuT · ∇uT (r′)|2 dr′,

a bound for P (uT · ∇uT ) at r = 0 can be obtained.
The following theorem for wave operator bilinear estimates can be found in [3]: Let d ≥ 2 on R×Rd,

�f = �g = 0, {f (0) , ft (0)} = {f0, f1}, and {g (0) , gt (0)} = {g0, g1}. We have

(4.6)

∥∥∥|∇|β0 w
β+

+ w
β−
− (fg)

∥∥∥
L2
tL

2
x(R;Rd)

.d
(
‖f0‖Ḣα1

x (Rd) + ‖f1‖Ḣα1−1
x (Rd)

)(
‖g0‖Ḣα2

x (Rd) + ‖g1‖Ḣα2−1
x (Rd)

)
if and only ifα1, α2, β0, β1, β2satisfy the following conditions:

(4.7) β0 + β+ + β− = α1 + α2 −
d− 1

2
,

(4.8) β− ≥ −
d− 3

4
,

(4.9) β0 > −
d− 1

2
,

(4.10) αi ≤ β− +
d− 1

2
, i = 1, 2,

(4.11) α1 + α2 ≥
1

2
,

(4.12) (αi, β−) 6=
(
d+ 1

4
,−d− 3

4

)
, i = 1, 2

(4.13) (α1 + α2, β−) 6=
(

1

2
,−d− 3

4

)
.

We expect that the bilinear estimates on
[
− 1

2 ,
1
2

]
× Td follow the same inequalities as the well known

estimates on R × Rd. Since in the later section only the case β+ = 0, β− = 1
2 , and β0 ≥ 0 are

considered, we only prove the special cases of the bilinear estimates on
[
− 1

2 ,
1
2

]
× Td.
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Lemma 9. For d ≥ 3, f = eit|∇|f0, g = eit|∇|g0 and we have

(4.14)
∥∥∥w 1

2
− (fg)

∥∥∥
L2
tL

2
x([− 1

2 ,
1
2 ];TdL)

.d ‖f0‖L2
x(Td) ‖g0‖

Ḣ
d
2
x (Td)

.

for all f0 ∈ Lx
(
Td
)
, g0 ∈ Ḣ

d
2
x

(
Td
)
.

Proof. The Fourier transformation ψ̃ (t) fg can be written as

Ft,xψ (t) fg = (2π)
− d2
∫ ∫ ∑

η∈Zd
f̂0 (ξ − η) ĝ0 (η) δ (τ ′ − |η|) δ (τ̃ − τ ′ − |ξ − η|) ψ̂ (τ − τ̃) dτ ′dτ̃

= (2π)
− d2

∑
η∈Zd

f̂0 (ξ − η) ĝ0 (η) ψ̂ (τ − |η| − |ξ − η|) .

We follow a similar argument in [6], Here define Λ′ :=
{
τ : τ = |ξ1|+ |ξ2| , where ξ1, ξ2 ∈ Zd

}
. Also

define S(τ, ξ) :=
{
η ∈ Zd : ||ξ − η|+ |η| − τ | = 0

}
, which forms an ellipsoid. Using the inequality∥∥∥w 1

2
− (f, g)

∥∥∥
L2
tL

2
x([− 1

2 ,
1
2 ];Td)

≤ ‖ψ (t)Q (f, g)‖L2
tL

2
x(R;Td) ,

we have the following estimate:
(4.15)∥∥∥w 1

2
− (fg)

∥∥∥2

L2
tL

2
x([− 1

2 ,
1
2 ];Td)

.
∑
ξ∈Zd

∑
τ∈Λ′

 ∑
η∈S(τ,ξ)

∣∣∣f̂0 (ξ − η)
∣∣∣ |ĝ0 (η)| ||τ | − |ξ||

1
2

2

.
∑
ξ∈Zd

∑
τ∈Λ′

 ∑
r∈R(τ,ξ)

|{η : η ∈ S(τ, ξ) ∩ Sη (ρ)}|
1
2

 ∑
η∈S(τ,ξ)∩Sη(ρ)

∣∣∣f̂0 (ξ − η)
∣∣∣2 (|η| d2 |ĝ0 (η)|

)2

ρ−d ||τ | − |ξ||

 1
2


2

.

Here Sη (ρ) =
{
η ∈ Zd : |η| = ρ

}
, and we define the counting measure for the intersection of the sphere

and the ellipsoid as

(4.16) B1 (τ, ξ, ρ) := |{η : η ∈ S(τ, ξ) ∩ Sη (ρ)}| .

Also define the set R (τ, ξ) can be viewed as the ellipsoid S (τ, ξ) project to a 2 dimensional plane
contains the vector ξ, and contains all the possible ρ value, R (τ, ξ) := {ρ ∈ R+ : S (τ, ξ) ∩ Sη (ρ) 6= φ} .
To simplify the notation, let

(4.17) A (τ, ξ, ρ) :=
∑

η∈S(τ,ξ)∩Sη(ρ)

∣∣∣f̂0 (ξ − η)
∣∣∣2 ∣∣∣|η| d2 ĝ0 (η)

∣∣∣2 .
By Cauchy’s inequality the equation (4.15) has the bound,

∑
ξ∈Zd

∑
τ∈Λ′

 ∑
r∈R(τ,ξ)

ρ−
d
2 ||τ | − |ξ||

1
2 B1 (τ, ξ, ρ)

1
2 A (τ, ξ, ρ)

1
2

2

.
∑
ξ∈Zd

∑
τ∈Λ′

 ∑
r∈R(τ,ξ)

ρ−d ||τ | − |ξ||B1 (τ, ξ, ρ)

 ∑
ρ∈R(τ,ξ)

A (τ, ξ, ρ)

 .
It is suffice to prove that

(4.18) B2 (τ, ξ) :=
∑

ρ∈R(τ,ξ)

ρ−dB1 (τ, ξ, ρ) ||τ | − |ξ|| . 1

for all τ, ξ.
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Since the intersection of the ellipsoid S (τ, ξ) and the d − 1 dimensional sphere Sη (ρ) is a d − 2

dimensional sphere, and the radius is ρ sin θ (ξ, η), we have B1 (τ, ξ, ρ) ≈d ρd−2 sind−2 θ (ξ, η) ,∑
ρ∈R(τ,ξ)

ρ−dB1 (τ, ξ, ρ) ||τ | − |ξ|| .
∑

ρ∈R(τ,ξ)

ρ−2 ||τ | − |ξ|| sind−2 θ (ξ, η)

We may rewrite r as a function of τ, ξ and ω,

(4.19) ρ =
τ2 − |ξ|2

2 (τ − ξ · ω)
.

Since all possible η are of distance at least 1, hence the summation can be bounded by the arc length
of the ellipse and denote the arc length by s′. To simplify the notation, we denote θ (ξ, η) by θ, i.e.
taking the ξ direction to be the positive x-axis direction, we obtain

B2 .
∫
R(τ,ξ)

ρ−2 ||τ | − |ξ|| sind−2 θds′.

In (4.19) we have ξ · ω = |ξ| cos θ, hence

dρ

dθ
=

(
τ2 − |ξ|2

)
|ξ| sin θ

2 (τ − |ξ| cos θ)
2 .

Hence we have

ds′ =

√
ρ2 +

(
dρ

dθ

)2

dθ = ρ

√
1 +

|ξ|2 sin2 θ

(τ − |ξ| cos θ)
2 dθ = ρ

√
(τ − |ξ| cos θ)

2
+ |ξ|2 sin2 θ

τ − |ξ| cos θ
dθ.

ρ can be view as a function of a := ξ
|ξ| · ω, and it is easy to verify that ρ decreasing as a increasing

from −1 to 1. By using the substitution da = sin θdθ

B2 .
∫ π

−π

2 (τ − |ξ| cos θ)

τ2 − |ξ|2
||τ | − |ξ||

√
(τ − |ξ| cos θ)

2
+ |ξ|2 sin2 θ

τ − |ξ| cos θ
sind−2 θdθ

.
∫ 1

−1

√
τ2 + |ξ|2 − 2τ |ξ| a

τ + |ξ|
(
1− a2

) d−3
2 da . 1.

Therefore we obtain the desired inequality∥∥∥w 1
2
− (fg)

∥∥∥2

L2
tL

2
x([− 1

2 ,
1
2 ];Td)

.
∑
ξ∈Zd

∑
τ∈Λ′

 ∑
ρ∈R(τ,ξ)

A (τ, ξ, ρ)

 . ‖f0‖2L2
x(Td) ‖g0‖2

Ḣ
d
2
x (Td)

.

�

Lemma 10. For d ≥ 3, and f = eit|∇|f0, g = e−it|∇|g0 we have

(4.20)
∥∥∥w 1

2
− (fg)

∥∥∥
L2
tL

2
x([− 1

2 ,
1
2 ];Td)

. ‖f‖L2
x(Td) ‖g‖

Ḣ
d
2
x (Td)

.

for f0 ∈ Lx
(
Td
)
, g0 ∈ Ḣ

d
2
x

(
Td
)
.

Proof. The Fourier transform is given by

Ft,xψ (t) fg = (2π)
− d2
∫ ∫ ∑

η∈Zd
f̂0 (ξ − η) ĝ0 (η) δ (τ ′ + |η|) δ (τ̃ − τ ′ − |ξ − η|) ψ̂ (τ − τ̃) dτ ′dτ̃

= (2π)
− d2

∑
η∈Zd

f̂0 (ξ − η) ĝ0 (η) ψ̂ (τ + |η| − |ξ − η|) .

Following a similar argument, defining S(τ, ξ) :=
{
η ∈ Zd : ||ξ − η| − |η| − τ | = 0

}
, which forms an

hyperboloid by rotating the hyperbola in 2 dimensional space. Since for the counting measure of the
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intersection of the sphere and the hyperboloid has the same bound as in Lemma 9, B1 (τ, ξ, ρ) =

|{η : η ∈ S(τ, ξ) ∩ Sη (ρ)}| . ρd−2 sind−2 θ (ξ, η). It is suffice to prove the following bound∑
ρ∈R(τ,ξ)

ρ−dB1 (τ, ξ, ρ) ||τ | − |ξ|| .
∑

ρ∈R(τ,ξ)

ρ−2 ||τ | − |ξ|| sind−2 θ . 1,

where R(τ, ξ) is the hyperbola from projecting S (τ, ξ) on 2 dimensional space containing ξ. Following
the similar argument, we can rewrite ρ as a function of ω := η/ |η|

(4.21) ρ =
|ξ|2 − τ2

2 (τ + ξ · ω)

for ρ > 0, and

(4.22) ρ =
|ξ|2 − τ2

2 (−τ + ξ · ω)

for ρ < 0, and we can take ω to −ω′. The proof can be obtained by following a similar argument in
Lemma 9. �

Lemma 11. Let d ≥ 3, let f = e±it|∇|f0, and g = eit|∇|g0, we have

(4.23)
∥∥∥|∇|β0 w

1
2
− (fg)

∥∥∥
L2
tL

2
x([− 1

2 ,
1
2 ];Td)

.d ‖f0‖Ḣα1
x (Td) ‖g0‖Ḣα2

x (Td)

if α1, α2, β0 satisfy the following conditions:

(4.24) β0 +
d

2
= α1 + α2,

(4.25) β0 ≥ 0,

(4.26) αi ≤
d

2
, i = 1, 2.

Proof. For the ellipsoids case it is suffice to prove when f = eit|∇|f0, and g = eit|∇|g0. Recall that
the definitions Sη (ρ) =

{
η ∈ Zd : |η| = ρ

}
, and B1 (τ, ξ, r) := |{η : η ∈ S(τ, ξ) ∩ Sη (ρ)}|. Let F0 =

|∇|α1 f0 and G0 = |∇|α2 g0, we have

(4.27)

∥∥∥|∇|β0 w
1
2
− (fg)

∥∥∥2

L2
tL

2
x([− 1

2 ,
1
2 ];Td)

.
∑
ξ∈Zd

∑
τ∈Λ′

 ∑
η∈S(τ,ξ)

|ξ|β0

∣∣∣f̂0 (ξ − η)
∣∣∣ |ĝ0 (η)| ||τ | − |ξ||

1
2

2

.
∑
ξ∈Zd

∑
τ∈Λ′

 ∑
r∈R(τ,ξ)

B1 (τ, ξ, ρ)

 ∑
η∈S(τ,ξ)∩Sη(ρ)

∣∣∣F̂0 (ξ − η)
∣∣∣2 ∣∣∣Ĝ0 (η)

∣∣∣2 ||τ | − |ξ|| |ξ|2β0

|ξ − η|2α1 |η|2α2

 1
2


2

.

On the intersection S(τ, ξ) ∩ Sη (ρ), the quantities have the values|η| = ρ, |ξ − η| = τ − ρ, and
B1 (τ, ξ, ρ) .d ρd−2 sind−2 θ (ξ, η). Also due to the symmetry, we can assume that |ξ| ∼ |ξ − η| &
|η|. If |ξ| ∼ |η| & |ξ − η|, let ρ′ = |ξ − η|, τ − ρ′ = |η| and B1 (τ, ξ, ρ) = B1 (τ, ξ, τ − ρ′) .d
(ρ′)

d−2
sind−2 θ (ξ, ξ − η), the same argument can be applied.

(4.28) A∗ (τ, ξ, ρ) :=
∑

η∈S(τ,ξ)∩Sη(ρ)

∣∣∣F̂0 (ξ − η)
∣∣∣2 ∣∣∣Ĝ0 (η)

∣∣∣2 .
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By Cauchy’s inequality the equation (4.27) has the bound,

∑
ξ∈Zd

∑
τ∈Λ′

 ∑
r∈R(τ,ξ)

||τ | − |ξ||
1
2 |ξ|β0

|τ − ρ|α1 |ρ|α2
B1 (τ, ξ, ρ)

1
2 A∗ (τ, ξ, ρ)

1
2

2

.
∑
ξ∈Zd

∑
τ∈Λ′

 ∑
r∈R(τ,ξ)

||τ | − |ξ|| |ξ|2β0

|τ − ρ|2α1 |ρ|2α2
B1 (τ, ξ, ρ)

 ∑
ρ∈R(τ,ξ)

A∗ (τ, ξ, ρ)

 .
It is suffice to prove that

(4.29) B∗2 (τ, ξ) :=
∑

r∈R(τ,ξ),r≤τ/2

||τ | − |ξ|| |ξ|2β0

|τ − ρ|2α1 |ρ|2α2
B1 (τ, ξ, ρ) . 1.

By the conditions β0 + d
2 = α1 + α2 and α2 ≤ d

2 , 2α1 − 2β0 ≥ 0 and d − 2 − 2α2 ≥ 0. Applying the
inequalities |ρ|

|τ−ρ| ≤ 1 and |ξ|
|τ−ρ| ∼ 1, we have

|ξ|2β0 |ρ|d−2−2α2

|τ − ρ|2α1
.
|ρ|d−2−2α2

|τ − ρ|2α1−2β0
. |ρ|d−2−2α1−2α2+2β0 = |ρ|−2

.

Therefore following the same substitutions in Lemma 9, the following bound holds

B∗2 (τ, ξ) .
∑

r∈R(τ,ξ),r≤τ/2

||τ | − |ξ|| |ξ|2β0

|τ − ρ|2α1
|ρ|d−2−2α2 sind−2 θ (ξ, η)

.
∑

r∈R(τ,ξ),r≤τ/2

|ρ|−2 ||τ | − |ξ|| sind−2 θ (ξ, η) . 1.

For the hyperboloid case f = e−it|∇|f0, g = eit|∇|g0, we separate the estimate into two parts, where
|η| ≤ 2 |ξ|and where |η| > 2 |ξ|. For where |η| ≤ 2 |ξ|, the same argument used in the ellipsoid case
can be applied. For |ξ − η| ≈ |η| > 2 |ξ|, if β0 ≥ 0, we can also apply the argument use in the ellipsoid
case. �

In the following section, we are going to prove the estimates for the quadratic form. Suppose f, g
are two divergence free vector value functions from Rn to Rn. The quadratic nonlinearities P (f · ∇g)
can be written symbolically in the form

(4.30) P (f · ∇g) = Q
(
|∇|−1

f, g
)
.

Here Q (f, g)represents arbitrary linear combinations of the null forms

Q̃ (f, g) (τ, ξ) =
∑
η∈Zd

∫
q (ξ − η, η) f̃ (τ − τ ′, ξ − η) g̃ (τ ′, η) dτ ′,

where q is a linear combination of the symbols qij

qij (ξ, η) = ξiηj − ξjηi.

See Lemma 2.1 in [7] for details of the following bounds. For any vectors ξ, η ∈ Rn we have

(4.31) |ξ ∧ η| . |ξ|
1
2 |η|

1
2 |ξ + η|

1
2 W

1
2 (τ, ξ;λ, η) ,

whereW (τ, ξ;λ, η) is the maximum of the weights ||τ | − |ξ||, ||λ| − |η||, ||τ + λ| − |ξ + η||. Since in the
paper only linear wave functions are considered, f̃ (τ, ξ), g̃ (τ, ξ) are supported on |τ | − |ξ| = 0. The
equation (4.31) can be reduced to the case

|(ξ − η) ∧ η| . |ξ − η|
1
2 |η|

1
2 |ξ|

1
2 ||τ | − |ξ||

1
2 .
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Also there is the bound

(4.32)
∣∣∣∣ ξ|ξ| ∧ η

∣∣∣∣ . |η| 12 |ξ + η|
1
2

(|τ |+ |ξ|)
1
2

W
1
2 (τ, ξ;λ, η) .

Applying (4.32), and f̃ (τ, ξ), g̃ (τ, ξ) supported on |τ | − |ξ| = 0 to Q
(
|∇|−1

f, g
)
, the estimate can be

reduced to the case ∣∣∣∣ ξ − η|ξ − η|
∧ η
∣∣∣∣ . |η| 12 ||τ | − |ξ|| 12

Lemma 12. Let d ≥ 3, and �f = 0, with f (0) = f0, ft (0) = 0 and �g = 0, with g (0) = g0, gt(0) = 0.
Let the pair

{
f0, g0

}
be either {f0, g0} or {g0, f0} . Then we have the following bounds:

(4.33) ‖P (f · ∇g)‖
L2
t Ḣ

d
2
−1

x ([− 1
2 ,

1
2 ];Td)

.d
∥∥f0

∥∥
Ḣ
d
2
x (Td)

‖g0‖
Ḣ
d
2
x (Td)

,

(4.34) ‖P (f · ∇g)‖
L2
t Ḣ

d
2
− 1

2
x ([− 1

2 ,
1
2 ];Td)

.d
∥∥f0

∥∥
Ḣ
d
2
x (Td)

‖g0‖
Ḣ
d
2
x (Td)

,

and

(4.35) ‖P (ft · ∇g)‖
L2
t Ḣ

d
2
− 3

2
x ([− 1

2 ,
1
2 ];Td)

.d
∥∥f0

∥∥
Ḣ
d
2
x (Td)

‖g0‖
Ḣ
d
2
x (Td)

,

(4.36) ‖P (f · ∇gt)‖
L2
t Ḣ

d
2
− 3

2
x ([− 1

2 ,
1
2 ];Td)

.d
∥∥f0

∥∥
Ḣ
d
2
x (Td)

‖g0‖
Ḣ
d
2
x (Td)

,

whenever f0, g0 satisfying
∥∥f0

∥∥
Ḣ
d
2
x (Td)

, ‖g0‖
Ḣ
d
2
x (Td)

<∞.

Proof. Let f (t) = 1
2

(
eit|∇| + e−it|∇|

)
f0, ft (t) = i|∇|

2

(
eit|∇| − e−it|∇|

)
f0, g (t) = 1

2

(
eit|∇| + e−it|∇|

)
g0,

gt (t) = i|∇|
2

(
eit|∇| − e−it|∇|

)
g0. Let I =

[
− 1

2 ,
1
2

]
, we have∥∥∥Q(|∇|−1

f, g
)∥∥∥

L2
t Ḣ

s
x(I;Td)

.
∥∥∥w 1

2
−

(
f |∇|

1
2 g
)∥∥∥

L2
t Ḣ

s
x(I;Td)

,

The following inequalities for homogeneous wave equations f , g with suitable parameters∥∥∥|∇|β0 w
1
2
−

((
|∇|β1 f

)
|∇|β2 g

)∥∥∥
L2
tL

2
x(I;Td)

. ‖f0‖Ḣs1x (Td) ‖g0‖Ḣs2x (Td)

by applying Lemma 11. Not that s = d
2 − 1, d

2 −
1
2 ,

d
2 −

3
2 ,

d
2 −

3
2 in the case (4.33), (4.34), (4.35),

(4.36) respectively.
For (β1, β2) =

(
0, 1

2

)
, the parameters are choose as the following table,

equation (4.33) (4.34) (4.35) (4.36)

β0
d
2 − 1 d

2 −
1
2

d
2 −

3
2

d
2 −

3
2

α1 + α2 d− 1 d− 1
2 d− 3

2 d− 3
2

(α1, α2)
(
d
2 ,

d
2 − 1

) (
d
2 ,

d
2 −

1
2

) (
d
2 − 1, d2 −

1
2

) (
d
2 ,

d
2 −

3
2

)
(s1, s2)

(
d
2 ,

d
2 −

1
2

) (
d
2 ,

d
2

) (
d
2 ,

d
2

) (
d
2 ,

d
2

)
Notice that for (4.33) estimates, we use the property ‖g0‖

Ḣ
d
2
− 1

2
x (Td)

≤ ‖g0‖
Ḣ
d
2
x (Td)

to finish the

proof. �

Proposition 13. Let d ≥ 3 and the pair {u, v} be either {u, v} or {v, u} , u ∈ Ḣ
d
2
x

(
Td
)
, v ∈ Ḣ

d
2
x

(
Td
)
,

we have

(4.37) ‖P (u · ∇v)‖
Ḣ
d
2
−1

x (Td)
.d ‖u‖

Ḣ
d
2
x (Td)

‖v‖
Ḣ
d
2
x (Td)

.



WELLPOSEDNESS FOR THE HOMOGENEOUS PERIODIC NAVIER-STOKES EQUATION 16

Proof. Note that if u, v ∈ L2
t Ḣ

d
2
x

(
I;Td

)
for some time interval I, then for a fixed time t ∈ I, u (t) , v (t) ∈

Ḣ
d
2
x

(
Td
)
for a.e. t. Let u (r) be a solution to the linear wave equation �ru = 0 and u (0) = u (t),

ur (0) = 0. Define v (r) in the same manner. We want to bound the quantity ‖P (u · ∇v) (t)‖
Ḣ
d
2
−1

x (Td)

by ‖P (u · ∇v)‖
L2
rḢ

d
2
−1

x ([− 1
2 ,

1
2 ];Td)

and its derivative in time,

1

2
∂r ‖P (u · ∇v)‖2

Ḣ
d
2
−1

x (Td)
= Re 〈P (u · ∇v) ,P (ur · ∇v) + P (u · ∇vr)〉

Ḣ
d
2
−1

x ×Ḣ
d
2
−1

x (Td)

Using the Ḣ
1
2
x − Ḣ

− 1
2

x duality
∣∣∣∣Re 〈f, g〉

Ḣ
d
2
−1

x ×Ḣ
d
2
−1

x

∣∣∣∣ =

∣∣∣∣Re 〈f, g〉
Ḣ
d
2
− 1

2
x ×Ḣ

d
2
− 3

2
x

∣∣∣∣ ,we have

(4.38)
1

2
∂r ‖P (u · ∇v)‖2

Ḣ
d
2
−1

x (Td)
≤ ‖P (u · ∇v)‖

Ḣ
d
2
− 1

2
x (Td)

(
‖P (ur · ∇v)‖

Ḣ
d
2
− 3

2
x (Td)

+ ‖P (u · ∇vr)‖
Ḣ
d
2
− 3

2
x (Td)

)
.

Using Cauchy’s inequality on the righthand side of (4.38), there is the bound for r ∈ I∗ =
[
− 1

2 ,
1
2

]∣∣∣∣∫ r

0

∂r ‖P (u · ∇v) (r)‖2
Ḣ
d
2
−1

x (Td)
dr

∣∣∣∣
. ‖P (u · ∇v)‖

L2
rḢ

d
2
− 1

2
x (I∗;Td)

(
‖P (ur · ∇v)‖

L2
rḢ

d
2
− 3

2
x (I∗;Td)

+ ‖P (ur · ∇v)‖
L2
rḢ

d
2
− 3

2
x (I∗;Td)

)
.

By (4.34), (4.35), and (4.36) we have

(4.39)
∣∣∣∣∫ r

0

∂r ‖P (u · ∇v) (r)‖2
Ḣ
d
2
−1

x (Td)
dr

∣∣∣∣ .d ‖v (0)‖2
Ḣ
d
2
x (Td)

‖u (0)‖2
Ḣ
d
2
x (Td)

.

Applying (4.41) and (4.39) to the equation

(4.40) ‖P (u · ∇v) (0)‖2
Ḣ
d
2
−1

x (Td)
= ‖P (u · ∇v) (t)‖2

Ḣ
d
2
−1

x (Td)
+

∫ 0

r

∂r ‖P (u · ∇v)‖2
Ḣ
d
2
−1

x (Td)
dr,

there is the bound

(4.41) ‖P (u · ∇v) (0)‖2
Ḣ
d
2
−1

x (Td)
. ‖v (0)‖2

Ḣ
d
2
x (Td)

‖u (0)‖2
Ḣ
d
2
x (Td)

.

By substitution u (0) = u (t), v (0) = v (t) on both side of (4.41),

(4.42) ‖P (u (t) · ∇v (t))‖
Ḣ
d
2
−1

x (Td)
. ‖v (t)‖

Ḣ
d
2
x (Td)

‖u (t)‖
Ḣ
d
2
x (Td)

,

for a.e. time t ∈ I. �
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