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Abstract

The theory presented here is able to explain all attributes of cuprate-based High-temperature-

Superconductors in the normal- and in the SC-state as well. For the theoretical calculations

parameters gained by experiments only are used. It will be shown that all experimental values

connecting to HTSC can be predicted/ calculated by assistance of the equation: 

CBTk 1,14 ( )exp / F

Pseudogap

MPG E
×

This equation is derived from the Hubbard-Model. MPG is the maximum pseudogap, received

by extrapolating the pseudogap-values to FE zero. From that Fundamental-Formula one 

can get seven quantitative connections between superconduction-attributes and doping, all 

proved by experiment. 

Additionally two well-hidden faults in BCS- and McMillan-theories will be shown. Without 

deleting these mistakes no theory of High-Tc-Superconductivity can be successful.

More than 300 experimentally measured values will be compared with the predictions of 

theory. In more than 90% there is quantitative, otherwise qualitative accordance between 

experiment and theory. Reluctance is senseless: This theory will succeed. 
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I)    Introduction

In 1987 superconductors with critical TC-values above 100 K were discovered. According to 

some estimations TC-values exceeding 40 K cannot be explained by electron-phonon 

interaction, because for creating even higher TC-values the interactions will be so heavy, that 

they will cause rearrangements of the lattice. Up to now there does not exist any universally 

acknowledged theory which explains these TC-values. Certain is only, that in all superconduc-

tors known up to now the superconductivity current is transported by pairs of charge-carriers. 

Therefore the main task of any theory will be to explain the unusual thermal stability of  these

pairs in HTSC. 

Up to now quite a few possible explanations have been debated. Naturally at first scientists 

tried to apply the model of electron-phonon-interaction to HTSC despite the difficulties 

mentioned above 1 . For some time a model was debated which was based on the separation of 
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electron-spin and -charge 32et . At present many scientists assume that magnetic interactions 

play the dominant part 4 . All these models however are not able to explain simultaneously the 

superconducting and the completely unusual normally conducting attributes of HTSC:

In most cases in the normal state the electrical resistance follows a linear temperature law 

down to deepest temperatures –in contradiction to the Landau-theory of Fermi-liquid 

(chapters 6. to 8.). The conduction-electrons obviously do not create a Fermi-liquid. 

Accordingly an anomaly in the thermal conductivity appears too. Oddly enough with most of 

the HTSC –also in a normally conducting state- there will be an energy gap in the density of 

states (DOS), the so-called “pseudo-gap”.

In HTSC with a low density of holes a huge isotope effect is noticed: With increasing density 

of holes the effect decreases continuously for strong increasing again above optimal doping

Therefore an interaction must be discovered which 

a) leads to the formation of hole-pairs at high temperatures

b) is equally responsible for the “non-Fermi-liquid-behaviour”

c) also creates a gap in the density of state (DOS) of the mobile charge-carriers in the 

normal state 

d) permits a sufficiently plausible explanation as regards the isotope effects

All these phenomena (and some more) will be brought in connection and explained by this 

theory. 
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2.2. The Hubbard model and HTSC

This abstract is based on the idea that the Hubbard model of theoretical solid state physics 5  

can also be applied to HTSC. According to this model the valence band of HTSC is split into 

three partial bands: two Cu-3d-bands and one oxygen-2p-band. If each lattice site (of ions) is 

occupied by exactly one electron , then (if  T = 0K) the oxygen band and the lower Cu-3d-

band are totally unoccupied. As the bands do not overlap –but are separated from each other 

by energy gaps –then there will be an antiferromagnetic insulator. 

These energy gaps are of a different origin than the energy gaps in semi-conductors: They 

originate from the mutual Coulomb repel of the electrons. This Coulomb repel prevents the 

delocalization of the El and links them –similar to atomic rests- to destinated sites in the 

lattice. 

This status is similar to a Wigner lattice in two dimensions. For memory: In two dimensions a

Wigner lattice will exist at high densities of electrons only 6 :
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Thereby is NS the density of electrons per square metre. If  is large enough the mutual repel 

will overcome the attraction and it is assumed that there will be a diffraction pattern as a 

periodic lattice 6 . In HTSC the occupied Cu-3d-band is created in a different way than in band

insulators: in a band insulator no states can be occupied immediately above the upper band 

edge. In HTSC the occupied Cu-3d-band is the result of the mutual Coulomb repel of the El. 

This repel does not exclude the stimulation of small oscillations of the El. If and when El are 

stimulated to such “lattice” oscillations, these El will occupy states above the occupied Cu-
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3d-bands. Similarly to atomic residues these quasi-crystallized EL, which were studied here, 

can be excursed out of their positions. The fact, that the EL are localized at a lattice site does 

not prohibit the excursion out of their normal positions.  

When the system is doped with oxygen, the oxygen band will loose electrons and the system 

will be doped with holes. With increasing doping the ferromagnetism disappears, the Fermi-

energy moves into the region of the oxygen band, the system becomes metallic. In this system

now a band appears which contains freely moving holes. A second band will appear, the 

lower Cu-3d-band containing electrons which repel each other because of the Coulomb 

interaction.

The upper Cu-3d-band remains unoccupied. For the understanding of the following please 

keep in mind that the abbreviation EL used in connection with HTSC always refers to the 

Cu-3- 22 yx
d

 -electrons, quasi-bound to Cu- or O-ions in the lower Cu-3d-band. The mobile 

charge-carriers in the oxygen band will be referred to as “holes”. 

If energy is added, both types of charge carriers –holes and El- can be scattered into 

unoccupied levels of energy. 

2.3 Application of the Hubbard-model to HTSC

The existing theories of solid state physics consider a metal as a skeleton of ions surrounded 

by a gas of charge carriers. By interaction between these charge carriers and the ions the latter

will be stimulated to virtual lattice oscillations. In contrast to the ions the mobile charge 

carriers in a metal cannot cause such oscillations, because there is not any restoring force, 

having an effect on a gas. (Plasma-oscillations of the charge carriers are no lattice 
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oscillations.) In this essay it is assumed that the typical theories of metals do not work at the 

HTSC, but the EL in the Cu-3d-band, charging the highest energy can be shifted relatively to 

the ions. Because of the special electron-configuration in the HTSC, this quasibounded EL 

can make fast oscillations relatively to the much inert atomic rests. Because of these 

oscillations of quasibounded EL a polarization will be generated which is relaying an 

attraction between two holes. Thereby these oscillations of EL play the same role for HTSC 

as the oscillations of the atomic lattice play for conventional superconductivity. 

In this connection should be remembered that according to the simplest theory of 

conventional superconductivity the critical temperature is inversely proportional to the root of

the mass of oscillating particles 7 . Therefore the small mass of the electrons (EL) can manage 

to generate very high TC´s. Thus the high TC´s can be explained qualitatively at least.

At this point it will be remarked, that the virtual “lattice-oscillations” of Cu-3d-EL are 

Bosons, not obeying the Pauli-Principle. Perhaps this is a bit puzzling, because the carriers of 

this “lattice-oscillations are electrons, strictly obeying the Pauli-Principle. But lattice-

oscillations do not possess a rest mass. A particle without rest mass possesses a whole-number

spin and thereby obeys the Bose-Einstein-statistic. This is valid for lattice-oscillations in 

frozen hydrogen or in hydrides, too. And this is valid at every temperature, although the 

protons are fermions. In context with impact processes between protons and electrons, p. e. in 

Pd-H-systems, the protons appear as classical particles, because the protons are fixed at 

defined lattice-sites and because of this can be identified. From that the building in of  

statistical distributed protons in metals only leads to a largely T-independent RRR.

In contrary for impact processes of single movable holes with the Cu-3d-system in the HTSC 

the Fermi-Dirac-statistic is valid, because the holes and the Cu-3d-EL  cannot be identified 

and possesses rest-masses with half-whole-number spin. Towards it results the dominating 

contribution to the electrical normal-state-resistance in the HTSC.
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III)  Shielding in HTSC`s

3.1 Preface

In this part the way of pair-building in the HTSC`s will be demonstrated: This process can be 

explained by two pathes: At one hand by dielectrical function, and on the other hand by 

perturbation-theory. 

3.2 The statical shielding

At the begin the statical shielding will be handled: It`s well known that the conduction-

electrons are shielding one-another. Quantitatively it`s calculated with the so-called 

“Thomas-Fermi-theory”:

This relation is a good approximation for small values of wave-vectors and it is also valid in 

case of complicate densities of state. (The sense of this remark will be explained in part VI.) 

NB: In two-dimensional metals like the HTSC`s the TF-wave-vector is a constant, namely: 

The wave-vector k can be neglected in case of k < k(TF) and then it`s valid:  

3.3  The characteristic Reference-Energy,

respectively the dynamical shielding:

7

2 2

2 2 2
0 0

21 1 1 1 1
*

. ( ) ( ) . ( ) 3 ( )
F

TF TF LÖ

Ee e
V

Vol k k dyn Vol k dyn N dyne e e e e
= × × » × × = ×

+

2
10 1

2
0

7,6 10EL
TF

e m
k m

pe
-= = ×

h

(2dim) 1
*

( )
F

LÖ

E
V

N dyne
» ×



The word “characteristic Reference-Energy” describes that, which is represented by Debye-

Energy in conventional superconductors. There is a general agreement, that in the HTSC`s the

so-called “Hubbard-model” by half-filling is realized. That means, the valence-electrons of 

copper are reciprocal repulsing each other so strong, that there can`t exist an electron-gas. But

the valence-electrons of the copper can “hop” virtually to their neighboured copper-atoms. 

Ostentative the process can be imagined as collective vibration of electrons: A hole is 

repulsing the surrounding electrons. Thereby the electrons are collectively “hopping” to their 

neighboured lattice-sites by leaving a path of positive density of charge. A second hole “feels”

that path of positive density of charge and is attracted from this. An indirect attraction of both 

holes results and they make an electron-pair. In quantitative description, the “hopping” leads 

to a reduction of the energy of holes. In the following it will be demonstrated, that exactly this

sinking of energy is the characteristical Reference-Energy of the HTSC`s. 

An elementary equation of solid state physics runs: 

        is the sum of two parts: The attractive interaction, called        and the part of statical 

shielding, called     .  Consequently:

3.4 The Maximum Pseudogap

For beginning the shift of charge, called       shall be determined. At this point it`s important to

note, that this expression can`t be derived. The reason for the attractive interaction has to be 

guessed.  (It should be remembered here, that the reason of conventional SC was guessed, 

too.) In the underdoped “mother-substances” of HTSC`s the “Hubbard-Model” at half-filling 

is realized. That`s a well-known fact. Besides it shall be given to you, that the important 

actions of SC`s are playing in two, not in three dimensions. By that it`s merely obvious, 

searching the reason of HTSC in the two-dimensional version of Hubbard-interaction. 

In the HTSC`s the Cu-3d-Electrons can diminish their energy by virtual hopping between 

neighboured site-lattices. Quantitatively this will be described by the so-called “Hubbard-

Model”: 
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In that equation the numerator is the overlap-integral of neighboured EL and describes the 

reduction of the kinetic energy on account of the delocalization of the EL. The denominator U

presents the simultaneous enhancement of the potential energy. Here the the denominator 

shall be inquired only. The variation of the potential energy of “hopping” Electrons 

(= denominator) will be described by an elementar formula, which is used in the BCS-theory 

also: 

In deviation to BCS-theory has been regarded here to the fact, that in Cuprates the 

superconductivity is playing in two, instead of three dimensions. In the square brackets of that

equation the cipher “1” appears. That “1” describes the Coulomb-repulsion of the Electrons, 

appearing in all metals. Therefore that “1” agrees to the normal metal and doesn`t belong to 

HTSC. 

On the other hand, the expression     presents a reduction of Coulomb-repulsion 

between the Electrons, appearing eventually. 

Adding a negative sign to that expression, one will get necessarily an expression for an 

augmentation of Coulomb-IA, that means exactly the denominator U in the formula for 

MPG: 

And now the speciality of the HTSC`s arises: 

The letter M in the square bracket doesn`t mean the atomic-mass, but the mass of the 

Electrons. So in the HTSC`s the Cu-3d-Electrons are vibrating. These oscillations are leading

to an energy gap. In exactly words they make two energy-gaps: Applicated with negative sign

to a diminuation and with positive sign to an enhancement of the energies of the Electrons. In 

second order that process leads to the electrical reluctance of the holes. (See exactly in the 

chapters XI to XIV) and in third order to the pair-building of the holes. 

Therefore the “lattice-oscillations” of the Cu-3d-Electrons are conducting on one hand 

to the pseudogap and otherwise to superconductivity. In that work MPG means 

“Maximum Pseudogap”, that is the pseudogap in case of doping zero. 
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By that the shifting of charge       represents the double pseudogap in case of doping 

zero. Expressed obvious: The Hubbard-energy-reduction, here called as “Maximum 

Pseudogap” MPG, is the “gluten”, which is bonding the holes to pairs. 

By that equation for the Maximum Pseudogap we can get some results: 

A) 

Below (Chapter VIII) will be shown exactly and in all details, that the maximal critical 

teperature  at optimal doping is directly proportional to MPG. By that is valid: 

Therefore it`s established/ascertained, that       will be increased by decreasing the volume of

the cell unit (p. e. by external pressure). That prediction is confirmed experimentally  

[N. Suresh et al., PRB 78 (2008) 100503 (R)]

B)

On account of Pauli-Principle these hopping-processes only can appear parallel to the a- and 

b-axes, but not in 45°-angle to these axes. Therefore s-wave pairing by this mechanism is 

impossible. 

C)

Furthermore we expect a small influence of atomic mass on        . Consequently there should 

appear isotope effects in very small magnitudes. Why in fact there exist huge isotope effects 

will be explained in chap. IX).

D)

The wideness of the isotope effects not only depends on doping, but also on pressure. That 

means a decreasing IE by increasing ssure. Verifying that prediction by experiment should be 

able.  

3.5 The variable pseudogap

In case of doping this pseudogap is reduced under influence of holes. Just it has been 

demonstrated: The Hubbard-energy-sinking, here called “Maximum Pseudogap” MPG, is the 

gluten, bonding holes to pairs. But the conduction-electrons (holes) are not only bound to 
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pairs, but they also have another effect: They produce bands at the higher and the lower edge 

of the energy gap. On account of that the energy gap becomes smaller. As more conduction-

electrons exist, as bigger the bands are and as smaller the pseudogap becomes. The 

latitude/largeness of that decrease depends directly proportional on doping. For wide enough 

doping the pseudogap vanishes totally. In consequence the “variable Pseudogap” is written as:

         

IV)  The dielectrical function in HTSC

4.1  Elementary formula of the dielectrical function

I will give it to you again: In the foregoing part 3.3 was mentioned: 

With this equation we are available to declare the inter-action between two holes in 

dependence to MPG and k, if the establishing of the three alterations of charge-density 

appearing in the formula is possible. 

4.2  The external perturbation     

        is the perturbation, ingressing from outside: 

That means, this perturbation from outside is proportional to the kinetic energy of the pairing 

holes. Because of the Pauli-Principle that`s at least the Fermi-Energy. The part of kinetical 

energy, which is kept over the FE by the holes, will be described in this work as     . 

4.3 The statical shielding

The polarization generated by the external perturbation is shielded at once by the conduction-

electron-gas. This shielding is described by Thomas-Fermi-theory (s. the chapter before). 
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4.4 The characteristic Reference Energy

The size        is proportional to the characteristic reference energy, which is responsible for 

pair-building. In the HTSC`s this characteristic reference energy is identical with the 

Maximum Pseudogap MPG (see the foregoing section). 

4.5 The Hamiltonian

A)

With these three sizes belonging to the dielectrical function the Hamiltonian can be 

constructed: 

B)

The holes are scattered from the ground-state        to the intermediate-state. The energy 

of this intermediate-state mostly is the Maximum Pseudogap MPG. That`s on account of the 

fact, that the highest values of the DOS are lying in this energy-region (experimental fact). In 

the Hamiltonian derived even, the expression MPG doesn´t mean a singular, determined 

energy-state. But it means a gathering name of many, various, narrow beneath situated, states.

By that the scatter of the hole-energies is equivalent mostly to           (and 

reversibly). 

C)

In this formula     doesn`t represent the complete kinetic energy of the holes. The expression   

takes care, that        can possess every value between zero (corresponding to 

  ) and         (corresponding to ). 
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By that the limits of allowed kinetic energies of paired holes are zero and

         .  is nothing else, but the well-known pseudogap PSL.

D)

After a simple rearranging of the individual contributions to energy, you will see at once, that 

the dielelectrical function gets a positive value, if             

A stronger repulsion of holes is the result in this case. In the contrary, if  , an 

attractive interaction between two holes must be expected. The energy shell within an 

attraction may be possible, reaches from 

Therefore the pseudogap PSL corresponds to the Debye-energy in conventional SC`s. 

Naturally this statement is of great weight (s. also in 6.3)

E)

So higher the Fermi-Energy, so smaller the pseudogap PSL and so smaller the amount of the 

matrixelement V* (that means the Hamiltonian). In case of         becomes positive, 

resulting in a stronger repulsion. 

Therefore the equation [43] presented here, describes the maximal possible size of V*. 

As condition for any attraction results: 

F)

Consequently there must exist an upper limit of the doping range within an attractive inter-

action is possible yet. On account of that there must be found an upper limitation of doping 

for SC in Cuprates. The SC disappears with the pseudogap. 

G)

It`s a well-known fact, that the contribution of the k-state to pairing is the widest, if 

and in consequence . That´s the reason why in the last line of the Hamiltonian the 

formula [43] could be simplified in the presented way. 

H)

It`s rather interesting that there is a coincidence with the denominator of the DOS in HTSC`s 

to the numerator of V*: 

This coincidence will be very significantly yet (s. 6.2, Cross-over to integration) 

I)

For a first survey here shall be inquired the normal case only (SC and PSL are disappearing 

together). The special case (HTSC without a pseudogap) shall be contemplated later. 
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At last it shall be pointed out, that this version of the matrix-element V* is rather similar to 

the corresponding matrix-element in the BCS-theory: 

The expression    corresponds to the term          in the BCS-theory. 

And MPG corresponds to the “cut-frequency” . Really not so difficult. 

4.6   Simplification of the formula of the dielectrical function:

Now the equation (regular form) of the dielectrical function is written again, but in another 

manner: 

One possible simplification is trivially: 

But there exists another, more subtle, simplification, too:

For this purpose it`s determined, that 

This determination is valid nearly always. She doesn`t success in the strong underdoped 

region, in which the FE is very small. In all other doping-regions the term        in

the numerator of the dielectrical function can be neglected in comparison to MPG. By that it 

can be written: 

Then the Matrix-Element is simplified to: 

Naturally this possible simplification wasn`t demonstrated without any reason. But it shall 

faciliate immensly the comparison between theory and experiment. 

At last should be predicted here: By application of this simplification to underdoped 

substances (i. e. HTSC`s with small Fermi-Energies) too big sizes of the dielectrical function 

are generated. Consequently in the underdoped region the theoretical Tc-values should result 

to small (that is to say, smaller than the experimental). Indeed that`s a matter of fact (s. chap. 

VIII, 8.4). 
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V) Result for Matrixelement V* 

In chapter 3.2 it was explained, that 

In the upshot we get as an expression for the attracting interaction between two holes: 

The result of 4.3 was applicated to this equation.

V* is the Matrixelement of hole-hole-interaction. 

This expression is a intermediate result of great weight.

In this equation “MPG” means Maximum Pseudogap for doping zero 

(s. chap. 3.4, “The Maximum Pseudogap”).

The expression MPG describes the characteristic Reference-Energy and presents the energy 

of the polarization. It`s very probably that not only the shift of the Cu-3d-Elektrons, but also 

the shift of atomic rests, that means the generating of phonons, contributes to this polarization.

This additional contribution to polarization-energy depends on the isotope mass. From that the

supposition of a -although small- isotope effect in MPG is obvious. Below (chap. 6.8) the 

dependency of the Tc`s on MPG will be proved. Indeed for that reason in case of small and 

high doping the isotope effect of Tc`s reaches huge values. Particularities you will see further 

below in chap. VIII) (Isotope effects). 

It should be pointed out that V* is negative as long as         . That means, as soon as the 

kinetic energies of holes are smaller than the pseudogap PSL, an attractive interaction 

between two holes can appear. 
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VI) Application to the the self-consistence-equation (SCE), plagiarised from BCS-theory

5.1 For calculating the Tc`s and many other sizes, the self-consistence-equation (SCE) from 

BCS-theory [7] is needed:

With the expresssion for V* from part 4.2 C):          results: 

6.2 Cross-over to integration 

When T = Tc, the superconduction-energy-gap )( CSC T becomes zero. Now we set 

in this SCF and additionally we use the result of 4.1 belonging V*. 

Then the SCF becomes as following: 

It shall be pointed out here, that     always has to be smaller than MPG. If     would be 

greater than MPG, the left side of SCE would be negative, and at the same time the right side 

would be nearly one. And that`s impossible. 

At now the cross-over from summation to integration is made. As DOS (for both spin-

directions) the following expression is used : 
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     is the kinetic energy of holes (resp. of the excess-electrons in electron-doped substances) 

and is measured from the zero-point of energy. Therefore     can have a positive or a negative 

value in the equation for DOS . 

Naturally in reality the DOS can`t become negative. In spite of that this formula is a good 

approximation to the real DOS`s. Especially it foretells that the DOS above the pseudogap is 

bigger than the DOS below the pseudogap. This prediction is confirmed by experiment. 

And here two further statements: 

A) The DOS of the holes is inverse proportional to the size of MPG. In consequence a big 

MPG leads to a small DOS of holes. As smaller this DOS as faster the Fermi-Energy of holes 

increases with increasing doping. As faster the Fermi-energy is increasing with increasing 

doping as faster the (variable) pseudogap will be closed with increasing doping. These both 

effects (big MPG and fast ascending of Fermi-Energy) are compensating each other. That 

allows a prediction: In total apart HTSC`s the pseudogap vanishes at the same doping. A well-

known fact is ascertained: The pseudogap vanishes mostly at a doping of 0,27. Indeed this 

prediction is correct. 

B) With enhancing temperatures the energy-states are distributed otherwise, but the summary

of states in the energy-interval                       always remains in the same level. Since 

it must be integrated about the sum of all states in the energy-interval                     

the distribution of states inside of this energy-interval doesn`t play any role. By that the DOS 

for T = 0K can be taken in case of all temperatures.

But let us now return to integration: 

It`s noted at once: The blocking term       is shortening practically itself: 
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6.3  Setting of integration limits

The limits of integration are coming about by morely considerations: 

A)

It has to be integrated inside the “shell” of kinetic energies in which an attractive interaction 

appears. 

B)

The lower integration limit is -because of Pauli-Principle- the Fermi-Energy of the holes. 

The paired holes are permanently scattered in other states of energy. The non-occupation of 

these states must be taken for granted. But the states below Fermi-Energy mostly are 

occupied. The states above Fermi-Energy mostly are unoccupied. Therefore as the lower 

integration limit the FE can be taken for granted approximatively. But this lower IL is valid 

not always. More it is a useful thumbrule (or snap regula), failing at yttrium-holding and 

electron-doped HTSC`S. Probably in these classes of substances the lower IL lies 

significantly lower. Probably from that their Tc-values are significantly higher as expected by 

the plain form of this work. But these few substance-classes are exceptions, confirming the 

rule. That this theory is also suitable for these exceptions will be demonstrated in part VII). 

For simplicity -and on account of the great success- at first the Fermi-Energy will be used as 

lower Integration limitation. 

So the Fermi-Energy of holes is the lower integration limit. 

C)

Upper integration limit: 

When in the expression         in the SCF the kinetic energy of holes exceeds the MPG, 

the left side of the SCF becomes negative. At one hand that describes a stronger repulsion 

between the holes. On the other hand then results mathematical nonsense, because the value 

of the right side of the SCF always lies near one. On account of that it can be concluded: The 

kinetic energy of holes     always must be smaller than the MPG. Consequently the Maximum 

Pseudogap MPG represents the upper integration limit. 

Upper integration limit is the Maximum Pseudogap, that means the pseudogap in case of

doping zero. This important expression is a constant and especially independent from doping 

and from the kinetic energy of holes. 

D)  Result: 
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It`s necessary to integrate from the Fermi-Energy of holes up to the MPG. 

6.4  Bringing about of integration

In this section the abbreviation          is used. With this abbr. it`s got(ten): 

 

The shifting of IL in this expression is not correct totally, but it is a great average. It shall be 

turned out that in practical application the difference between MPG and Fermi-Energy is 

significantly greater than cBTk . By that the value of the integral represents as: 

By setting this integral into SCE the SCE becomes to: 

With some elementar transformations the formula for the critical temperatures is go(ten) as: 
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VII) The Fundamental Equation (FE) of High Temperature Superconductivity

As a fundamental relation between Maximum Pseudogap, variable pseudogap, Fermi-Energy 

of conduction-electrons and critical temperature the forementioned equation was received: 

At now this equation will be called as “Fundamental Equation” (FE). 

At this point I`m carefully reminding you that MPG is the pseudogap in the undoped state. 

At once will be understood the importance of this fact: It`s nearlying to identify the term 

MPG FE  (that means Maximum Pseudogap being deduced the Fermi-energy of holes) as  

variable pseudogap. In consequence follows: 

This Formula represents the Fundamental Equation of High Temperature 

Superconductivity. It is the fundamental quantitative relation between all experimental 

ascertainable parameters of HTSC. This equation connects the superconductivity with 

the pseudogap found in all substance-classes of HTSC.

Formulated in other words: The critical temperature is appointed by quantity of pseudogap 

and by that from density of holes, resp. by doping. Above a certain doping the Fermi-Energy 

of holes is higher than MPG and the pseudogap reaches (theoretical) negative values. Above 

this limit of doping superconductivity can`t exist. 

All these estimations are confirmed by experiment. 

Attention: The appearing of a pseudogap in every HTSC isn`t pretended here. Here is pointed

out only that hole-couples can appear only when the kinetic energies, transported between the 

paired holes, are smaller than the Maximum Pseudogap. 
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VIII) Quantitative comparison between theory and experiment

8.1  Inquiring the FE more exactly, ten(!) quantitative and experimental ascertainable 

relations are received. All of these estimated relations are confirmed quantitatively by 

experiment. That´s very surprising, regarding to the fact that in this work some bold 

approximations are used. Natural those approximations are not able to describe exactly the 

reality. Especially the DOS`s and the limits of integration (IL) can deviate from theory (how it

will be seen lower). It follows: 

A summary of the most important comparisons between theory and experiment: 

1) Correlation between doping and critical temperatures

2) Correlation between pseudogap and SC-energy-gap

3) Correlation between pseudogap and critical temperature

4a) Dependency in doping of pseudogap 

4b) The maximal critical temperature lies in the neighbourhood of the “Golden Section”

5)  Relationship between Maximum Pseudogap MPG and the pseudogap found at optimal 

doping

6) Relationship between critical temperature and pseudogap at optimal doping

7)  The maximal critical temperature (in Kelvin) has the equal numerical value like the            

Maximum Pseudogap MPG (in meV)

8) Isotopic Effects

9) Influence of impurity ions

10)  Prediction of a so-called “Plateau-region” in the underdoped region of LSCO

Annotation: The quantity of MPG/ FE  can be received with the assistance of the measured 

and the maximum pseudogap: 

If  MPG FE  =  Pseudogap, than FE /MPG = 1-(PSL/MPG) = 1
MPG

PSL
 .

And: MPG/ FE  =  















MPG

PSL
11

Thereby was used the (not always correct) approach, that the pseudogap disappears, when the 

Fermi-energy is reaching the energy of the maximum pseudogap. 
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8.2   The critical temperatures in dependence on doping

In VII) it was derived the Fundamental Formula for HTSC: 

 F
CB EMPG

PSL
Tk

/exp
14,1  = 1,14  F

F

EMPG

EMPG

/exp


(6)

Considering the Fundamental Formula for calculating the critical temperatures, you verify,

that the Tc`s do not depend on doping like a parabola, but similar to a parabola. That means,

with increasing doping, Tc also is increasing in the beginning, to go down at more higher

doping. The maximum of Tc will be reached at FE /MPG = 0,62. That means, if superconduc-

tivity appears on doping   0,27, the maximum is reached at 0,17. Above a discrete doping

(that implies above discrete Fermi-energies) all Cuprates only show normal-state-conduction

at all temperatures. (Physical explanation see under 6.3 “Setting of Integration Limits”.  

These forecasts of theory are all confirmed by experiments (till now). The following tables 

allow a comparison between theory and measured quantities.

8.3   Ratio between pseudogap PSL and superconducting energy gap 

 

The theory presented in this work makes a universal previous statement between the 

experimental quantities variable pseudogap PSL         and superconducting energy gap  

. In concordance with BCS-theory is valid: 
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This well-known formula succeeds totally universal and especially independent of the exact 

coupling mechanism. “Translated” in the theory designated here, it`s given: 

According to this equation the SC-energy gap doesn`t reach its maximal value at optimal 

doping (how it should be supposed by intuition), but already at half-maximal doping. That 

means at p = 0,27/2 = 0,135. (Optimal doping is p = 0,16.) Now it shall be examined, if these 

forecasts are suiting well to reality. Because d-wave-pairing is realised in the Cuprates the 

value of SC-energy gap has to be multiplied with 1,21306 [28wm, 11hüf]: 

A) Tabula for ratio between pseudogap and Superconducting gap in case of Hg1201

(Maximum Pseudogap MPG = 97 meV)

Doping 0,11 0,12 0,13 0,14 0,15

2PSL [meV] 100 90 85 84 74
Doubled experimental 

SC-energy gap at 
Tc = 0 [meV]

38 43 45 45 47

MPG/EF 2,06 1,86 5 1,78 1,76 4 1,62
(Theoretical value) 3,18 2,6 2,3 75 2,33 5 2

2,63 2,1 1,9 1,87 1,57

Deviation between 
theory and experiment

21
%

24
%

25
%

25
%

27
%

Lit.: [10 F, 12nak, 11Hüf, 15sl]

The difference between theory and experiment always amounts roughly to a quarter. 

Probably a systematical deviation is presented here (particulars see below). 

B) Tabula for ratio between pseudogap and Superconducting gap in case of Bi2212

(Maximum Pseudogap MPG = 93 meV)
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Dotierung 0,11 5 0,13 0,16 0,17 0,21 3 0,22

2PSL [meV] 105 97 76 63 45 36,3
Doubled experimentel 
superconducting gap at

Tc = 0 [meV]

33 38,3 41 39 36 27

MPG/EF 2,3 2,1 1,7 1,5 1,32 1,24 5

(theoretetical value)

4,07 3,3 2,18 1,76 1,43 1,32

3,18 2,53 1,85 1,6 1,25 1,34

Deviation of experiment 
to theory

28
%

30
%

18
%

10
%

14,4
%

-2
%

Lit.: [10 F, 12nak, 11Hüf, 15sl]

At a first glance the coincidence of theory and experiment is enhancing with increasing 

doping. 

C) In case of Tl2201 and doping p = 0,25 the following values are available: 

2 PSL = 20 meV and MPG = 100 meV. A theoretical ratio between pseudogap and 

superconducting gap in height of 1,12 is calculated by these values. In experiment: 

20 meV/18 meV = 1,11[11hüf, fig. 2]. So in this substance the deviation between theory and 

experiment is imperceptibly small. 

D) It shan`t have be depressed, that in optimal doped LSCO a great deviation between theory 

and experiment is found.  The theoretical ratio amounts to 2,36. In comparison the 

experimental ratio is 7,5/5 = 1,5. This is a deviation of always 57%. Indeed I dare say, a  

measuring fault is before us at this point. 

Lit.: [Achsaf, N. et al. in Coherence in High Temperature Superconductors, S. 428, 

World Scientific, Singapur 1996 & Ekino, T. et al., Superconducting energy gap...., 

Physica C 263 (1996), S. 249]

E)  In the article [11hüf] very much superconducting gaps are comparated. Dividing the mean

values represented there for pseudogaps and superconducting gaps at optimal dopings the 

following ratio is received : 75,5 meV/40 meV = 1,89. The theoretical result lies at: 
         

 = 0,81*sinh(1,67) = 2,11.
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The mean deviation from theory to reality is: 2,11/1,89 = 12%. 

F)  In comparison in case of extreme overdoping a limiting value of results. 

In consequence for this limit case follows: 

So in this work a blend of pseudogap and superconducting gap in the very overdoped region 

is forecasted. Indeed in case of doping higher as roughly 0,26 the converging of pseudogap 

and superconducting gap is mentioned in the paper of S. Hüfner et al [11hüf, fig. 2 and 

remark on p. 4]. Here it shall be given to you again: In the cited article [11hüf] a great 

number of measured quantities is presented. These values were used for proving this theory 

bespoken here. The predications of this work are satisfied very well by experiment. 

G)  NB: By equation used here: 

the maximum of superconducting gap will not be received at the optimal doping, but at a 

doping of 0,17. The difference between Tc(max) and the critical temperature belonging to the 

maximal superconducting gap amounts (by theory) only 1,7 per thousand, that means 0,17%. 

And the differences in the energy gaps amounts to 1,4 per thousand = 0,14%. That means in 

case of a maximum Tc of 100 K this difference amounts to plain 0,17 K, resp. to 0,06 meV. 

Perhaps, instead of its imperceptibility, this effect will be searched and found by experiment 

in future.

8.4  Previous calculation of the critical temperatures from pseudogap-values. 

 Previous calculation of the relationship between pseudogap and critical temperature. 

Following the Fundamental Equation, we find out: 







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By simple transformation we get: 









FCB E

MPG

Tk

Psl
exp75,1

.2

Table A): Critical temperatures and the relation between PSL (= Pseudogap) and Tc for

Bi2212MPG (extrapolated) = 90 meV 1210  [8ren, 10F, 11hüf u. 62Dah]

Doping  0,105 0,12 0,13 UD 0,16 0,18 0,19 0,2 0,21 0,26

Measured PSL [meV] 49 46,4 44 40 36 35,5 31 39,3 25 26

MPG/ FE  (calc., see above) 2,2 2,064 1,96 1,8 1,67 1,65 1,525 1,775 1,38 1,48

Tc (calculated) [K] 72 78 82 87 90 90 89 88 83 60
Tc (experimental) [K] 64 80 85 81 90 88 86 79 76 57

CBTk

PSL2
=1,75exp(MPG/ FE ), 

calculated

15,8 13,8 12,4 10,6 9,3 9,1 8,0 10,3 7,0 7,7

CBTk

PSL2
 (experimental)

17,5 13,2 12,0 11,5 10,0 9,35 8,6 11,3 8,7 10,6

Lit.:10  [8ren, 10F, 11hüf u. 62Dah]

Author: Hans Chr. Haunschild, born Ffm 20. 2. 1964

Table B): Critical temperatures and the relation between PSL (= Pseudogap) and Tc for LSCO

MPG(extrapolated) = 38 meV 12,10

Doping 0,04 0,05 0,06 0,075 0,08 0,086
Measured PSL [meV] 33 31,5 30 27,5 27 26
MPG/ FE  (calc., s. above) 7,6 5,85 4,75 3,62 3,46 3,17

Tc (calculated) [K] 0,2 1,2 3,4 9,7 11,3 14,5
Tc (experimental) [K] [Null] 1813et

 

[Zero]15 814  5,5

15  8,5

15  

21,213  

2416   

1915  

19,617

29,718  

22,2517

CBTk

Psl.2
=1,75exp(

FE

MPG
)

3500 608 202 65 56 42

CBTk

Psl.2
 (experimentell)

  103 31 27 30

Doping 0,09 0,1 0,105 0,11 0,113 0,115 0,12
Measured PSL [meV] 25 23 22,75 22,5 22,3 22,25 22
MPG/ FE  (calc., s. above) 2,9 2,53 2,5 2,45 2,42 2,41 2,375

Tc (calculated) [K] 17,8 24 25 25,6 26,2 26,4 27
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Tc (experimental) [K] 27,514  

29,316  

[1615 ] 

29,216  

26,219  

27,814 26,1 20  

[13,9 21 ]

29,116  

29,613 27,3 20 30,2 20  

29,416  

CBTk

PSL2
=1,75exp(MPG/ FE )

32 22 21,3 20,3 19,7 19,5 18,8

CBTk

PSL2
 (experimental)

22 21 22 20 18,5 19,9 17,75

Doping 0,125 0,13 0,14 0,15 0,16 0,17 0,18
Measured PSL [meV] 21,5 21 20,5 16,6 14 11,75 11
MPG/ FE  (calc., s. above) 2,3 2,235 2,17 1,775 1,58 1,44 1,4

Tc (calculated) [K] 28,4 30 31 37 38 35 35,6
Tc (experimental) [K] 28,4 22

27,8 23

34,416 36,916

4012  

35 24  

34,5 22 33,5 25

28,619 38,0 23

37,014  36,513

33,0 27 31,518

 =34,5K

39,0 26 3415 4012  

35 24  

CBTk

PSL2
=1,75exp(MPG/ FE )

18,35 16,4 15,3 10,3 8,5 7,4 7,1

CBTk

PSL2
 (experimental)

18,35 14,6 11,2 11,2 9,5 7,5 6,2

Doping 0,188 0,2 0,225 0,24 0,25 0,263 0,3
Measured PSL [meV] 8,5 7 5 4 3 Ca. 2 Zero
MPG/ FE  (calc., s. above) 1,3 1,226 1,15 1,12 1,086 1,06 Ca. 1

Tc (calculated) [K] 31,0 27,2 21 17,3 13,4 9,2 Zero
Tc (experimental) [K] 34,413  [18,9]19

33,515  

30,418  

2313  

2512  

1918  10,1 21  813  [15,219 ]

CBTk

PSL2
=1,75exp(MPG/ FE )

, calculated

6,35 6 5,5 5,4 5,2 5 4,8 

(theor. 

value)

CBTk

PSL2
 (experimental)

6,65 5,8 5,8 5,6 [9,2] 5,8 [1,5]

Literature: The values of pseudogaps are from 1211et .
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Experimental Tc-values in brackets are ”freak values”, resp. “runaways”, probably measuring 

faults. Take note of the phenomenon, that a “plateau-region” between the dopings of 0,1 and 

0,13 is predicted in theory. Indeed this predicted “plateau-region” is confirmed by experiment.

In accordance with these results the depending of Tc on pseudogap and not on hole-       

concentration is evidently

8.5   The magnitude of the Pseudogap in dependence on doping 

In the case of doping zero ( FE  = 0) is valid: MPG FE = MPG- 0 = MPG. Following this 

theory the pseudogap must reach his maximum -defined as MPG- by zero doping. 

This assumption is confirmed by experiment 9,8 .

 

8.6 The maximum of Tc is situated at the “Golden Section”

The maximal Tc is reached at: 


 MPGEF 2

15
0.618 MPG. 

This is exactly the formula of the “Golden Section”, which cannott be only a coincidence. 

That means, when superconduction appears at doping  0.27, the theoretical Tc-maximum 

will be reached at a doping of 0.62*0.27 = 0.167. The Tc-maximum is found mostly at a 

doping of 0.16. 

8.7   Special cases YBCO and elektrondoped Cuprates 

The Fundamental Equation is applicable to HTSC`s without a pseudogap, too.

In part 6.3) the Fermi-Energy was given as a lower limit of energy shell, in which an 

attracting interaction can brought about. The reason was, that the states lower as the Fermi-

Energy are occupied mostly. This approximation is very successful for the most HTSC`s. But 

in case of YBCO and of electrondoped Cuprates it is not satisfying. The reason why is 

unknown till now.
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8.8  The relation between the maximum pseudogap and that value of pseudogap, 

found at optimal doping

If 
MPG

TE CF )( max

= 0,62, then is MPG )( max
CF TE = 0,38 MPG. (8)

From the relation: MPG )( max
CF TE = 0,38 MPG = pseudogap at max

CT , results: 

MPG =
38,0

)( max
CTPSL

 = 2,63 )( max
CTPSL . (9)

But that causes, the maximum pseudogap is 2,63 times higher than the pseudogap at optimal 

doping. 

Table III.  Relations of pseudogaps

Substance LSCO Bi2212 Bi2223 Hg1201 Hg1212 Hg1223 PCCO

PSL( max
CT ) [meV]

Experimental

14 36 45 33 50 46 11 (?)

38,0

)( max
CTPSL

=MPG

calculated [meV]

37 95 118 87 132 120 29

MPG,

extrapolated from 

experiment [meV]

38 90 110 97 123 131 23

Substance YBCO 842 OCuYBa NdCCO Tl2201

PSL( max
CT ) [meV]

Experimental

22 24,4 4,6 35,5

3715

38,0

)( max
CTPSL

=MPG

calculated [meV]

58 64 12 93

9715  

MPG, 

extrapolated from 

experiment [meV]

92 81 18,5 100

All values without15  are from 1210et .
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8.9 Ratio between Tc and pseudogap at optimal doping

It shall be given to you again: 

In case of optimal doping is valid: 

The conversion factor between Kelvin-temperatures and energies in meV runs to 11,6. 

Multiplying 0,266 with 11,6, the value of 2,62 is gotten. Consequently the critical temperature

in Kelvin amounts to the 2,62-fold of pseudogap measured in meV:

B)

Following the simpliest assumptions of this work the ratio of doubled pseudogap and critical 

temperature always is 7,76: 

Be regarded that for making of this calculation the experimental values of PSL and Tc(max) 

not must be known. 

Table IV)  

Coherence between Tc and pseudogap at optimal doping. 

Experimental values are used only.

Substance LSCO Bi2212 Bi2223 Hg1201 Hg1212 Hg1223 PCCO
max

CT experiment.[K] 37 90 111 97 123 131 23

PSL( max
CT ) [meV]

Experimental

14 36 45 33 50 46(measuring

fault ?)

11 (?)

])[(

][
max

max

meVatTPSL

KT

C

C
2,64 2,5 2,47 2,9 2,5 2,85 2,1

Substance YBCO 842 OCuYBa NdCCO Tl2201
max

CT experim.[K] 92 81 18,5 90
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PSL( max
CT ) [meV]

Experimental

22 24,4 4,6 35,5

3715

])[(

][
max

max

meVatTPSL

KT

C

C
4,2 3,3 4,0 2,54

2,4315

Lit. 1510et

 

8.10  The maximum Tc, measured in K, has the same numerical value like the 

maximum pseudogap, measured in meV.

From V)   results, that max
CT [in K] = 2,64 )( max

CTPSL  [in meV]

From IV) results, that MPG [meV] = 2,63 )( max
CTPSL [meV]

In consequence of the results of  IV) and V) results, that  max
CT [in K] = 

63,2

64,2
MPG [in meV].

That means, with increasing MPG (by pressure, for example), max
CT also increases. 

Table V.  Ratio between MPG and max
CT

Substance LSCO Bi2212 Bi2223 Hg1201 Hg1212 Hg1223 PCCO
max

CT experiment.[K] 37 90 111 97 123 Ø =131 23

MPG [meV] 37 90 Not deter- min- ed 20 (?)
max

CT /MPG 1,0 1,0 1,15

Substance YBCO 842 OCuYBa NdCCO Tl2201
max

CT experiment.[K] 92 81 18,5 90

MPG [meV] unknown 71 unknown 100
max

CT /MPG 1,14 0,9

Literature: 10

VII)   Relationship between energy-gap of superconduction SC (T=0) 

and critical temperature Tc.
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About the presupposition, that the energy k , transferred between the holes is situated in the 

area of the pseudogap, results from BCS-theory 7 :

Superconducting-energy-gap = SC (T=0) = 
])(/1sinh[ VED

Pseudogap

F

 = 
]/sinh[ FEMPG

Pseudogap

Und: 2 SC (T=0)/ CBTk = 
]/sinh[

2

FEMPG

Pseudogap
Pseudogap

EMPG F




14,1

)/exp(
 5,3

)/exp(14,1

)/exp(22





F

F

EMPG

EMPG
.

Since in the Cuprates the d-wave-pairing appears, it is necessary to multiplie this value with 

1,21306 28 .  In consequence appears a value of 3,52*1,21306 = 4,27. This value of 4,27 is 

valid for underdoped substances. In case of overdoped substances results a value of 

4,0*1,21306 = 4,85. That means, with augmenting doping SC  increases circa about a 

seventeenth. Measured are values between 4 and 6 3029et , and in fact the experimental mean-

values are augmenting with increasing doping about a seventeenth. 

On Tl2201 seems to exist a recognizable deviation: Possible here are measured values 

between 8 and 11 30 .

3.6 Evaluation

Theory and experiment are in satisfying accordance. Distinct deviations between theoretical 

predictions and experimental measurements appear at the Yttrium-compounds and at NdCCO.

For these classes of substances accordance between theory and experiment is available, if 

there are used modified formulas of the FF. This theory not only makes qualitatively, but 

quantitatively exactly right predictions. That is so more surprising, if it is bored in mind, how 

strong simplifications are included. An unequivocal relation between the pseudogaps, 

Maximum Pseudogap, doping and superconductivity is demonstrated here. 
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IV. Explanation of the Isotope-Effects (IE) of the HTSC

For completing, the isotope-effect (IE) in HTSC should be discussed.

That the HTSC at all show an IE, is a sure hint, that phonons are playing an important role in 

the pair-building. But at a first glance the magnitudes of the observed IE`s doesn´t have any 

atom of meaning in it: So smaller the Tc-values, so higher are the IE`s. By far the smallest 

IE`s are found at the maximum of Tc.  By all ordinary ideas about SC exactly the opposite 

should be the case. A senseful explanation can be searched with aid of the Fundamental 

Equation: 

How it was demonstrated in the chapters above a variation of Maximum Pseudogap MPG 

leads to variation of Tc. Since a variation of atomic masses varies the Tc-values also, the 

conclusion is obvious that the size of MPG, respectively of pseudogaps also depends in a 

small amount by atomic mass. By that the Tc`s must be varied, too. That means, the MPG 

depends on atomic mass also, leading to an isotope effect. 

Now there exist two possible ways of varying the MPG: (Probably) by substituting by

       . And surely by substituting of Bismut by Lanthan. In both cases the same variation of 

doping in both substance-classes should variate the relative Tc-values (i. e. Tc/Tc) in the 

same way. Explained easier: When the ratio Tc(      )/Tc(     ) shows a relative maximum the 

ratio of Tc(Bi2212)/Tc(LSCO) will reach a relative maximum. When the ratio 

Tc(      )/Tc(     ) shows a relative minimum the ratio of Tc(Bi2212)/Tc(LSCO) will reach a 

relative minimum, too. (Anyway then, if MPG depends really on atomic mass.) After 

application of the Fundamental Equation the following view is gotten: 











FFC

C

E

BiMPG

E

LSCOMPG

LSCOPSL

BiPSL

LSCOT

BiT )2212()(
exp

)(

)2212(

)(

)2212(

By application of this formula appears Table IV): 
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Doping

)(

)2212(

LSCOPSL

BiPSL

FE

MPG (LSCO) - 
F

MPG

E
(Bi2212)

)(

)2212(

LSCOT

BiT

C

C

theoretical

)(

)2212(

LSCOT

BiT

C

C

experimentel
0,105 2,154 2,5 - 2,2 = + 0,3 2,9 2,3 (evtl. measuring

-fault at Bi)

0,12 2,1 2,375 - 2,064 = + 0,3 2,88 2,65
0,13 2,1 2,235 - 1,95 = + 0,285 2,8 2,47
0,14 2 2,17 – 1,8 = + 037 2,9 2,22 (absolut.

Minimum) 
0,15 2,35 1,775 – 1,765 = + 0,01 2,38 2,32
0,16 2,6 1,58 - 1,67 = – 0,087 2,36 2,31
0,18 3,23 1,4 - 1,65 = – 0,244 2,53 2,35
0,19 3,65 1,3 - 1,53 =  – 0,24 2,9 2,5
0,2 5,6 1,226 - 1,775 =  – 0,55 3,2 2,47

Lit.: chap. 3.5, Tabellen I) und II) in this work]

Considering the big differences between the magnitudes of the the pseudogaps of Bi2212 and 

LSCO the variableness of these magnitudes can hardly falsify the results. The relations of the 

experimental Tc`s are consistent in the framework of measuring-accuracy. Considering the 

success of the theory till now such a result could be expected. It is more interesting, that the 

relations of the Tc-values of both substance-classes demonstrate the same behaviour as the IE 

in dependence of doping: Table V) is showing the experimental OIE in LSCO.

7.2 Quantitative Observation

Considering this corrected, but also complicated formula, the following is gotten: 

A) 
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A) 

In the UD region the exponentialfunction is dominating and an augmentation of phonon-

frequencies leads to an enhancement of Tc. 

B)

In the OD region the phonon-frequencies are appearing fewer in the denominator, but have a 

big influence to the numerator of the FE (that means to pseudogap), and the Tc-values are 

growing with decreasing atomic mass. 

D)

Compared to it the contradicted influences of phonons are extingishing each other. By that the

influence of isotopic mass is imperceptibly small at optimal doping. 

E)

Please keep your attention to the fact, that this work doesn`t predict any influence of foreign 

ions on MPG and PSL. That doesn`t exclude an eventual variation of critical temperatures by

incorporation of foreign ions. But the foreign ions are varying critical temperatures in another 

way. See more in the following chapter VIII).

Table V): Survey of the OIE of LSCO

Tabelle V):  Übersicht über den OIE des LSCO

Doping Pseudogap

[meV]

Tc(O16)

[K]
CT

[K] experim

CT   [%]      

Theorie

CT
[%] experim.

Literature

0,06 30 4,75 8 1,0 12,3 12,5 [20,zhao]

0,0 75 28 3,8 20 0,76 8 3,9 [13cr30ha

0,08 27 3,46 19,6 1,1 6,2 5,5 und 5,7 [17h/c, 17A]

0,0 86 26 3,17 20 1,07 5,5 5,3 und 4,8 [17h/c, 17A]

0,09 24,5 2,8 28 1,6 5,4 5,7 [32cr, 20

zhao]

0,1 05 23,75 2,67 28,5 1,7 4,1 6 [21ph,

35

( )160
F

MPG

E



20zhao,

33zhao]

0,11 23,5 2,62 29 1,6 4,4 5,5 [20zhao,

33zhao]

0,11 4 23,3 2,59 29,6 und

20

1,9 u. 1,46 4,3 6,4 

und 7,3

[13cr,

20zhao,

33zhao]

0,12 23 2,53 25,4** 2,25 4,5 8,9

rel.Max

[31cr,

33zhao]

0,12 5 22 2,38 28 2,0 3,8 7,15 [22mr,

23jpf]

0,13 21 2,24 29,8 2,0 3,5 6,7 [32cr]

0,14 20,5 2,17 32,4 0,6 3,5 1,85 [32cr]

0,15 16,6 1,78 37 0,7 2,7 1,9 [13,20-23,32]

0,16 6 12 1,46 35 0,5 2,5 1,4

rel.Min.

[35bab]

0,17 5 11,4 1,43 16,2** 0,3 2,3 1,85 [32cr]

0,19 8 1,27 34,4 0,21 2,15 0,6** [13cr]

0,2 7 1,23 28,4 1,1 2,1 3,9** [21ph]

0,22 5 5 1,15 23 0,23 2,1 1** [13cr]

0,25 3 1,09 10,1 0,3 2 3 [21ph]

0,26 3 Ca. 2 1,06 8 0,22 2 2,75 [13cr]

Values of the pseudogaps are shown in chapter III. in this work

Naturally the results of tables IV) and V) are not identically. But both agree in one point: If Bi

is substituted by La, or if light oxygen is substituded by heavy oxygen, the maxima and 

minima are situated at similar doping. The highest variation on Tc in dependence on MPG is 

appearing in under- and overdoped Cuprates. The Tc-dependency on MPG is the smallest at 

optimal doping. Remarkably the IE`s in LSCO present the same behaviour. Intuitive assuming

should lead to the idea of the appearance of the strongest IE at optimal doping. Suiting to this 

work the reality is in contrary to this assumption. 

In consequence I dare say that Maximum Pseudogap shows an isotope effect. And in account 

of that the variable pseudogap, too. Furthermore I dare say the reason of the isotope effect of 

HTSC`s is this dependency of MPG on the IE. Inquiring the tables above a decrease of 
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Maximum Pseudogap MPG by increasing of isotope mass is perciptible. By that the critical 

temperatures are decreased, too. The reason is probably a small contribution of phonons to 

polarization (see ch. V)). Suiting the explanations in ch. 3.4 the MPG is reversely 

proportionally to the masses of Copper and Oxygen. In the denominator of the Fundamental 

Formula the Fermi-Energy describes the statical shielding. The phonon-frequencies are 

describing the contribution of dynamical shielding. 

Comparing theory and experiment it is established, that the predictions of theory are generally

satisfied. The prediction of a decreasing maximum pseudogap MPG with increasing atomic 

weight is reliable, in consequence resultant to an Isotope Effect. 

VIII)    Influence of impurities upon the superconducting parameters

Nearly with discovering of HTSC it was established, that the substitution of copper by 

paramagnetic ions suppresses the Tc-values. This could be expected by the well-known 

theories of superconductivity at this time. But it was not provided for a stronger sinking of 

critical temperatures by substitution of copper by unmagnetically zinc-ions. There are no hints

for changing the (maximum) pseudogap by impurities. By that a decreasing of the pair-

density by impurities can be supposed. Quantitatively: The impurities increase the argument 

of the exponential-function in the denominator of the FF. If this assumption is true, than with 

increasing doping the influence of the impurities is decreasing. Someone very similar we got 

to know upon the IE. In accordance with the FF is valid: 

This simple equation only is valid without substitutions. With substituting impurities is valid
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Tc = 1,14*Psl 









FE

MPG
Fexp

In this formula is F > 1 and proportional to the portion of impurities. It is in the nature of such

an approximation, that the worth of F depends on the type of impurities, too. 

The result is:    









FE

MPG
F

Tc

Tc
1exp

2

1 . If we point out 1-F = f, we get:

Tc2/Tc1 = exp[-f( FEMPG / )]. (15)

The size of “f” is an other for every metal (and probably for every class of substances, too) 

and must searched by experiment. In contrary the size of “f” should not depend on doping. 

For the class of LSCO-substances the following tabulas will show the quantitative comparison

between theory and experiment: 

Zink: 4)1(15,085,1 OZnCuSrLa xx :

MPG/ FE = 1,6 Parameter = 4 und F = 1+
4

%Zn
Therefore is valid:

Tc2/Tc1 =   









FE

MPG
F1exp = 














 

FE

MPGZn

4

%
11exp  = exp( Zn%

4

6,1
 )

Zn-portion

in %
Zn%

4

6,1


Tc2/Tc1

Theory

Tc2/Tc1

Experiment
0,4 0,16 0,85 1,0
0,8 0,32 0,73 0,76
1,2 0,48 0,62 0,63
1,6 0,64 0,53 0,51
2,2 0,9 0,4 0,36
Lit. 3736et

Nickel:   
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4)1(15,08,1 ONiCuSrLa xx : MPG/ FE = 1,6 Parameter = six

und 4)1(2,08,1 ONiCuSrLa xx MPG/ FE = 1,25 Parameter = six

for opt. doping for over- Doping
Ni-portion

in %

Tc2/Tc1

Theory

Tc2/Tc1

Experiment

Tc2/Tc1

Theory

Tc2/Tc1

Experiment
0,5 0,88 0,92 0,9 0,91
1,0 0,77 0,8 0,81 0,82
1,5 0,67 0,69 0,73 0,74
2,0 0,59 0,59 0,66 0,65
Lit. 3736et

Iron:

4)1(15,085,1 OFeCuSrLa xx MPG/ FE = 1,6 Parameter = 3,2. 

Therefore is valid: 

Tc2/Tc1 = exp( Fe%
2,3

6,1
 ) = exp(-0,5 multiplied with the %-portion of  Fe)

and 4)1(2,08,1 OFeCuSrLa xx MPG/ FE = 1,25 Parameter = 3,2. 

Here is valid: Tc2/Tc1 = exp( Fe%
2,3

25,1
 ) = exp(-0,4 multiplied with the %-portion of Fe).

Fe-portion

in %

Tc2/Tc1

Theory

Tc2/Tc1

Experiment

Tc2/Tc1

Theory

Tc2/Tc1

Experiment
0,3 0,86 0,9 0,89 0,94
0,5 0,78 0,82 0,82 0,85
0,7 0,71 0,7 0,76 0,81
0,8 0,67 0,66 unknown.
0,9 0,64 0,53 unknown
1,0 0,61 0,45 38  0,68 0,69
Lit. 3836

Result:

The theory predicts a linear decrease of critical temperatures by increasing portions of 
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impurities. The dependency of the optimal doped HTSC (and probably of the underdoped, 

too) is bigger than the dependency of the overdoped. Again a nearly quantitative agreement 

between theory and experiment exists. 

Diagrams to these tables you can find in the supplement. 

In contrary to copper the zinc possesses a closed 3d-shell. Therefore the substitution with 

zinc-ions prevents the “conditional-hopping-interaction” of the EL, leading to a decreasing of 

density of pairs. Naturally the reduction of density of pairs leads to lower critical 

temperatures.

The explanation of reducing the density of pairs by paramagnetic ions is a part of the BCS-

theory and must not discussed here.

VI) The temperature-dependency of normal state resistance of HTSC

It is well-known [Lit. see chapter 7.] that in overdoped HTSC the normal state resistance  is 

increasing linear with temperature over a large range of temperature –especially down to the 

lowest temperatures. This behaviour cannot be explained by the conventional models of 

electron-phonon- or electron-electron-interactions. In the following a possible explanation of 

this unusual behaviour will be presented: 

In a totally periodical lattice no electrical resistance appears. The electrical resistance always 

is generated by a disturbance of the periodicity of lattice. Thereby in HTSC must appear 

disturbances whose number or whose scattering cross-section is increasing linearly with 

increasing temperature.  In a metal the density of charge-carriers, which are thermally excited 
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above a discrete energy, is increasing linearly with temperature. It`s nearby, searching this 

extra-ordinary temperature-dependence of resistance in this connection.

Therefore it is reasonable to search for the extraordinary temperature-dependence in this 

context. 

As mentioned in chapter 2.2, in the HTSC the EL (not the holes) do not behave as part of the 

electron gas but behave similarly to particles of a lattice. These electrons, which are 

stimulated about the higher band edge behave similarly to irregularly distributed lattice-sites.

These irregularly distributed “lattice-sites” disturb the periodicity of lattice. Since the holes 

are not only particles, but also are waves, they are scattered at these lattice deformations. By 

that the quasi-impulse k is translated upon the total crystal, this means upon all Cu-3d-EL 

in the crystal. Therefore these thermal stimulated EL act as disturbances of the periodicity of 

lattice –that means of scattering centres for the holes. 

As the mass of all EL is bigger than the mass of  one hole, it is a nearly elastic collision. 

Translating of energy is negligible. In the last resort, the hole will be scattered into a state 

with similar energy (about EF), but another (that means a negative) wave-vector. But that 

means that electrical energy will be converted in warmth, because the translated quasi impulse

k will be absorbed by the whole crystal.  By that, no charge can be transmitted. 

That means that the charge, which had been transported by the hole, reverses its direction of 

motion. This process is noted as electrical resistance. Due to the Pauli-principle only these 

Cu-3d-EL, which are nested in the vicinity or above the upper edge of the band can 

temporarily take energy and linear momentum. Cu-3d-El in lower levels of the band do not 

come into consideration as targets for the holes.

In the HTSC the interaction between holes and thermal excited El. gives rise to an 

electrical resistance.

Although the scattering is nearly elastic, the total angle of impact between hole and pushed 

EL is always 90°. This results from the conservation of energy and impulse: In the beginning 

41



the hole strikes with the EL and after that the EL translates energy and impulse upon the 

lattice. By that the total angle of impact between hole and pushed EL always has a size of 90° 

(classical physic). 

Therefore the hole is scattered in an angle smaller than 90°. This small angle scattering 

between holes and EL only can exist, if one of the partners of scattering (in our case hole or 

EL) was excited about the band edge before scattering. Otherwise no push is coming about, 

since the hole would forced to be scattered in already occupied states.

The densities of EL and holes, which are thermally excited about the band edges, are both 

growing linearly with temperature. Naturally the sum of both densities also grows linearly 

with temperature. From this fact the equation for the electrical resistance in the HTSC 

includes the well-known linear therm.

The elastically interaction of holes with thermal excited EL in the HTSC  is leading to an 

electrical resistance, increasing linear with temperature. 

In conventional metals there is a pure electron gas, whose constituents cannot be excited to 

(“lattice site”)-oscillations because of absence of restoring force. Therefore the mechanism of 

resistance –described above- cannot exist in conventional metals.

The density of El which are thermally excited above the Cu-3d-band increases linearly with 

increasing temperature. Accordingly the density of scattering frequency and because of that 

the normal state resistance also increases linearly with increasing temperature, what is in 

agreement with experiments. [Literature at chapter VII)]

This argumentation assumes that the interaction between mobile holes and immobile but 

excited El does not depend on temperature and that the density of state of the El does not 

depend on their energy. The well-known interaction between holes and phonons is more than 

a factor of hundred smaller than the explained interaction between holes and bound El and 

does not matter.
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For completeness it should be remarked, that this consideration are not available for metallic 

hydrogen and for palladium-hydrogen-systems. In such systems the protons are installed at fix

lattice sites and can be identified by that. Therefore as many as you like of protons can occupy

the same state. The conduction electrons of these substances can be scattered on every proton 

irregularly installed in the lattice. Therefore results a T-independent RRR and no linear T-

dependent resistivity can be observed. 

VII)   Numerical calculation of temperature-dependence 

of normal state resistivity 

7.1 Calculation of the density of thermal above the Fermi-energy stimulated El.

In this section we will make a quantitative calculation of the normal state resistivity.

In a certain subject the number (not the density) of thermal excited El. is: 

Nth = 
 F

F

EE

E

dEEDEf )()(

In a two-dimensional crystal the electronic density of states D(E) does not depend on the 

energy of the states of electrons. Therefore D(E) does not depend on carried thermal energy or

of temperature. That is why D(E) can be taken before the integral: 

Nth = D(E) 









 

F

F

EE

E

B

F

Tk

EE

dE

1exp

We now take EF as zero point of energy and define E/kBT =X.  Now it is possible to write:
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Nth = D(E) kBT 


0 1

dx
xe

 =  D(E) kBT [x -ln(1+ xe )] 
0

The limitation of the integral is received by the following considerations: At very low 

temperatures x will reach infinite quantity. For high temperatures x will reach zero.

The DOS of a two-dimensional electron gas is: D(E) = 
2
Ame

(In reality this formula is acceptable only for s- and not for d-electrons. The real DOSes are 

larger and additionally depending on the density of d-El. in the ground state. But to show that 

the normal state resistivity really can be brought about by this described mechanism, this 

primitive formula is sufficient.)

By that Nth 
2

7,0


Ame  kBT.

And the density nth of thermal excited El.:

nth = 
A

thN
= 0,22 2

em


 kBT  =  2,5 21410 






 m

K

T
. (16)

Therefore the density of thermal super EF excited El. the theoretical value of  2,5 1410 El. on 

square meter and Kelvin. By that the density of excited El. in a CuO2-area of a HTSC depends

only on temperature, but not on the electronic density in the ground state.

7.2 Probability of interaction between holes and EL

 As explained in section 6., the thermal excited El are disturbing the periodicity of the lattice 

site by which is generated an electrical resistivity. With the results of the density of thermally 

excited El in section 7.1 it is now possible to make a numerical calculation of the resistivity 

generated by the hole-El.-scattering:
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

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0

holem

en


l

vF

1

and  l =
0

..
1

thn
meter

oflln


Because of calculation of nth in 2m , it was necessary to convert in 3m . Therefore it was 

multiplicated with the number of lattice-layers per meter (n. of ll./meter).

Intermediate notice:

0n is the concentration of holes in the dimension 3m and   is the relaxation rate, that is the

time between two collisions. Meant are the collisions between the mobile holes and the

immobile El. vF is the Fermi-velocity. As the holes can only move in two directions of space,

it is necessary to calculate vF for a two-dimensional electron gas. That is why

A

N

m
v

Lö
F 2


 .

nth means the density of thermally excited d-El. at the Cu-sites (not the density of the holes) in 

two-dimensional metals. 0 is the cross-section for interactions between the mobile holes and 

the thermally excited, but localized El. 
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Example:
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In 9,632 OCuYBa  1,7 910 current-carrying lattice-layers are paralleled 39 .

. The density of holes amounts to, what is (numerical): 218
19

327

107,2
107,1

106,4 








 m
m

m

A

N
.

nth multiplicated by the number of lattice-layers per meter: 14105,2  2m 191 107,1   mK .

From this results as conductivity 0
91057,1 

meterK


 .

With 218
0 109,3 m (For calculation of cross-section 0 look at 5.3) results an increase of 

resistivity of ca. 6 910 Ωm/K = 0,6 µΩcm/K. On assumption, that shielding reduces the 

resistivity an increase of 0,1 µΩcm/K results. Measured are values between 0,25 and 1,46

910 µΩcm/K 4540 .

 In the middle, this is about 0,85 µΩcm/K. Theory and experiment are not in agreement as 

well. The very strong simplifications made by this model are a possible reason. In the case of 

LSCO better agreements between theory and experiment are received (look at VIII, Table 

11.). It should be remarked, that doping of 2CuO -planes of the same substance with

171024,2   Cobaltions per squaremeter leads to a RRR of  ca. 270 cmµ 46 .  

Therefore 2,5 1410 excited EL per squaremeter and Kelvin should make an increase of 

resistivity of 0,3 µΩcm/K. This result makes confidence into the actual insure calculation.

7.3  Calculation of collision cross-section 0 .

0 will be calculated with the following equation from plasmaphysics:

45
422

0

42

0 102
)4(




 F
FLö

v
vm

eZ


  [squaremeters] (18)
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Fv  is the Fermi-velocity (in two dimensions), because only the holes on the Fermi-surface 

can be scattered. Z is equal one (charge of holes) and Löm is the mass of holes (= mass of 

electrons). 

The attentive reader will find fault with something: 

1. This equation only considers the large-angle-scattering.

2. In this formula a cross-section is calculated. Consequently in a two-dimensional hole-gas a 

perimeter ought to be calculated. But the interaction between holes and El. will be produced 

by the Coulomb-interaction. Although the holes cant leave their lattice-layers, nevertheless 

they are in interaction with the El from neighbouring lattice-layers and will be shielded by 

themselves.

3. The Coulomb-interaction of El. with the holes reduces the cross-section of collision. In this 

work will be used as an approximate calculation the theory of Thomas-Fermi. It`s possible to 

deduce this theory indeed for two dimensions. But this is senseless, because the Coulomb-

shielding exists also cross to the lattice-layers. The shielding reduces the resistance to about 

15%.

VIII)   The temperature-dependence of normal state resistivity of some HTSC at

low temperatures for example.
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Summarizing all just terms factors for calculation of resistivity, results the following equation:

Kcm
A

N

dT

d
/1027,7

5,2
45 











. (19)

Apart from shielding, which has to be considered for each HTSC separately, this formula is 

valid for all HTSC, independently of the chemical composition , the stoichiometry or density 

of holes. In any case, if the approximation of quasi-free holes is acceptable and conventional 

scattering mechanisms are only playing a subordinate part. Therefore the formula above is 

very suitable for proving the usability of the represented theory. With this formula for   the 

plot of the measured resistivity values against 5,2)/( AN  will make a straight line with an 

ascending gradient of 451035,7  . Additional regarding the shielding (shielding factor see 

chapter 7.3 c), then we should get a straight line with the ascending gradient of  4510
6

35,7

1,2 163710  Km . (20)

With this equal were set up the following schedules. In all cases the hole concentration was 

calculated with 37 . 

Table 11. dTd in dependence on the density of holes, by example of LSCO.

Sr-

doping 

x     

   

N/A [

21810 m ] ]10[

)/(
546

5,2

m

AN


  [ Kcm / ]

Calculated

without

shielding

 [ Kcm / ]

Calculated with

shielding

 [ Kcm / ]

experimental

0,1 0,7 24,4 18 3,0 2,2 47

0,12 0,84 15,5 11,4 1,9 2,0 47

0,15 1,05 8,85 6,5 1,1 1,3 47 ; 1,4 48 ; 1,4

49 ; 0,8 49 ; 1,318

0,17 1,19 6,5 4,78 0,8 0,9 48

0,20 1,4 4,3 3,16 0,53  1,0 49 ; 0,818

0,22 1,54 3,4 2,5 0,42 0,45 48

0,24 1,68 2,73 2,0 0,33 0,918

0,25 1,75 2,46 1,8 0,3 0,66 51 ; 0,7 51
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0,3 2,1 1,565 1,15 0,2 0,63 49 ; 0,4318

Table 12.  dTd  for the substance Bi2Sr2CaCu2O8+x  (=Bi2212)

Oxygen

doping x

N/A

[ 21810 m ] ]10[

)/(
246

5,2

m

AN


  [ Kcm /

] calculated

with shielding

 [ Kcm / ]

experimental

0,2135 0,73 22 2,7 2,6
0,217 0,74 21,2 2,6 2,3
0,22 0,75 20,5 2,5 1,83
0,24 0,82 16,4 2,0 1,5
0,25 0,85 15 1,84 1,3
0,255 0,87 14 1,7 1,17
0,26 0,887 13,5 1,65 1,08
0,27 0,92 12,3 1,5 0,8

The calculated resistivities already regard the shielding by a factor of six. Experimental values

from 52 .

Table 13. Comparison between theory and experiment:

Class of substances
5,2)/( 


AN


]10[ 1637  Km

Experimental

5,2)/( 


AN


]10[ 1637  Km

theoretical
LSCO 1,1 1,2
Bi2212 1,26 1,2

According to the formula for  , the outline of resistance values in Kcm /  against

5,2)/( AN should make a straight line with an ascending gradient of  1,2 163710  Km . 

The deviations between theory and experiment are lower than 10%.

Regarding the amounts on has to take into account that an explicit theoretical and simplified 

model was taken as a basis. In addition to that, measured values differ between authors. 

Nevertheless this model can describe the unusual dependence of the normal state resistivity 

qualitatively true and quantitatively well. 
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IX)  The heat conduction in HTSC

Preliminary remark:

 The following explanations belong to the normal- and not to the SC-state. 

9.1 The model of electrical resistivity which was explained in sections 6.-8. also is 

applicable  to thermal resistance. Hence it follows that the thermal resistance must increase 

with the density of the thermally excited EL, that means likewise linearly with temperature. 

As the electronic contribution to thermal conduction likewise proportional follows to the 

density of the thermally excited El, that means by a linear temperature law, the thermal 

stipulated increasing of density of thermal conducting particles and the increasing of  thermal 

resistance must counterbalance each other (in the normal state). 

But that mean, that the hole-induced part of thermal conduction in HTSC should show a 

constant quantity. This quantity is independent of temperature. A deviation only will occur at 

low temperatures: At low temperatures the thermal-resistance will be generated by defects of 

lattice and impurities. Therefore in the low-temperature region the thermal conductivity 

should increase with  increasing temperature like in normal metals. In the temperature-region 

between 0 and 30 K the thermal conductivity should increase linearly with temperature and 

then reach its constant maximum value. This temperature-region is mentioned explicit, 

because normal metals show a different behaviour: In normal metals at temperatures which 

are not too low the electrical and thermal resistivity is dominated by scattering of conduction-

electrons at phonons, leading to the phenomenon of a maximum thermal conductivity in the 

just mentioned temperature-region.
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In accordance to these considerations in many HTSC the thermal resistance is dominated by 

interaction (that means scattering) between EL and holes. In consequence, between 10 and 30 

K the heat conduction does not decrease with increasing temperature. 

Meanwhile this prediction is confirmed. Up to 30 K the heat-conductivity of HTSC is 

increasing steep. At higher temperatures it is nearly independent of temperature. (This does 

not work in the SC-state, naturally.) 

From the formula of heat-conduction in two dimensions by movable charge-carriers:

l
vm

Tnk
K

Fh

b
h 

3

22
and with 

0

...
1

thn
meter

GsdZ
l




results

actorshieldingf
meterGsdZn

v

vm

Tnk
K

th

F

Flö

b
Lö 




/...1023 5

422
.

With 
A

N
vF  4109,2   results actorshieldingf

mK

W

A

N
K Lö 






 

5,2
45106,33 .

...1023 5

422

GsdZn

v

vm

Tnk

th

F

Fh

b





 and 

A

N
vF  4109,2

results 
5,2

461036,3


 







A

N
K h . (21)

Table 14. Thermal conduction coefficient in various HTSC
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Substance

   

N/A [

21810 m ] ]10[

)/(
245

5,2

m

AN



LöK [ mKW / ]

calc., without

shielding

LöK [ mKW / ]

calc., with

shielding

LöK [ mKW / ]

experimental

value
LSCO, 

x =0,17 

1,19 1,55 0,5 2,5 4,515

LSCO, 

x =0,2

1,4 2,3 0,8 3 Circa 3 53  

YBCO6,3 1,9 54

YBCO6,53 2,3 54

YBCO6,7 1,36 2,2 0,7      3 5,0 54 ; 2,5 55

YBCO6,77 1,83 4,5 1,5 4 2,9 54

YBCO6,9 2,7 12 4,0 8,0 8,0 53 ; 2,5 54 ; 

3,5 56 ; 4,0 57 ; 

On heat-conduction also exists convergence between theory and experiment, if it is 

considered, that the experimental values show a big variation and the phonons are also 

contributing to the heat-conduction. 

For Bi2Sr2CaCu2O8-y  the thermal-conduction-coefficient also has a small temperature-

dependence 58 . 

9.2   Wiedemann-Franz-law 59  and Lorenz-number

The theoretical relation between heat-conduction and electrical conductivity is: 

2
5,2

37
5,2

46
0 1035,71036,3 


 













 KW

A

N

A

N

T

K
L Lö


 = 281047,2   KW .

For 9,632 OCuYBa was measured: 28
0 105,10   KWL  )53( .  bzw. 28105   KW  )46( . 

It is characteristic, that these measured quantities do not depend on temperature, 

corresponding to the represented theory. Unfortunately for other HTSC no values are 

available. Oddly the value of the Lorenz-number is the double as in conventional metals.  

Answering why is possible not yet. Also the values of 0L  only show a small dependence of 

temperature, what is predicted by theory also. 
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9.3  Result

In conventional metals between 10 and 30 K no solid Lorenz-number is received. But a so-

called “Lorenz-relation”, starting decreasing with increasing temperature, than reaching a 

minimum and then increasing again 60 . This conclusion is very important:

It proves that in the HTSC`s electrical resistance and thermal resistance (of the holes) are 

created by processes with the same effectiveness at every temperature. By that both types of

collision processes are of the same effectiveness, an elastically or nearby elastically scattering

is necessaryly. In HTSC`s the thermal and the electrical resistance are coming about by 

elastically scattering. That is established by obeying the Wiedemann-Franz-law at all 

temperatures. From this reason, inelastically scattering can be excluded. Therefore the 

scattering of holes comes about by elastically scattering processes with a collision cross-

section 0 or a frequency increasing linearly with temperature. Scattering of conduction-

electrons (in HTSC almost holes) always is inelastically and by that as an explanation it isn`t 

useful. Attempting to explain this result by dynamical elastic scattering of holes at bosons, the

density of this bosons also has to increase at the lowest temperatures linearly with the 

temperatures. (In HTSC the resistance is increasing linearly with T at the lowest 

temperatures.) That is possible only, if the characteristic exciting-energy of this bosons is 

going to zero. That is sizeable unrealistic, but thinkable. But if the excitement-energy is in the 

near of zero, the matrix-element of the hole-boson-coupling goes to zero. And with a 

coupling-constant near zero the electrical resistance also is going to zero, at every 

temperature. 

The extra-ordinary temperature-dependence of resistivity cannot be explained by an 

interaction with bosons. Then the only explanation is the elastic interaction with fermions. 
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The number or the collision cross-section 0 of these fermions also has to increase linearly 

with the temperature. The one and only fermions in HTSC with these presuppositions are the 

thermal excited Cu-3d-EL. It is significant, that these types of electrical and thermal 

resistivity and the anomalies in the WF-law exist only in the HTSC`s. Indeed, in the heavy-

fermion –superconductors the resistivity at low temperatures increases (nearly) with the 

temperature, but it is proved, that this scattering is inelastic 61 . 

In principle a scattering of holes at ordered areas in the crystal is possible. But then the 

ordering in the crystal must increase with temperature, what is in contradiction to the second 

main theorem of thermodynamic. It only rests the solution, that the holes are scattered at the 

thermal excited Cu-3d-EL.

This does not prove the coming about of superconductivity by interactions between holes and 

Cu-3d-EL, but it is obvious.

 

X) Conclusion

10.1 It was demonstrated in sections VI) to IX), that electrical resistance and heat 

resistance in HTSC are created by interaction between mobile holes and localized Cu-3d-

electrons. High-temperature-superconductivity is explained by a closely related mechanism. 

Furthermore the mechanism presented in this abstract also can explain all the other 

experimental results qualitatively and quantitatively. This theory of HTSC is closed, 

quantified and able to explain the phenomenas connected with the cuprate-based 

superconductivity. 

The relations presented here, between experimental verified metal-parameters and the 

superconductivity, are totally more quantitative than all, which was offered till now by the 

theory of superconductivity.

Apart from that this theory is unusually, there is no doubt on her correctness.
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It should remarked for completeness, that this mechanism is also appreciable to electron-

doped HTSC`s. But it is true, that the interaction between negative loaded Cu-3- 22 yx
d

 -EL 

and conduction-electrons is weaker than with positive loaded holes, leading to lower critical 

temperatures.

10.2 Acknowledgements

I wish to thank all the “quiet collaborators”, who have born together in laborious work the 

innumerable data, which are taken for this work. And to all persons, who have supported me 

in the last 40 years and have listened to me always again. 

But there is heart-felt gratitude face to face with Mr. Sebastian Limm, Münsing and Mr. 

Friedrich Weber, Munich. You supported me not scientifically, but without the help of you 

both I hadn`t achieved it. This work is yours hereditary also.

XI) References

1 P. W. Anderson: Science 235, 1196 (1987)

2 P. W. Anderson et  Z. Zhu: Phys. Rev. Lett. 60, 132 (1988)

3 S. Chakravarty et  P. W. Anderson: Phys. Rev. Lett. 72, 3859 (1994)

 4 R. Kleiner, Supraleitung, 6. Aufl. (2003), 103

5 J. Hubbard: Proc. R. Soc. London, Ser. A 243, 336 (1957)

6 C. C. Grimes et G. Adams: Phys. Rev. Lett. 42/12, 795 (1979)

7 J. Bardeen, L. N. Cooper et  J. R. Schrieffer, Phys. Rev. 108/5, 1175 (1957)

8 Ch. Renner et al., Phys. Rev. Lett. 80 , 149 (1998)

9 J. F. Zasadzinski et al, Phys. Rev. Lett. 87/6, 067005 (2001)

 10  . Fischer et al, Reviews of  Modern Physics, Vol. 79, No. 1, 384 (2007)

11 S. Hüfner et al, Rep. Prog. Phys., 71 (2008), 062501

55



12 T. Nakano et al, J. Phys. Soc. Japan 67, 2622 (1998)

13 M. K. Crawford et al, PRB 41/1 (1990) S.282

14 G. M. Zhao et al, J. of Phys.: Condens. Matter 10 (1998), S. 9055

15 M. Sutherland et al, PRB 67 (2003), S. 174520

16 M. K. Crawford et al, Science 250 (1990), S. 1390

17 J. Hofer et al, “Doping dependence…”, J. of Supercond.: Incorp. Nov. Magnet. 13/6 

(2000), S. 963 

18 Minoru Suzuki et Makoto Hikita, PRB 44/1 (1991), S. 249 (s. u. Leitfähigkeit)

19 Min. Suzuki et al, PRB 39/4 (1989), 2312 (Hall coeff./ opt. prop.)

20 G. M. Zhao et al, PRB 52/9 (1995), S. 6840

21 Petra Häfliger et al, PRB 74 (2006), 184520 

22 Maria Ronay et al, PRB 45/1 (1992), S. 355

23 J. P. Franck et al, PRL 71/2 (1993), S. 283

 24 M. Oda et al, Physica C 341 (2000), S. 847

25 T. Ekino al, Physica C 263 1-4 (1996), S. 245

26 T. Kato et al, Physica C 392-396 (2003), S. 221

27 J. R. Kirtley et al, PRB 35 (1987), S. 8846

28 H. Won et K. Maki, PRB 49 (1994), S. 1397, Formel 5

29 Guy Deutscher, Nature 397 (1999), S. 41

30 D. G. Hawthorn et al, PRB 75 (2007), 104518

31 M. K. Crawford et al, Physica C 185-189 (1991), s. 1345

32 M. K. Crawford et al, Science 250 (1990), S. 1390

33 G. M. Zhao et al, PRB 52/9 (1995), S. 6840

34 G. M. Zhao et al, Nature 385 (1997), S. 236

35 N. Babushkina et al, Physica C 185-189 (1991), S. 901

 36 N. Babushkina et al, Physica C 272 (1996), S. 257

37 N. Babushkina et al, Proceedings of the Beijing Int. Conference on HTSC (1992)

38 V. Ozhogin et al, Applied Superconductivity 1 (1993), S. 359

39 Handbook of Chemistry and Physics, 83. Aufl. (2002), 12-91

40 J. P. Franck et al, PRB 44/10, (1991), S. 5318 

41 H. J. Bornemann et D. E. Morris, PRB 44/10 (1991), S. 5322

42 R. Gagnon et Louis Taillefer: Phys. Rev. B 50/5 (1994), S. 3458

56



43 S. W. Tozer et al: PRL 59/15 (1987), S.1768

44 Andrea Gauzzi et Davor Davuna: PRB 51/21 (1991), S. 15420

45 J. S. Moodera et al., PRB 37/1 (1988), S. 619

46 B. M. Suleiman et al, PRB 53/9 (1996), S. 5901

47 C. C. Tsuei et T. Doderer, Eur. Phys. J. B 10 (1999), S. 257-262

48 G. S. Boebinger et al., PRB 77/27 (1996), S. 5417

49 Y. Nakamura et S. Uchida, PRB 47/13 (1993), S. 8369

50 H. Takagi et al., PRL 69/20 (1992), S. 2975

51 S. R. Curras et al., PRB 68 (2003), 094501       

52 T. Watanabe et al., PRL 79/11 (1997), S. 2113

53 C. Uher et A. B. Kaiser, PRB 36/10 (1987), S. 5680

54 N. V. Zavaritskii et al., JETP Lett., Vol. 48, No. 4, (1988), S. 242

55 M. Sera et al., Sol. State Comm. 74/9 (1990), S. 951 (Fig. 5)

56 S. J. Hagen, Z. Z. Wang et N. P. Ong, PRB 40/13 (1989), S. 9389 

57 R. C. Yu et al, PRL 69/9 (1992), S. 1431

58 F. Crommie et A. Zettl: Phys. Rev. B 41/16, 10978 (1990) 

59 G. Wiedemann et R. Franz, Ann. Phys. 89 (1853), S. 497

60 S. Hunklinger, Festkörperphysik, 1. support (2007), S. 346

61 F. Steglich, Physik Journal 3 Nr. 8/9 (2004), S. 61

Diagrams: see extra-files

 

57


	In that equation the numerator is the overlap-integral of neighboured EL and describes the reduction of the kinetic energy on account of the delocalization of the EL. The denominator U presents the simultaneous enhancement of the potential energy. Here the the denominator shall be inquired only. The variation of the potential energy of “hopping” Electrons
	(= denominator) will be described by an elementar formula, which is used in the BCS-theory also:
	In deviation to BCS-theory has been regarded here to the fact, that in Cuprates the superconductivity is playing in two, instead of three dimensions. In the square brackets of that equation the cipher “1” appears. That “1” describes the Coulomb-repulsion of the Electrons, appearing in all metals. Therefore that “1” agrees to the normal metal and doesn`t belong to HTSC.
	On the other hand, the expression presents a reduction of Coulomb-repulsion between the Electrons, appearing eventually.
	Adding a negative sign to that expression, one will get necessarily an expression for an augmentation of Coulomb-IA, that means exactly the denominator U in the formula for MPG:
	And now the speciality of the HTSC`s arises:
	The letter M in the square bracket doesn`t mean the atomic-mass, but the mass of the Electrons. So in the HTSC`s the Cu-3d-Electrons are vibrating. These oscillations are leading to an energy gap. In exactly words they make two energy-gaps: Applicated with negative sign to a diminuation and with positive sign to an enhancement of the energies of the Electrons. In second order that process leads to the electrical reluctance of the holes. (See exactly in the chapters XI to XIV) and in third order to the pair-building of the holes.
	Therefore the “lattice-oscillations” of the Cu-3d-Electrons are conducting on one hand to the pseudogap and otherwise to superconductivity. In that work MPG means “Maximum Pseudogap”, that is the pseudogap in case of doping zero.
	By that the shifting of charge represents the double pseudogap in case of doping zero. Expressed obvious: The Hubbard-energy-reduction, here called as “Maximum Pseudogap” MPG, is the “gluten”, which is bonding the holes to pairs.

