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Abstract. A solid, two-component, quantum luminiferous aether is proposed to exist. Simple 
postulates are hypothesized, along with some physical laws and assignments. Derivations then lead 
to the equations of electrodynamics (Maxwell’s Equations and the Lorentz Force Equation), 
Newton’s Law of Universal Gravitation, and to two field-masses. The theory is shown to 
successfully meet the classic tests of General Relativity: calculations for the advance of the 
perihelia, the Shapiro effect and the gravitational redshift agree with experiment, and the 
experimental result concerning the bending of light in gravitational fields is also understood. 
Additionally, gravitational waves are understood and the first of the field-masses allows for an 
understanding of what is presently known as dark matter. A new approach to analyzing dense 
objects such as white dwarfs and neutron stars is discussed, and since the theory has no singularity, 
a replacement for black holes is suggested. Replacing relativity with an absolute, realist, and 
physical model returns us to a flat Euclidean space and a separate time. Absolute simultaneity 
enables understanding of quantum mechanics. The underlying philosophical grounding is 
discussed. 
 

Forward. 
This paper is related to a rigorous, quite lengthy and extremely detailed version available online.[1] 
In the present work, we will use the equation numbers from Ref. 1 to facilitate cross referencing 
to Ref. 1 should more details be desired. 
 

Part A. Introduction. 
A.1. Present Problems in Physics. There are presently some rather fundamental problems in 
physics. While not a problem per se, the relativity of Einstein[2,3] is a point-like theory in a curved 
four-dimensional space-time continuum. Relativity has enjoyed great success in mathematically 
modeling the effects of gravity, but its point-like nature leads to infinities. Since particles have 
finite mass and charge, assuming a volume of zero results in infinite densities. Additionally there 
are other problems. Relativity describes black holes as infinite singularities; dark matter particles 
have not been found[4,5]; the cosmological constant is orders of magnitude removed from 
expectations[6] and quantum mechanics is incompatible with relativity[7,8,9]. 
The known problems in physics are tolerated because both relativity and quantum mechanics are 
highly successful. Special relativity enables a derivation of the Lorentz Transformation. Both the 
Lorentz Force Law[10] and Maxwell’s equations[11] can be put into a form consistent with 
relativity, and this explains electrodynamics. General relativity explains gravity. Meanwhile, all 
experiments done to date are in agreement with quantum mechanics. 
Yet despite the great success of relativity and quantum mechanics, the known problems leave us 
unsatisfied. Einstein was always troubled by quantum mechanics as exemplified by his famous 
quip that God does not play dice. And Einstein, Podolsky and Rosen[7] (EPR) wrote a paper 
showing that relativity and quantum mechanics are incompatible. Bell[8] extended the work of 
EPR, and Aspect, Dalibard and Roger[9] did experimental tests that agreed with quantum 
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mechanics. Given the fundamental confrontation between quantum mechanics and relativity, we 
might wish to consider the possibility that relativity should be set aside.  
A.2. A New Starting Philosophy. To look for a new solution we should start by questioning our 
most basic foundations, and this involves philosophy. Descartes[12] has shown us that philosophy 
naturally ends with the conclusion that we can't really know anything for certain other than that 
we ourselves exist. And that of course would be a dead end for physics; for physics we must start 
somewhere. The positivism rooted in Hume[13], developed by Mach[14] and embraced by 
Einstein leads us to put our trust only in experimental observations. (Although it is important to 
note that Hume also realized that observations cannot be completely trusted either.) In essence, the 
positivist approach goes down the philosophical path to stop at the trusting of observations, without 
going all the way to the Descartes realization that we can only trust that we exist. Here we will 
reject the positivist philosophy and instead choose a different starting point. We will agree with 
Descartes that nothing in physics can be trusted at all, and then build up from that minimalist 
certainty by simply asserting a fundamental axiom of our proposed physical philosophy. We won’t 
try to philosophically prove this axiom to be correct; we will merely assert it and see where it 
leads. The axiom we propose is that a reality exists that cannot be completely observed. Or more 
concisely, we assert our Fundamental Axiom:  
 A Partially Observable Reality Exists. 
Our fundamental axiom differs from positivism in that we are asserting the existence of an 
objective reality, whether we can fully observe that reality or not. We elevate that asserted reality 
to a primacy above observations. Indeed, since reality is asserted to be only partially observable, 
observations only inform us about a subset of reality and therefore observations are secondary to 
reality under our assertion.  
With our philosophical foundation established, our aims in physics are then fourfold. First, we 
must physically model our asserted underlying reality; second, we must logically derive 
mathematical equations to represent that physical model; third, we must assert where the boundary 
is between what we can observe and what we cannot observe; and fourth, we must measure what 
is possible to observe and test our equations against those observations. Our physical model will 
be built with additional assertions and assignments as we proceed. Agreement of our model with 
observations will be considered to be affirmative evidence of our model. Disagreement between 
our model and observations will mean we should correct our model and go through the process 
again. Our physical philosophy is extremely concise as compared to that of most philosophers, as 
we accept the simplicity of the Descartes realization that nothing can be proven to be true, and we 
then simply propose a limited number of axioms and require no proof of them other than that they 
lead to equations that are in agreement with experimental observations.  
Heisenberg’s[15] uncertainty principle at the heart of quantum mechanics can be used to illustrate 
the difference between positivism and the philosophy following from our fundamental axiom, and 
the Heisenberg uncertainty principle can also define a boundary between what is and is not 
observable. Heisenberg states that one cannot simultaneously measure both the momentum and 
the position of any entity down to an arbitrarily small accuracy. If we try to measure the position 
very accurately, it leads to the momentum being known only vaguely, and vice versa. This places 
limits on our ability to observe any entity. It becomes the limiting boundary of what we can 
observe. Under a positivist philosophy, the Heisenberg expression px >= h/2 enforces a limit 
on anyfurther assertions concerning an underlying reality. Any subquantum analysis or theorizing 
is to be rejected since it is unverifiable through observations. Under our fundamental axiom, we 
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accept that we cannot simultaneously measure both momentum and size at a subquantum level, 
but we are free to assert that a subquantum reality nonetheless exists, and that we may analyze it. 
Starting from our assertion that a partially observable physical reality exists, we will next choose 
to simply set relativity aside and return to the idea of an absolute simultaneity. From there we will 
go on to develop a physical model of our asserted reality. This approach leaves us in a similar 
position to where things stood prior to 1905, when an absolute theory was assumed. Space was 
assumed to be flat and Euclidean, and time was the parameter that orders events. Maxwell had 
already developed his famous equations. Lorentz and others had developed the Lorentz 
transformation[16] and the Lorentz Force Equation[10]. The Michelson Morley[17] result was 
explained by a physical length contraction. All of this was done before relativity, and all of it 
assumed an underlying aether and absolute simultaneity. The Lorentz Ether Theory is fully 
equivalent mathematically to special relativity; all that is lacking is a replacement for General 
Relativity as well as physical models for Maxwell’s equations and the Lorentz force equation. 

 
Part B. The Hypothesis and Setting up the Analysis. 

B.1. The Hypothesis. Our hypothesis begins by observing that light is a transversely polarized 
wave. It is known from normal matter that transversely polarized waves are possible in solids under 
tension. Hence, we propose that the aether is a solid under tension. Since matter is normally 
quantized, we propose that the aether is quantized. We also propose that there are two types of 
aether, one we call positive aether and the other we call negative aether. While the aether is usually 
in a solid form, we propose that sufficient energy might lead to some of the aether being freed 
from the solid bonds. We will often refer to the solid aether as attached-aether, and the free pieces 
as detached-aether. (Later we will identify detached-aether as electric charge.) We propose that 
different types of aether may be able to flow through other types of aether. Locally, such as within 
our galaxy, the aether can be thought of as a gigantic solid block. However, aether at great distances 
away from us may be moving with respect to us. You can think of the aether as being somewhat 
similar to a glacier, where distant parts may move with respect to one another, but where an 
analysis of a small local portion will lead to the conclusion that it is a stationary solid block. 
B.2. Notation for Aetherial Displacements. For our analysis we define the vector fields P, N, PG 
and NG. In the absence of sources or waves, the positive aether will be in a nominal state where it 
is homogeneous and isotropic and be at rest. Each individual small cube of positive-aether will 
have some position in that nominal state. When waves, sources or sinks are present the aether may 
move away from its nominal position. P is the displacement vector of the positive-attached-aether 
from its nominal position, while N is the displacement vector for the negative-attached-aether. P 
and N refer to displacements caused by electricity and magnetism effects, while PG and NG refer 
to displacements caused by gravitational effects. 
B.3. Starting Assumptions. We’ll assume some standard starting assumptions based on empirical 
work done by physicists over time. We’ll assume Newton’s law F = dp/dt is correct, where p is 
mc,  is v over c, and  = [1–2]–1/2. Here v is the velocity of some arbitrary body and c is the 
speed of light. The aether is also assumed to be fermionic, and hence it obeys the Pauli exclusion 
rule[18]. We assume Schrödinger’s equation[19] and E = mc2 are valid. For the vast majority of 
this work we will analyze things from a frame of reference at rest with respect to the aether, and a 
physical length contraction and time dilation of moving bodies is assumed. Lastly, we’ll assume 
that any distortions of a quantum of aether are small with respect to the size of the quantum. 
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B.4. The Five Postulates. Five foundational postulates are asserted as part of our hypothesis: 
The Density Postulate. In any volume, the density of the positive-aether equals the density of the 
negative-aether minus an amount proportional to the extrinsic-energy within the volume. 
The Tension Postulate. In the absence of external effects, the tension within a quantum of attached-
aether is proportional to the separation of any two parallel faces of its surrounding volume. 
The Flow Postulate. When aether of one type flows relative to aether of another type, a flow force 
is generated that is proportional to the flow, and the force is aligned with the flow. 
The Aetherial Displacement-Work Postulate. When attached-aether is displaced, work is done on 
the aether by the force fields that is proportional to the force, proportional to the distance of 
displacement, and proportional to the amount of aether displaced. 
The Extrinsic-Energy Force-Reduction Postulate. The presence of extrinsic-energy (mass) 
decreases the positive (negative) attached-aether tension and the negative (positive) attached-
aether quantum-force by an amount proportional to the amount of extrinsic-energy present with a 
constant of proportionality KG1 (KG2). 
 
B.5. The Foundational Equations. With no extrinsic-energy present, the density postulate is 
expressed mathematically as: 
P = PA + PD = NA + ND = N (1) 
In Eq. (1) P (N) is the positive (negative) aether density, PA (NA) is the positive (negative) 
attached-aether density, and PD (ND) is the positive (negative) detached-aether density. The 
tension postulate is expressed mathematically as: 
FT = KT0Q (2) 
We can integrate the tension force of Eq. (2) to obtain the tension energy: 
ET = (1/2)KT0Q

2 (3) 
In Eqs. (2) and (3) Q is the distance we stretch the aether and KT0 is the nominal tension parameter 
for the tension force. 

 
Figure 1. Forces in an Aetherial Quantum Cube. (See Section F.3 for Further Discussion.) 
Next we’ll look at the quantum effects. Figure 1 shows forces within an aetherial quantum. Recall 
that we’ve assumed that the aether is fermionic. As a result of this we can analyze the situation for 
an individual fermion. Each fermion will be a single quantum, surrounded by other quanta. Those 
other quanta will lead to an exclusion region via the assumed Pauli exclusion rule, and this situation 
results in each fermion being in a three-dimensional square well potential. Within this cubic well, 
quantum-pressure will push out, and the tension force will pull in. The equilibrium state will exist 
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when these forces balance each other. Using the assumed Schrödinger Equation, the energy of a 
state within an infinite square well is: 
EQ = KQ0/Q

2 (4) 
We can now differentiate the energy with respect to distance to get the force magnitude at the cube 
walls: 
FQ = |dEQ/dXQ| = 2KQ0/Q

3 (5) 
In Eqs. (4) and (5) KQ0 is the nominal quantum-pressure force parameter. The nominal cube size 
and aetherial density can be derived (see Ref. 1) as: 
0 = (2KQ0/KT0)1/4  (7) 
0 = Q/0

3 = Q/(2KQ0/KT0)3/4 = Q(KT0/2KQ0)3/4 (9) 
Note that in Eq. (9) Q is the amount of aether contained in a single quantum-cube. 
As mentioned in section A.2, it is possible to analyze the physics of subquantum regions once we 
adopt our fundamental axiom of a partially observable reality. We will define an analysis-cube as 
having edge sizes of: 
XQ = Q/n (10) 
We then form the tension and quantum energies of those cubes: 
ET = ET/n3 = (1/2)KT0Q

2/n3 = (1/2)KT0XQ
2 (11) 

EQ = EQ/n3 = KQ0/Q
2n3 = KQ0/XQ

2  (12) 
In Eqs. (11) and (12) we define the new tension and quantum parameters: 
KT0 = KT0/n (13) 
KQ0 = KQ0/n5  (14) 
We then form the forces on the analytic-cube faces by differentiating the energy with respect to 
distance: 
FT0 = |dET/dXQ| = KT0XQ (15) 
FQ0 = |dEQ/dXQ| = 2KQ0/XQ

3 (16) 
The advantage of the subquantum analysis is that we can take limits as our analysis-cube shrinks 
to zero, and this will allow us to drop terms that vanish when we do so. 
In Ref. 1 we find the nominal size X0 of an analysis-cube by evaluating where the total energy E 
= ET + EQ is minimized. We then obtain the following useful relations: 
X0

4 = 2KQ0/KT0 (20) 
KT0X0 = 2KQ0/X0

3 (21) 
KT0X0

2 = 2KQ0/X0
2 (22) 

X0 = (2KQ0/KT0)1/4  (23) 
Starting from the Aetherial Displacement-Work Postulate, Ref. 1 obtains:  

WTD = (X0/0)Kc ∫ KTX0 dx  (32) 

WQD = (X0/0)Kc ∫ 2KQ/X0
3

 dx  (33) 
In Eqs. (32) and (33), WTD (WQD) is the work done by displacement through the tension (quantum) 
field, and Kc is the arbitrary proportionality parameter mentioned in the postulate. 
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Part C. Electromagnetism. 

C.1. Poisson’s Equation. Recall Eq. (1), the mathematical expression for our density postulate 
equating the positive and negative aetherial densities: P = PA + PD = NA + ND = N. If we insert 
some detached-positive-aether into a region of attached-aether, Eq. (1) states that the total positive-
aether density will equal the total negative-aether density, but notice that this could be achieved 
by either increasing the negative-attached-aether density or decreasing the positive-attached-aether 
density. Energy considerations can be shown to lead to the positive-attached-aether density being 
reduced by one half of the inserted positive-detached-aether density, while the negative-attached-
aether density is increased by one half of the inserted positive-detached-aether density (see Ref. 
1). A similar analysis done for insertion of negative-detached-aether results in: 
PA = 0 – PD/2 + ND/2 (41) 
NA = 0 – ND/2 + PD/2 (42) 

 
Figure 2. Analysis-cube of undisturbed aether (left) and one with injected detached-aether (right). 
Figure 2 presents a diagram of what happens when positive-detached-aether is injected into 
positive-attached-aether. We see that this injection results in an expansion of the positive-attached-
aether cube. Prior to the injection of the detached-aether, the amount of positive-attached-aether is 
the nominal density 0 multiplied by the volume of the cube, xyz. When we inject positive-
detached-aether into that cube, the amount of positive-attached-aether will remain the same, but 
the volume of the cube will expand, with x becoming larger by x and similar increases in y 
and z. The positive-attached-aether density is then the original amount of aether divided by the 
new larger volume, and this new density is: 
PA = 0(xyz)/[(x + x)(y + y)(z + z)]  
≈ 0(xyz)/(xyz + xyz + yxz + zxy) 
= 0/(1 + x/x + y/y + z/z) ≈ 0(1 – x/x – y/y – z/z) (45) 
We next observe that the expansion of the cube is related to the difference in the displacement 
vector P between its value at the cube center and its value at the edge face of the cube, x/2 = PX(x 
+ x/2, y, z, t) – PX(x, y, z, t). We then divide by x/2 to arrive at x/x = [PX(x + x/2, y, z, t) – 
PX(x, y, z, t)]/x/2 = ∂PX/∂x, where the last equality is in the limit when we shrink our analysis-
cube to zero size. Repeating the derivation for y and z will lead to similar expressions. Hence, Eq. 
(45) can be re-expressed as PA = 0(1 – x/x – y/y – z/z) = 0(1 – ∂PX/∂x – ∂PY/∂y – 
∂PZ/∂z), or, 
PA = 0(1 – ∇ . P) (46) 

We now rearrange the terms of Eq. (46) and then substitute in the value of PA from Eq. (41):  
∇ . P = (0 – PA)/0 = (PD – ND)/20 (47) 
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Next we observe from Figure 2 that P is purely longitudinal. That is, detached-aether pushes 
outward on the cube walls but it does not cause any rotation. A purely longitudinal vector field can 
be formed from the gradient of a scalar field. The scalar field is named P:  
PL = ∇P (48) 
This allows us to obtain:  
∇ . P = ∇ . PL = ∇ . ∇P = ∇2P (49) 

Next, combine Eqs. (47) and (49) to yield: 
∇2P = ∇ . PL = ∇ . P = (PD – ND)/20 (50) 

A similar derivation can be applied to the negative-aether to arrive at: 
∇2N = ∇ . NL = ∇ . N = (ND – PD)/20 (52) 

Subtract Eq. (52) from Eq. (50): 
∇2(P – N) = (PD – ND)/0 (54) 
Now define  by  = –(P – N)0/0, where 0 is the permittivity of free space and define D = 
(PD – ND). We have (P – N) = –0/0 and hence ∇2(P – N) = –0∇2/0 = (PD – ND)/0 = 
D/0. Hence we see that Eq. (54) is Poisson’s Equation: 
∇2 = –D/0 (55) 
With this definition for  we can also derive: 
PL – NL = ∇(P – N) = –0∇/0 (56) 
We see above that the presence of detached-aether leads to displacement of the negative-attached-
aether that is always equal and opposite to the displacement of the positive-attached-aether. Since 
injection of detached-aether is the only physical cause for the longitudinal displacements PL and 
NL of the attached-aether, we arrive at: 
NL = –PL (58) 
C.2. The Delta Force. On the walls of a quantum-cube Eq. (15) gives the inward force due to 
tension as FT0 = |dET/dXQ| = KT0XQ and Eq. (16) gives the outward force due to quantum-pressure 
as FQ0 = |dEQ/dXQ| = 2KQ0/XQ

3. In section C.1 we’ve seen that injection of detached-aether changes 
the size of a positive-attached-aether quantum. Eqs. (15) and (16) indicate that the increased size 
will increase the tension and decrease the quantum-pressure. To maintain the larger size XQ the 
presence in the cube of positive-detached-aether must therefore result in a detached-aether 
immersion force F (the delta-force) that acts on the walls of the positive-attached-aether analysis-
cube that is equal and opposite to the sum of the longitudinal-tension-force and the quantum-
pressure force,  
F = –FTL – FQ  (59) 
The force supplied by the detached-aether is given the name delta force since that force is equal to 
the difference between the quantum-pressure and tension forces, as that is what is needed to keep 
the quantum-cube in force equilibrium. Eq. (59) above specifies the definition of the delta force. 
Note that while Eq. (59) appears to form a negative sum, that the direction of the tension is opposite 
to that of the quantum force, and that is why we say the delta force is the difference of these two 
forces. Note also that we use the longitudinal component of the tension force because only the 
longitudinal component is supplied by the detached-aether. When a source of detached-aether is 
present, the cubes are displaced and distorted both inside and outside of the source regions. The 
delta force therefore exists both inside and outside the source regions. The delta force is the force 
which balances the sum of forces on all cube faces for electromagnetic effects. 
C.3. Work Done on Displaced Aether. When a cube of aether moves through the tension and 
quantum-pressure force fields, work is done as described by Eqs. (32) and (33) above. For the delta 
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force, which equation is used depends upon the form of the delta force for the specific case being 
evaluated. Ref. 1 rigorously evaluates the work done on an analytic-cube as it is displaced against 
the tension, quantum-pressure, and delta forces. The evaluations are quite tedious, and here we 
will only present the results. The work done due to tension when a cube moves a distance P due 
to a source of detached-aether is: 
ETPPI = KT0X0

2[(1/2) + Kc|P|/0 + Kc
2(|P|/0)2 + 3X/X0 + 3Kc|P|X/2X00] (67) 

In Eq. (67) the subscript TPPI refers to Tension of the Positive-attached-aether due to immersed 
Positive-detached-aether in the region Inside of a sphere of detached-aether. The cube will also 
stretch because of the source presence, and X is the amount it stretches. Eq. (67) includes this 
effect as well. The work done against the quantum-pressure when a cube is moved by P is  
EQPPI = (2KQ0/X0

2)[(1/2) – Kc|P|/0 + Kc
2|P|2/0

2 – 3X/X0 + 3Kc|P|X/2X00] (69) 
The work done against the delta force when a cube is moved by P is  
EPPI = 2Kc

2KT0(X0/0)2|P|2 – 3KT0X0Kc|P|X/0 (71) 
The total work is the sum of the work done against the tension, quantum-pressure and delta forces:  
EP = KT0X0

2[1 + 4Kc
2P2/0

2] (72) 
The total work done via displacement for the negative-aether is:  
EN = KT0X0

2[1 + 4Kc
2N2/0

2] (77) 
C.4. The Flow Force. Section B.4 above specified a flow postulate. Empirically we now propose 
a more specific form of the flow postulate for the case of detached-aether flows:  
The Electrodynamic Flow Force Law: In regions where there is flowing detached-aether, both the 
detached-aether and the attached-aether density disturbances caused by the detached-aether will 
generate a force upon the attached-aether components that is proportional to the relative flow 
between the flowing detached-aether and the attached-aether; the force will be aligned with the 
flow, and only the transverse component of the flow leads to a force. (The longitudinal component 
of the flow does not lead to any force.) 
For flowing detached-aether, the force given by The Electrodynamic Flow Force Law results in: 
FFP1 = KF1VPD[UPDT – ∂PT/∂t] – KF1VND[UNDT – ∂PT/∂t] (78) 
FFN1 = KF1VND[UNDT – ∂NT/∂t] – KF1VPD[UPDT – ∂NT/∂t] (79) 
In Eqs. (78) and (79) KF1 is the proportionality constant, V is the volume containing the detached-
aether, PD is the positive-detached-aether density and UPDT is the transverse velocity of the 
positive-detached-aether. The negative-aether quantities use a similar nomenclature. 
Flowing detached-aether will also cause forces from an “image charge” of flowing attached-aether: 
FFP2 = –KF2VPD[UPDT – ∂PT/∂t] + KF2VND[UNDT – ∂PT/∂t] (80) 
FFN2 = –KF2VND[UNDT – ∂NT/∂t] + KF2VPD[UPDT – ∂NT/∂t] (81) 
In Eqs. (80) and (81), KF2 is the proportionality constant, which we allow to be different from KF1 
since the underlying physical cause is different for this flow. 
C.5. The Transverse Tension Force. When cubes become transversely displaced from one 
another, this can lead to a transverse tension force. Figure 3 shows a situation where the center 
cube is displaced below adjacent cubes. We choose a coordinate system such that the center cube 
is at a position r plus P(r), where r is the nominal position of the cube for an aether without any 
sources, sinks or waves. The cube to the right will be located at r + xi + P(r+xi). We can now 
form a vector D for the separation of the cubes: 
D = r + Δxi + P(x+Δx, y, z, t) – r – P(x, y, z, t) = Δxi + P(x+Δx, y, z, t) – P(x, y, z, t) (82) 
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Figure 3. A central cube displaced downward, leading to tension forces with upward components. 
Now form D/Δx: 
D/Δx = i + ∂P/∂x = i + (∂Px/∂x)i + (∂Py/∂x)j + (∂Pz/∂x)k (83) 
Keeping terms to first order in small quantities the magnitude of D/Δx is: 
|D/Δx| = [(1 + ∂Px/∂x)2 + (∂Py/∂x)2 + (∂Pz/∂x)2]1/2 ≈ 1 + ∂Px/∂x (84) 
Next, form a unit vector d in the direction of D/Δx: 
d = (D/Δx)/|D/Δx| ≈ [(1 + ∂Px/∂x)i + (∂Py/∂x)j + (∂Pz/∂x)k]/[1 + ∂Px/∂x]  
≈ i + (∂Py/∂x)j + (∂Pz/∂x)k (85) 
The total force on the central cube of Figure 3 is: 
FTYZ = [FT(x, y, z, t) + (∂FT/∂x)Δx][i + {∂Py(x+Δx, y, z, t)/∂x}j + {∂Pz(x+Δx, y, z, t)/∂x}k]  
– FT(x, y, z, t)[i + {∂Py(x, y, z, t)/∂x}j + {∂Pz(x, y, z, t)/∂x}k] (88) 
Eq. (88) is simply the force FT2 + FT1 from Figure 3. Note that our arbitrary coordinate system 
now uses r as the position of the left face of the central cube and r plus Δxi for the position of the 
right face. 
Next, we define T0 as the nominal magnitude of the attached-aetherial-tension per unit area. (T0 is 
the tension per unit area in the absence of sources, sinks and waves.) It is assumed that deviations 
of FT(x, y, z, t) from T0ΔyΔz will always be small, or FT(x, y, z, t) ≈ T0ΔyΔz, leaving 

FTYZ = [T0ΔyΔz + (∂FT/∂x)Δx][i + {∂Py(x+Δx, y, z, t)/∂x}j + {∂Pz(x+Δx, y, z, t)/∂x}k]  
– T0ΔyΔz[i + {∂Py(x, y, z, t)/∂x}j + {∂Pz(x, y, z, t)/∂x}k] (89) 
It is assumed that ∂Py/∂x and ∂Pz/∂x are small quantities in comparison to 1. Also we note that 
{∂Py(x+Δx, y, z, t)/∂x} – {∂Py(x, y, z, t)/∂x} = Δx∂2Py/∂x2 in the limit as Δx  0 and we have a 
similar equation for ∂2Pz/∂x2. Keeping only the terms that are lowest order in small quantities, 
FTYZ = (∂FT/∂x)Δxi + T0ΔxΔyΔz(∂2Py/∂x2)j + T0ΔxΔyΔz(∂2Pz/∂x2)k (90) 
The calculation of the partial derivative of the tension force with respect to x is a bit tedious, and 
so we don’t present it in full here. (For full details, see Ref. 1). Here we just present the result: 
(∂FT/∂x)Δx = (∂FT/∂x)X0 = T0X0

3[∂2Px/∂x2] = ΔxΔyΔzT0(∂2Px/∂x2) (94) 
Note again that here we have used Δx = Δy = Δz = X0 and we allow our analysis-cube to shrink to 
zero. Substituting Eq. (94) into Eq. (90) leaves: 
FTYZ = ΔxΔyΔz[T0(∂2Px/∂x2)i + T0(∂2Py/∂x2)j + T0(∂2Pz/∂x2)k] (95) 
So far we have just analyzed the forces on the yz cube faces. Applying a similar analysis to the 
other four cube faces we find the total transverse tension force on a positive-attached-aether 
analytic-cube:  
FTPT = ΔxΔyΔzT0∇2P (96) 
C.6. Maxwell’s Equations. We now define KF3 = KF1 – KF2 and then sum Eqs. (78) and (80):  
FFP = FFP1+FFP2 = –KF3VPD[UPDT – ∂PT/∂t] + KF3VND[UNDT – ∂PT/∂t] (99) 
Eq. (99) is the equation for the total flow force on the positive-attached-aether. Ref. 1 shows that 
∂P/∂t << UPD so we can drop ∂P/∂t and expanding the volume of the analysis-cube V as xyz: 
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FFP = –KF3PDxyzUPDT + KF3NDxyzUNDT = KF3ΔxΔyΔz[NDUNDT – PDUPDT]  (100) 
The longitudinal portion of the tension force is balanced by the quantum-pressure and delta forces, 
and only the transverse portion of the tension force will affect the attached-aether equation of 
motion. Hence, the force on a cube of attached-aether is given by the sum of the forces given in 
Eqs. (96) and (100). We can now form F = ma on a cube of the attached-aether. The mass is its 
mass density m0 times its volume, m = m0xyz, and the acceleration is the second derivative 
with respect to time of the cube position. The position is given as the constant nominal position 
plus P, and since the derivative of a constant is zero, the acceleration is ∂2P/∂t2. Hence: 

FP = ma = m0ΔxΔyΔz(∂2P/∂t2) = FTPT + FFP 
= ΔxΔyΔzT0∇2P + KF3ΔxΔyΔz[NDUNDT – PDUPDT] (101) 
Now define J and T0 and cancel ΔxΔyΔz from all terms: 
J = PDUPD – NDUND  (103) 
m0(∂2P/∂t2) = T0∇2P – KF3JT  (104) 
T0 = m0c2

 (107) 
∇2P – (1/c2)(∂2P/∂t2) = (KF3/T0)JT (108) 
Next we take the perpendicular component of Eq. (108) and use a similar analysis on the negative-
attached-aether: 
∇2PT – (1/c2)(∂2PT/∂t2) = (KF3/T0)JT (110) 
∇2NT – (1/c2)(∂2NT/∂t2) = –(KF3/T0)JT (111) 
It can be seen that Eq. (110) for PT is nearly identical to Eq. (111) for NT, as they only differ in 
the sign of the right-hand side and replacement of PT by NT, and so we have NT = –PT, and recalling 
Eq. (58), NL = –PL, 
N = –P (113) 
We will now define a vector A:  
PT = –NT = –KF3A/0T0  (114) 
Substituting the relevant equation of Eqs. (114) into Eqs. (110) and (111) leaves: 
∇2A – (1/c2)(∂2A/∂t2) = –0JT (115) 
We will choose the conventional definition of JL: 

JL = – (1/4) ∇ ∫ [ ( ∇ ’ . J ) / | x – x ’ | ] d3x’ (116) 

Next note that the solution to Poisson’s Equation, Eq. (55), ∇2 = –D/0, is: 

(x,t) = (1/40) ∫ [D (x ’ , t) / | x – x ’ | ] d3x’ (117) 
Now take the gradient of (x,t) and then take its partial time derivative: 

∂∇(x,t)/∂t = (1/40) ∇ ∫ ∂[D (x ’ , t)/∂t / | x – x ’ | ] d3x’ (118) 
Using the continuity equation, ∂D/∂t = –∇ . J, Eqs. (116) and (118) reveal: 

0∂∇(x,t)/∂t = JL (119) 
At this point, we can therefore add the quantity –0JL + 00∂∇/∂t to Eq. (115), since this is 
adding zero. And with 00 = 1/c2 we get: 
∇2A – (1/c2)(∂2A/∂t2) = –0JT – 0JL + (1/c2)∂∇/∂t (120) 
or, 
∇2A – (1/c2)(∂2A/∂t2) = –0J + (1/c2)∂∇/∂t (121) 
Further, since Eq. (114) informs us that A is a transverse vector: 
∇ . A = 0 (122) 

It is also timely to recall Eq. (55): 
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∇2 = –D/0 (55) 
Eqs. (55), (121) and (122) are readily recognized as Maxwell's Equations in the Coulomb gauge 
in terms of potentials. 
To get the more familiar Maxwell’s Equations in terms of fields, we start by defining two arbitrary 
vectors E and B: 
E = –∇– ∂A/∂t (123) 
B = ∇xA (124) 
Applying the partial derivative with respect to time to Eq. (123): 
∂E/∂t = –∂∇/∂t– ∂2A/∂t2 (125) 
Next, add a term ∇(∇ . A) to Eq. (121), which is permissible since by Eq. (122) ∇ . A = 0: 

∇2A – (1/c2)(∂2A/∂t2) = –0J + (1/c2)∂∇/∂t + ∇ (∇ . A) (126) 

Now rearrange terms (first equality below), and use Eq. (125) for ∂E/∂t (second equality below): 
∇(∇ . A) – ∇2A = 0J – (1/c2)∂∇/∂t – (1/c2)(∂2A/∂t2) = 0J + (1/c2)∂E/∂t (127) 

Now use ∇xB = ∇x(∇xA) = ∇(∇ . A) – ∇2A to get: 

∇xB = 0J + (1/c2)∂E/∂t (128) 
Taking the divergence of Eq. (123), ∇ . E = –∇ . ∇– ∂(∇ . A)/∂t. With ∇ . A = 0, and ∇ . ∇ = ∇2, 

and with Eq. (55) ∇2 = –D/0 this leaves: 
∇ . E = D/0 (129) 
Taking the divergence of Eq. (124), along with the identity ∇ . (∇xA) = 0: 

∇ . B = 0 (130) 
Now take the curl of Eq. (123), ∇xE = –∇x∇– ∂(∇xA)/∂t and recalling Eq. (124) B = ∇xA 
and using the identity ∇x∇ = 0 we get 
∇xE =–∂B/∂t (131) 
Eqs. (128) through (131) are Maxwell’s Equations in terms of fields. 
C.7. The Lorentz Force Equation. So far we’ve looked at the forces on the attached-aether. Now 
we’ll look at the forces on the detached-aether, taking note that the density of the detached-aether 
D in Eqs. (55) and (129) is now recognized as what we call electric charge density. 
Eqs. (72) and (77) enable calculation of the force that will occur on a sphere of detached-aether in 
the presence of an ambient aetherial displacement PAL = –NAL. We assert that we can build any 
arbitrary distribution of detached-aether from small enough uniform spheres, and that the 
superposition of the resulting fields will allow for the calculation of the general situation. 

  
Figure 4. A sphere of detached-aether, and a slice of width ΔY (left). A slice of the sphere showing 
a strip of depth ΔZ (right). 
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To analyze what happens to a sphere of detached-aether in the presence of an ambient aetherial 
displacement, we will first divide the sphere into slices, and then divide the slices into strips as 
shown in Figure 4. We’ll then look at small cubes within those strips. The force on each cube will 
be evaluated, and the force from all of the cubes will be summed to find the total force on the 
sphere. 
If there is no ambient displacement of the aether, the detached-aether will push the attached-aether 
out radially. That displacement will be zero at the center of the sphere and increase radially until 
the edge, as this is a solution of Eq. (55): 
Psphere = (PD/60)r = (PD/60)(xi + yj + zk).  (132) 
If there is now an ambient longitudinal positive-attached-aether displacement PAL, which without 
loss of generality can be considered to be in the X direction, PAL = PAi, then the total positive-
attached-aether displacement within the sphere becomes PTOT = PAL + Psphere = [(PD/60)x + PA]i 
+ (PD/60)yj + (PD/60)zk. We can now calculate the displacement energy of the sphere from 
Eq. (72): 
EPP(x,y,z) = 4Kc

2KT0X0
2P2/0

2 = 4Kc
2KT0(X0

2/0
2)[PTOT(x,y,z)]2 

= 4Kc
2KT0(X0

2/0
2)[(PD/60)2x2 + 2(PD/60)xPA + PA

2 + (PD/60)2y2 + (PD/60)2z2]  (133) 
We then calculate the effect of a virtual displacement x and that gives us: 
EPP(x+x,y,z) = 4Kc

2KT0(X0
2/0

2)[PTOT(x+x,y,z)]2  (134) 
= 4Kc

2KT0(X0
2/0

2)[(PD/60)2(x+x)2+2(PD/60)(x+x)PA+PA
2+(PD/60)2y2+(PD/60)2z2]  

Subtracting Eq. (133) from Eq. (134) leaves the energy change resulting from the virtual 
displacement: 
EPP(x,y,z) = EPP(x+x,y,z) – EPP(x,y,z)  
= 4Kc

2KT0(X0
2/0

2)[2(PD/60)2xx + (PD/60)2x2 + 2(PD/60)xPA] (135) 
In the above expression we can drop the term that is second order in the small quantity x, as we 
will take the limit as x  0. We can now evaluate the force on the strip by considering the sum 
of all volume elements within the strip. We can drop the term 2(PD/60)2xx because for every 
value of positive x on our strip there is a value of negative x of equal magnitude. (The term 
2(PD/60)2xx cancels out over the strip because of symmetry.) The surviving term, 
8Kc

2KT0(X0
2/0

2)(PD/60)xPA, is independent of x, y or z. Recalling that Eq. (135) refers to the 
change in energy for an analysis-cube within the strip, we can form the relation for the force on 
the whole strip by summing over all of the analysis-cubes in the strip (strip is the symbol for that 
sum). Analyzing a strip of length 2L, width X0, and height X0, there will be 2L/X0 analysis-cubes 
in that strip. The force in that strip will be  
FstripPP = strip {EPP(x,y,z)/x} = (2L/X0)8Kc

2KT0(X0
2/0

2)(PD/60)xPAx 
= 8LKc

2KT0X0PDPA/300
2 = 8Kc

2KT0LX0
2PDPA/300

2X0  (136) 
The force on the strip shown in Figure 4 is proportional to the volume of the strip (2LX0

2) but 
independent of x, y and z. The sum of the volume of all of the strips will be the volume of the 
sphere, Vsphere. Hence, we can sum the forces from all such strips to arrive at: 
FspherePP = 4Kc

2KT0VspherePDPA/300
2X0 (137) 

Including the force from the negative aether will lead to a factor of two increase in the force, and 
here PA = PAL so the total force is now: 
FsphereP = 8Kc

2KT0VspherePDPAL/300
2X0 (139) 

We now recall Eq. (56) PL – NL = –0∇/0 and using Eq. (113), N = –P we form PAL – NAL = 
2PAL = –0∇/0. This allows us to arrive at  
Fsphere = –4Kc

2KT0VspherePD0∇/30
2X00

2 (140) 
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We now set the value of KT0 
KT0 = 30

2X00
2/4Kc

20  (141) 
And setting Q = VspherePD in Eq. (140) we obtain the Lorentz force on the detached-aether due to 
ambient displaced aether: 
FLD = –Q∇ (142) 
A similar derivation for negative-detached-aether will again result in Eq. (142), provided we make 
the more general assignment of Q = Vsphere(PD–ND). 
We now consider the flow force on a sphere of detached-aether. The reaction force back on the 
detached-aether will be the negative of the sum of Eqs. (78) and (79), and this allows us to obtain 
FLF = KF1VPD(∂PT/∂t – ∂NT/∂t) – KF1VND[∂PT/∂t – ∂NT/∂t] 
= KF1Q(∂PT/∂t–∂NT/∂t) (143) 
In Eq. (143) Q is defined as V(PD–ND) where now V = Vsphere. Recall Eq. (114), PT = –NT = 
–KF3A/0T0. From this, and using Eq. (113), N = –P, we get ∂PT/∂t – ∂NT/∂t = –2KF3(∂A/∂t)/0T0 
so FLF = KF1Q(∂PT/∂t – ∂NT/∂t) = –(2KF3KF1Q/0T0)∂A/∂t. Now make the assignment 
0T0 = 2KF3KF1 (144) 
This allows the Lorentz force on any detached-aether due to flow forces to be expressed as: 
FLF = –Q∂A/∂t (145) 
The last force on detached-aether to be evaluated involves an interplay between the flow and 
tension forces, and it involves some complexity. Without loss of generality we can assume the 
flow is in the z direction, and this flow will displace the attached-aether in the z direction. An 
ambient gradient in the attached-aether displacement could be in any of the directions x, y or z, 
and we will need to evaluate each of these cases separately. Superposition of the separate solutions 
will then be done to arrive at the general expression for this force. 
We will first consider a gradient of the z component of the aetherial displacement with respect to 
x. The left side of Figure 5 shows the situation when there is no detached-aether flowing through 
the cube. In that ambient condition, a cube to the left of the one shown lies further down, and a 
cube to the right lies further up. This leads to the force vectors shown, and as can be seen, the 
forces will be in equilibrium in that case. When there is a flow, as shown on the right side of Figure 
5, the cube that is shown is pushed downward, and this alters the relative position of that cube with 
respect to its neighbors, altering the force vectors on its right and left faces. Here we have looked 
at the forces on the y-z faces of the cube. 

 
Figure 5. Tension forces on the y-z faces of an analysis-cube of positive-attached-aether in the 
presence of an ambient positive-attached-aether displacement with gradient ∂PAZ/∂x. Left side is 
when there is no flowing detached-aether, right side when there is flowing detached-aether. 
 
Figure 6 shows the situation that exists on the x-z faces of the cube when there is an aetherial 
gradient ∂PAZ/∂x. When the flow force pushes the cube downward, we again get a restoring 
upward force from the tension. The equilibrium will occur when the downward force from the 
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flow is balanced by the upward component of the tension forces, and forces shown in Figures 5 
and 6 will all contribute to this equilibrium. 

 
Figure 6. Tension forces on x-z faces of an analysis-cube of positive-attached-aether in the 
presence of an ambient positive-attached-aether displacement with gradient ∂PAZ/∂x. Left side is 
when there is no flowing detached-aether, right side when there is flowing detached-aether. 
We now define an angle F = dPF/x and evaluate the tension forces shown on Figures 5 and 6:  
FLeft ≈ T0x2[–i + (F – ∂PAZ/∂x)k + i(F – ∂PAZ/∂x)2/2]  (147) 
FRight ≈ T0x2[i + (F + ∂PAZ/∂x)k – i(F + ∂PAZ/∂x)2/2]  (148) 
FFront ≈ T0x2[j + Fk – jF

2/2] (149) 
FBack ≈ T0x2[–j + Fk + jF

2/2].  (150) 
Lastly, there is the force from the flow within the cube. Eq. (100) above, FFP = –KF3PDVUPDT 
+ KF3NDVUNDT, gives the expression for the total flow force on the positive-attached-aether due 
to flows. Since we are only looking at positive-detached-aether flow, this becomes: 
FFlowPP = –KF3PDVUPDT = –KF3QPUk (151) 
In the second of Eqs. (151) QP = PDV and UPDT = Uk. Summing the five forces yields the total 
force on the cube: 
FLT1PP = T0x2[4Fk – 2F(∂PAZ/∂x)i] – KF3QPUk (152) 
The subscript reminds us we are evaluating the Lorentz Tension-force of type 1 for the case of 
Positive-detached-aether flowing through Positive-attached-aether. In this case, since the cube is 
free to move in the z direction, equilibrium will be obtained when 4T0x2F = KF3QPU, or F = 
KF3QPU/4T0x2 and hence FLT1PP = –T0x22F(∂PAZ/∂x)i = –i(∂PAZ/∂x)KF3QPU/2. Now recall 
PT = –KF3A/0T0 from Eq. (114) to obtain: 
FLT1PP = i(∂AAZ/∂x)KF3

2QPU/20T0. (153) 
The positive-detached-aether moves through both types of attached-aether. When we evaluate 
positive-detached-aether flowing through negative-attached-aether the relevant portions of Eqs. 
(79) and (81) gives us a flow force of FFlowPN = KF3PDVUPDT, which is the negative of the flow 
force given by Eq. (151). In this case we use NT = KF3A/0T0 from Eq. (114), which is the negative 
of what was used to get to Eq. (153). Since there are two sign reversals in the derivation we obtain: 
FLT1PN = i(∂AAZ/∂x)KF3

2QPU/20T0 (154) 
Eqs. (153) and (154) are forces on the attached-aether due to flows of positive-detached-aether. 
The force on the attached-aether can be cancelled if the force from Eqs. (153) and (154) is 
transferred to the detached-aether. Hence, the total Lorentz Tension force of type 1 on the positive-
detached-aether, FLT1P, is the sum of Eqs. (153) and (154): 
FLT1P = i(∂AAZ/∂x)KF3

2QPU/0T0 (155) 
For the total Lorentz Tension force of type 1 on negative-detached-aether, Eqs. (78), (79), (80) and 
(81) inform us that there is simply a change in sign in the direction of the flow force. (Recall that 
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we drop the terms ∂PT/∂t and ∂NT/∂t to get to Eq. (100).) Therefore the derivation involves 
replacing QP by –QN which leaves: 
FLT1N = –i(∂AAZ/∂x)KF3

2QNU/0T0 (156) 
Defining Q = QP – QN and combining Eqs. (155) and (156) leaves: 
FLT1 = i(∂AAZ/∂x)KF3

2QU/0T0. (157) 
Now, assigning our constant KF3 through KF3

2 = 0T0 allows us to arrive at: 
FLT1 = i(∂AAZ/∂x)QU (159) 
A similar treatment to the above can be applied if the ambient, parallel, attached-aetherial 
displacements are instead assumed to vary in the y direction. This leads to: 
FLT2 = j(∂AAZ/∂y)QU (160) 
The other possibility for forces arising from detached-aether flowing in the z direction is shown in 
Figure 7, where we see the effect of a gradient of the ambient PX with respect to z. In this case, the 
ambient condition is that of a plane of cubes above the cube shown being displaced to the right, 
while a plane of cubes below the one shown is displaced to the left. In the left figure we can see 
that without any flowing detached-aether, there is a simple force balance. In the right figure we 
see the effect when flowing detached-aether forces the cube downward. The downward 
displacement of the cube will alter the top and bottom tension forces resulting in an upward net 
tension force that partially balances the force from the downward flow force. (Forces on the 
remaining cube faces complete the force balance relationship in the z direction.) 

    
Figure 7. Tension-forces on the x-y faces of an analysis-cube of attached-aether in the presence 
of an ambient aetherial gradient ∂PAX/∂z. Left side shows the case where there is no flowing 
detached-aether, right side shows the case where there is flowing detached-aether. 
The evaluation of the coupled tension and flow forces in the presence of a gradient of PAX with 
respect to z for the case of detached-aether moving in the z direction is rather tedious and for that 
reason we’ll refer to Ref. 1 for all of the details. Here we present the result of the analysis: 
FLT3 = –i(∂AAX/∂z)QU (169) 
FLT4 = –j(∂AAY/∂z)QU (170) 
Summing the forces of Eqs. (159), (160), (169) and (170) we obtain: 
FLT5 = i(∂AAZ/∂x)QUZ + j(∂AAZ/∂y)QUZ – i(∂AAX/∂z)QUZ – j(∂AAY/∂z)QUZ  (171) 
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In general the velocity may not be in the z direction. With a velocity in the x direction, U = UX, 
we just make the substitutions z to x, x to y, y to z, i to j, j to k, and k to i, in the analysis. Then 
we do the same substitutions once more to obtain the expression when U = UY. 
FLT6 = j(∂AAX/∂y)QUX + k(∂AAX/∂z)QUX – j(∂AAY/∂x)QUX – k(∂AAZ/∂x)QUX  (172) 
FLT7 = k(∂AAY/∂z)QUY + i(∂AAY/∂x)QUY – k(∂AAZ/∂y)QUY – i(∂AAX/∂y)QUY  (173) 
The total Lorentz force on moving detached-aether due to the tension/flow effect is: 
FLT = FLT5 + FLT6 + FLT7 =  (174) 
+ i(∂AAZ/∂x)QUZ + j(∂AAZ/∂y)QUZ – i(∂AAX/∂z)QUZ – j(∂AAY/∂z)QUZ 
+ j(∂AAX/∂y)QUX + k(∂AAX/∂z)QUX – j(∂AAY/∂x)QUX – k(∂AAZ/∂x)QUX 
+ k(∂AAY/∂z)QUY + i(∂AAY/∂x)QUY – k(∂AAZ/∂y)QUY – i(∂AAX/∂y)QUY 
The total force on a volume of detached-aether, Q, is the force given by Eq. (142) from the energy 
effects due to displacement, plus the flow force given by Eq. (145) plus the force due to the 
tension/flow effects given by Eq. (174): 
FL = FLD + FLF + FLT = –Q∇ – Q∂A/∂t (175) 
+ i(∂AAZ/∂x)QUZ + j(∂AAZ/∂y)QUZ – i(∂AAX/∂z)QUZ – j(∂AAY/∂z)QUZ 
+ j(∂AAX/∂y)QUX + k(∂AAX/∂z)QUX – j(∂AAY/∂x)QUX – k(∂AAZ/∂x)QUX 
+ k(∂AAY/∂z)QUY + i(∂AAY/∂x)QUY – k(∂AAZ/∂y)QUY – i(∂AAX/∂y)QUY 
Now form ∇xA = [i∂/∂x + j∂/∂y + k∂/∂z]x[iAAX + jAAY + kAAZ] = k∂AAY/∂x – j∂AAZ/∂x 
– k∂AAX/∂y + i∂AAZ/∂y + j∂AAX/∂z – i∂AAY/∂z, and then form Ux ∇xA = UX(–j∂AAY/∂x – 
k∂AAZ/∂x + j∂AAX/∂y + k∂AAX/∂z) + UY(i∂AAY/∂x – i∂AAX/∂y – k∂AAZ/∂y + k∂AAY/∂z) + 
UZ(i∂AAZ/∂x + j∂AAZ/∂y – i∂AAX/∂z – j∂AAY/∂z), which allows Eq. (175) to become: 
FL = FLD + FLF + FLT = –Q∇ – Q∂A/∂t + QUx ∇xA (176) 
Substituting in Eq. (123), E = –∇– ∂A/∂t, and Eq. (124), B = ∇xA leaves: 
FL = Q(E + UxB) (177) 
Eq. (177) is recognized as the Lorentz Force Equation. 

 
Part D. Gravitation. 
D.1. The Gravitational Poisson Equation. We now define E, the extrinsic-energy-density for 
massive bodies, as 
E = Mc2/V (178) 
In Eq. (178) M is the mass in a small volume V and  = (1 – v2/c2)–1/2, where v is the velocity of 
the mass and c the speed of light, and all quantities are measured with respect to the rest frame of 
the aether. We now recall from section B.4: 
The Extrinsic-Energy Force-Reduction Postulate. The presence of extrinsic-energy decreases the 
positive (negative) attached-aether tension and the negative (positive) attached-aether quantum-
force by an amount proportional to the amount of extrinsic-energy present with a constant of 
proportionality KG1 (KG2). 
With XQ the size of the analysis-cube, the Extrinsic-Energy Force-Reduction Postulate can be 
expressed mathematically for the nominal analysis-cube as 
FTP = KTPXQ = KT0(1– KG1E)XQ (179) 
FTN = KTNXQ = KT0(1– KG2E)XQ (180) 
FQP = 2KQP/XQ

3 = 2KQ0(1– KG2E)/XQ
3 (181) 

FQN = 2KQN/XQ
3 = 2KQ0(1– KG1E)/XQ

3 (182) 
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From Eqs. (179) to (182) the force parameters are: 
KTP = KT0(1– KG1E) (183) 
KTN = KT0(1– KG2E) (184) 
KQP = KQ0(1– KG2E) (185) 
KQN = KQ0(1– KG1E) (186) 
Ref. 1 shows that equilibrium between the quantum-pressure and tension leads to a cube size of: 
X1 ≈ X0(1 + [KG1–KG2]E/4) (192) 
Now recall Eq. (23), X0 = (2KQ0/KT0)1/4, and with density inversely proportional to volume, PA/0 
= (1 + [KG1–KG2]E/4)–3 ≈ (1 – 3[KG1–KG2]E/4). We now define 
G = 3[KG1–KG2]E0/2 (193) 
leaving 
PA = 0 – G/2  (194) 
A similar derivation for the negative-aether gives: 
NA = 0 + G/2  (197) 
Figure 8 presents a diagram of what happens when extrinsic-energy is injected into positive-
attached-aether. We see from Eq. (194) that this injection results in an expansion of the positive-
attached-aether cube. Prior to the injection of the extrinsic-energy, the amount of positive-
attached-aether is the nominal density 0 multiplied by the volume of the cube, xyz. When we 
inject extrinsic-energy into that cube, the amount of positive-attached-aether will remain the same, 
but the volume of the cube will expand, with x becoming larger by x and similar increases in 
y and z. The positive-attached-aether density is then the original amount of aether divided by 
the new larger volume, and this new density is: 
PA = 0(xyz)/[(x + x)(y + y)(z + z)]  
≈ 0(xyz)/(xyz + xyz + yxz + zxy) 
= 0/(1 + x/x + y/y + z/z) ≈ 0(1 – x/x – y/y – z/z) (198) 

 
Figure 8. Analysis-cube of undisturbed aether (left). Cube with injected extrinsic-energy (right). 
We next observe that the expansion of the cube is related to the difference in the displacement 
vector PG between its value at the cube center and its value at the edge face of the cube, x/2 = 
PGX(x + x/2, y, z, t) – PGX(x, y, z, t). We then divide by x/2 to arrive at x/x = [PGX(x + x/2, 
y, z, t) – PGX(x, y, z, t)]/x/2 = ∂PGX/∂x, where the last equality is in the limit when we shrink our 
analysis-cube to zero size. Repeating the derivation for y and z will lead to similar expressions. 



 

18 
 

Hence, Eq. (198) can be re-expressed as PA = 0(1 – x/x – y/y – z/z) = 0(1 – ∂PGX/∂x – 
∂PGY/∂y – ∂PGZ/∂z), or, 
PA ≈ 0(1 – ∇ . PG) (199) 

We now rearrange the terms of Eq. (199) and then substitute in the value of PA from Eq. (194):  
∇ . PG ≈ (0 – PA)/0 = G/20 (200) 

Next we observe from Figure 8 that PG is purely longitudinal. That is, extrinsic-energy pushes 
outward on the cube walls but it does not cause any rotation. A purely longitudinal vector field can 
be formed from the gradient of a scalar field. The scalar field is named GP:  
PGL = ∇GP (201) 
This allows us to obtain:  
∇ . PG = ∇ . PGL = ∇ . ∇GP = ∇2GP (202) 

Next, combine Eqs. (200) and (202) to yield: 
∇2GP = ∇ . PGL = ∇ . PG = G/20 (203) 

A similar derivation can be applied to the negative-aether to arrive at: 
∇2GN = ∇ . NGL = ∇ . NG = –G/20 (205) 

Subtract Eq. (205) from Eq. (203): 
∇2(GP – GN) = G/0 (207) 
Now define G by G = –(GP – GN)0/0, where 0 is the permittivity of free space. This results 
in Eq. (207) becoming Poisson’s Equation: 
∇2G = –G/0 (208) 
With this definition for G we can also derive:  
PGL – NGL = ∇(GP – GN) = –0∇G/0 (209) 
We see above that the presence of extrinsic-energy leads to displacement of the negative-attached-
aether that is always equal and opposite to the displacement of the positive-attached-aether. Since 
injection of extrinsic-energy is the only physical cause for the longitudinal displacements PGL and 
NGL of the attached-aether, we arrive at: 
NGL = –PGL (211) 
D.2. The Gamma Force. To better understand the force caused by the extrinsic-energy it is useful 
to consider the case of a sphere of extrinsic-energy injected into the attached-aether. The solutions 
to Eq. (208) (Poisson’s Equation) for a uniform sphere of extrinsic-energy with radius R0 are: 
PGIN = (G/60)(xi + yj + zk) = (G/60)r (r < R0) (212) 
PGOUT = P0R0

2r̂/r2 = (G/60)R0
3r̂/r2 (r > R0) (213) 

We see from Eq. (212) that the analytic-cubes will expand inside a source. With an expanded 
central spherical region, concentric spherical shells of positive-attached-aether inside the sphere 
will move outward, also getting thicker. Outside of the sphere concentric spherical shells will also 
move outward, this time thinning and having increased surface areas. It is the force from the 
extrinsic-energy that leads to the displacements both inside and outside of the sphere of extrinsic-
energy, as the extrinsic-energy is pushing the positive-attached-aether radially outward in both 
regions. 
On the walls of a quantum-cube Eq. (15) gives the inward force due to tension as FT0 = |dET/dXQ| 
= KT0XQ and Eq. (16) gives the outward force due to quantum-pressure as FQ0 = |dEQ/dXQ| = 
2KQ0/XQ

3. In section D.1 we’ve seen that injection of extrinsic-energy changes the size of a 
positive-attached-aether quantum. Eqs. (15) and (16) indicate that the increased size will increase 
the tension and decrease the quantum-pressure. To maintain the larger size XQ the presence in the 
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cube of extrinsic-energy must therefore result in an extrinsic-energy-immersion force F (the 
gamma-force) that acts on the walls of the positive-attached-aether analysis-cube that is equal and 
opposite to the sum of the longitudinal-tension-force and the quantum-pressure force,  
F = –FTL – FQ  (216) 
Eq. (216) specifies the definition of the gamma force. Note that we use the longitudinal component 
of the tension force because only the longitudinal component is supplied by the extrinsic-energy. 
When a source of extrinsic-energy is present, the cubes are displaced and distorted both inside and 
outside of the source regions. The gamma force therefore exists both inside and outside the source 
regions. The gamma force is the force which balances the sum of forces on all cube faces for 
gravitational effects. The gamma force consists of two components: 
FPT = 4Kc(1+ KGC)KT0(X0/0)xr̂ (218) 
FPQ = –4KcKGCKT0(X0/0)xr̂ (219) 
In Eqs. (218) and (219), KGC is a coupling constant. 
D.3. Work Done on Displaced Aether. When a cube of aether moves through the tension, 
quantum-pressure and gamma force fields, work is done as described by Eqs. (32) and (33) above. 
The work evaluation is quite tedious, and here we will only present the results. (See Ref. 1 for 
details.) The work done against tension inside of a sphere of extrinsic-energy when a cube moves 
a distance PG due to that extrinsic-energy is: 
ETPGI = KT0X0

2[(1/2) + Kc|PG|/0 + Kc
2(|PG|/0)2 + 3X/X0 + 3Kc|PG|X/2X00] (214) 

The work done against the quantum-pressure inside of a sphere of extrinsic-energy for a cube 
displacement PG due to extrinsic-energy is: 
EQPGI = (2KQ0/X0

2)[(1/2) – Kc|PG|/0 + Kc
2|PG|2/0

2 – 3X/X0 + 3Kc|PG|X/2X00] (215) 
The work done against the gamma force inside of a sphere of extrinsic-energy for a cube 
displacement PG due to extrinsic-energy is: 
EPGI = KT0X0

2[–2Kc
2(|PG|/0)2 – 4Kc

2KGC(|PG|/0)2 + 3Kc|PG|X/X00] (224) 
The total work is the sum of Eqs. (214), (215) and (224): 
EPG = KT0X0

2(1 – 4Kc
2KGC|PG|2/0

2) (225) 
A similar expression is derived for the negative-attached-aether: 
ENG = KT0X0

2(1 – 4Kc
2KGC|NG|2/0

2) (226) 
D.4. Newtonian Gravity. We will now use Eqs. (225) and (226) to calculate the force that will 
occur on a sphere of extrinsic-energy in the presence of an ambient aetherial displacement PAG = 
–NAG. We assert that we can build any arbitrary distribution of extrinsic-energy from small enough 
uniform spheres, and that the superposition of the resulting fields will allow for the calculation of 
the general situation. 
To analyze what happens to a sphere of extrinsic-energy in the presence of an ambient aetherial 
displacement, we will first divide the sphere into slices, and then divide the slices into strips as 
shown in Figure 9. Then we’ll look at small cubes within those strips. The force on each cube will 
be evaluated, and we’ll sum up the force on all of the cubes to find the total force on the sphere. 
If there is no ambient displacement of the aether, the extrinsic-energy will push the attached-aether 
out radially. That displacement will be zero at the center of the sphere and increase radially until 
the edge, and this is a solution of Eq. (208): 
PGS = (G/60)r = (G/60)(xi + yj + zk)  (227) 
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Figure 9. A sphere of extrinsic-energy showing a slice of width ΔY (left). A slice of the sphere 
showing a strip of depth ΔZ (right). 
Eq. (227) is of course just Eq. (212) but now we use PGS for the displacement inside the sphere. 
The ambient attached-aether displacement is PAG, which without loss of generality is considered 
to be in the x direction, PAG = PAGi. We then get the total attached-aether displacement within the 
sphere of PG = PAG + PGS = [PAG + (G/60)x]i + (G/60)yj + (G/60)zk. 
Returning to Figure 9, within the strip, and using Eqs. (225) and (227), the energy of a small 
positive-attached-aether analysis-cube centered at x, y, z is: 
EPG(x,y,z) = KT0X0

2(1 – 4Kc
2KGC|PAG+PGS|2/0

2) 
= KT0X0

2{1 – 4Kc
2KGC|[PAG + (G/60)x]i + (G/60)yj + (G/60)zk|2/0

2} 
= KT0X0

2{1 – 4Kc
2KGC[PAG

2+2PAG(G/60)x+(G/60)2x2+(G/60)2y2+(G/60)2z2]/0
2} (228) 

We then calculate the effect of a virtual displacement x and that gives us: 
EPG(x+x,y,z) =  (229) 
KT0X0

2{1–4Kc
2KGC[PAG

2+2PAG(G/60)(x+x) +(G/60)2(x+x)2+(G/60)2y2+(G/60)2z2]/0
2} 

Subtracting Eq. (228) from Eq. (229) leaves the energy change during the virtual displacement: 
EPG(x,y,z) = EPG(x+x,y,z) – EPG(x,y,z) =  
–4KT0X0

2Kc
2KGC[2PAG(G/60)x + (G/60)2(2xx+x2)]/0

2 (230) 
In the above expression we can drop the term that is second order in the small quantity x, as we 
will take the limit as x  0. We can now evaluate the force on the strip by considering the sum 
of all volume elements within the strip. The term –4KT0X0

2Kc
2KGC(G/60)2(2xx)/0

2 can be 
dropped because for every value of positive x in our strip there is a value of negative x of equal 
magnitude. The surviving term is –4KT0X0

2Kc
2KGC2PAG(G/60)x/0

2 and this term is 
independent of x, y or z. Recalling that Eq. (230) refers to the change in energy for a single 
analysis-cube within the strip, we can form the relation for the force on the whole strip by summing 
over all of the analysis-cubes within the strip (strip is the symbol for that sum). The volume of the 
strip is 2LΔyΔz, and therefore the number of analysis-cubes within the strip is 2LΔyΔz/X0

3, and 
the magnitude of the force on the strip is 
FstripPG = strip {ΔEPG(x,y,z)/x} = [4KT0X0

2Kc
2KGC2PAG(G/60)/0

2][2LΔyΔz/X0
3] 

= 8LΔyΔzKT0Kc
2KGCPAGG/30X00

2 (231) 
The force on the strip shown in Figure 9 is proportional to the volume of the strip (2LΔyΔz) but 
independent of x, y and z. The sum of the volume of all of the strips will be the volume of the 
sphere, Vsphere. Hence, we can sum the forces from all such strips to arrive at: 
FspherePG = 4VsphereKT0Kc

2KGCPAGG/30X00
2  (232) 

Including the force from the negative aether will lead to a factor of two increase in the force, and 
here the force direction is included by replacing PAG with –PAG so the total force is: 
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FsphereG = –8VsphereKT0Kc
2KGCPAGG/30X00

2 (234) 
We now recall Eq. (209), PGL – NGL = –0∇G/0, and recall that before the injection of the 
extrinsic-energy PGL = PAG. And now with Eq. (211) NGL = –PGL we have PGL – NGL = 2PGL = 
2PAG = –0∇G/0, or PAG = –0∇G/20. Thus we arrive at  
FsphereG = 4VsphereKT0Kc

2KGC0∇GG/30
2X00

2 (235) 
We now recall KT0 = 30

2X00
2/4Kc

20 from Eq. (141) and we also set G multiplied by the volume 
of the sphere multiplied by KGC to a quantity called QG 
QG = KGCVsphereG (236) 
We then arrive at the force on an amount of extrinsic-energy immersed within a region of ambient 
attached-aether displacement: 
FG = QG∇G  (237) 
We will now evaluate the gravitational potential of a uniform sphere of mass. In that case we have 
(4/3)RS

3ES = MSc2, or ES = 3MSc2/4RS
3, where RS is the radius of the sphere, MS is the mass 

of the sphere, and ES is the extrinsic-energy density inside of the sphere. Recalling Eq. (193), G 
= 3[KG1–KG2]E0/2, we can define GS to be related to ES as  
GS = 3[KG1–KG2]ES0/2 = 9[KG1–KG2]MSc20/8RS

3 (r < RS) (238) 

Recall Eq. (208), ∇2G = –G/0. For the case of spherical symmetry, the derivatives with respect 
to the angular variables vanish leaving Eq. (208) as: 
∂2G/∂r2 + (2/r)∂G/∂r = –G/0 (239) 
The analysis will be divided into two regions, one inside of RS where G = SI and the other outside 
of RS where G = SO. Inside of RS the solution to Eq. (239) is 
SI = –GSr2/60 (240) 
Now form ∇SI:  
∇SI = –GSr/30 (241) 
We again recall Eq. (209), PGL – NGL = –0∇G/0 and Eq. (211), NGL = –PGL, and hence PGL – 
NGL = 2PGL = –0∇G/0, or  
PGL = –0∇G/20  (242) 
Since SI is a specific form of G  
PGLIN = –0∇SI/20 = GSr/60 = –NGLIN (243) 
And now use Eq. (238) for GS, 
PGLIN = –NGLIN = ([KG1–KG2]ES/4)r = (3[KG1–KG2]MSc2/16RS

3)r (244) 
Outside of RS, M and G are zero, and the solution to Eq. (239) is 
SO = GSRS

3/3r0 – GSRS
2/20  (246) 

(Eq. (246) involves the density GS inside the sphere because it sets the boundary condition. The 
density G outside the sphere is zero.) Eq. (246) leads to  
∇SO = –(GSRS

3/3r20)r̂ (247) 
Now use Eq. (242), PGL = –0∇G/20, where now SO is a specific form of G: 
PGLOUT = –0∇SO/20 = (GSRS

3/6r20)r̂ = –NGLOUT (248) 
Using Eq. (238) for GS leaves  
PGLOUT = –NGLOUT = (3[KG1–KG2]MSc2/16r2)r̂ (249) 
Note that Eqs. (244) and (249) obtain equal values at r = RS, as they must. 
It is possible to further manipulate Eq. (237) into a more familiar form for the case of two 
interacting masses. Consider two homogenous spheres S1 and S2, with masses M1 and M2, 
respectively, and radii R1 and R2, respectively. Without loss of generality we can consider S2 to be 
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centered at the origin. With S1 centered at r > R1 + R2, Eq. (247) informs that ∇SO2 from M2 is 
∇SO2 = –(GS2R2

3/3r20)r̂ and therefore Eq. (237) for the force between the two masses becomes 
FGM1M2 = QG1∇SO2 = –(QG1GS2R2

3/3r20)r̂. Recall Eq. (238), GS = 3[KG1–KG2]ES0/2, to get 
FGM1M2 = QG1∇SO2 = –(QG1[KG1–KG2]E2R2

30/2r20)r̂. And with E2 = 2M2c2/[(4/3)R2
3] this 

becomes FGM1M2 = –(32M2c2QG1[KG1–KG2]0/8r20)r̂. Next, recall from above Eq. (236) that QG 
is KGCVsphereG, or, in this case, using Eq. (193), QG1 = KGC(4/3)R1

3G1 = KGC2R1
3[KG1–

KG2]E10. With E1 = 1M1c2/[(4/3)R1
3], QG1 = 3KGC[KG1–KG2]01M1c2/2, leaving 

FME1ME2 = FGNEWTON = 
–(92M2c2KGC[KG1–KG2]20

21M1c2/16r20)r̂ = –(GN1M12M2/r2)r̂ (250) 
In the low velocity limit, 1 = 2 = 1, and Eq. (250) is recognized as Newton’s Law of Universal 
Gravitation where GN is the combination of constants 
GN = 9KGC[KG1–KG2]20

2c4/160 = 6.6743x10–11 N m2/kg2 (251) 
 
D.5. Field-masses. Here we repeat Eqs. (214), (215) and (224) from section D.3: 
ETPGI = KT0X0

2[(1/2) + Kc|PG|/0 + Kc
2(|PG|/0)2 + 3X/X0 + 3Kc|PG|X/2X00] (214) 

EQPGI = (2KQ0/X0
2)[(1/2) – Kc|PG|/0 + Kc

2|PG|2/0
2 – 3X/X0 + 3Kc|PG|X/2X00] (215) 

EPGI = KT0X0
2[–2Kc

2(|PG|/0)2 – 4Kc
2KGC(|PG|/0)2 + 3Kc|PG|X/X00] (224) 

The above equations are for energies inside of a sphere of mass. Outside of a sphere of mass we 
derive similar equations in Ref. 1: 
ETPGO = KT0X0

2[(1/2) + Kc|PG|/0 + Kc
2(|PG|/0)2 – Kc|PG|X/4X00] (H2) 

EQPGO = (2KQ0/X0
2)[(1/2) – Kc|PG|/0 + Kc

2(|PG|/0)2 – Kc|PG|X/4X00] (H4) 
EPGO = KT0X0

2[–2Kc
2(|PG|/0)2 – 4Kc

2KGC(|PG|/0)2 + Kc|PG|X/2X00] (H6) 
We see that the portion of these equations not involving X/X0 are identical, and since X/X0 is 
assumed small, we drop the X/X0 terms to arrive at equations which we will now use both inside 
and outside of a sphere of mass: 
ETPG = (KT0X0

2)[(1/2) + Kc|PG|/0 + Kc
2|PG|2/0

2] (253) 
EQPG = (2KQ0/X0

2)[(1/2) – Kc|PG|/0 + Kc
2|PG|2/0

2] (254) 
EPG = –2KT0Kc

2(X0/0)2|PG|2 – 4Kc
2KGCKT0(X0/0)2|PG|2 (255) 

At this point we will now introduce the empirical Gravitational-Mass Assignment: 
The Gravitational-Mass Assignment. The tension-energy ETPG (ETNG) leads to a positive 
(negative) gravitational-mass while the quantum-energy EQPG (EQNG) leads to a negative (positive) 
gravitational-mass. 
It is shown in Ref. 1 that the second term of the gamma energy comes half from a tension 
component and half from a quantum-pressure component and so its contribution to gravitational 
mass vanishes, while the first term in the gamma energy is a negative tension in the positive-
attached-aether. Summing all of the masses given by the gravitational mass assignment then results 
in the following equation for the total gravitational mass of the tension, quantum-pressure and 
gamma field energies in the positive-attached-aether: 
mPTQ = 2(KT0X0

2/c2)[Kc|PG|/0 – Kc
2|PG|2/0)2] (256) 

Similarly, for the negative-attached-aether we obtain: 
mNTQ = 2(KT0X0

2/c2)[Kc|NG|/0 – Kc
2|NG|2/0

2] (260) 
Since NG and PG are purely longitudinal and with Eq. (211), NGL = –PGL, we get |NG| = |PG| and 
the total field-mass is therefore 
mTQ = mPTQ + mNTQ = 4(KT0X0

2/c2)[Kc|PG|/0 – Kc
2|PG|2/0

2] (261) 
Next we divide by the volume of our analytic cell, X0

3, and separate out two field-mass densities: 
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M1 = 4KT0Kc|PG|/0X0c2 = KG3PG  (*See note after Eq. (263).) (262) 
M2 = –4Kc

2KT0|PG|2/X00
2c2 = –KG4PG

2 (263) 
(*Note that we must neglect any first-field-mass contribution to PG when using Eq. (262) to find 
the first-field-mass density.) 
Now we will evaluate the effects of field-mass on the force between two objects for the important 
case where the mass of one object is much greater than the mass of the other. We’ll use a coordinate 
system where r equals zero in the center of the large mass. The large mass will be a sphere of mass 
M and radius R, and the small mass will be a sphere of mass m.  
Eq. (262) gives M1 = KG3PG as a positive field-mass-density. For r < R, Eq. (244) informs that 
PGLIN = (3[KG1–KG2]MSc2/16RS

3)r, and therefore, recalling that PGLIN is the magnitude of PGLIN, 
M1 = KG3PGLIN = KG3(3[KG1–KG2]MMc2/16R3)r for r < R. The total first-field-mass M1IN 

within a sphere of radius r can be found by integrating M1 within that sphere, M1IN = 4∫ M1 

r2 dr = 4∫ KG3(3[KG1–KG2]MMc2/16R3)r3dr, leaving:  
M1IN = KG3(3[KG1–KG2]MMc2/16R3)r4 = KG5(MM/R3)r4 (for r < R) (266) 
In Eq. (266) KG5 is a combination of other constants: 
KG5 = KG3(3[KG1–KG2]c2/16)  (267) 
For r > R, Eq. (249) informs that PGLOUT = (3[KG1–KG2]MSc2/16r2)r̂, and therefore, M1 = 
KG3PGLOUT = 3KG3[KG1–KG2]MMc2/16r2 for r > R. The total first-field-mass M1SHELL within a 
spherical shell of outer radius r and inner radius R can be found by integrating M1 within that 

shell, M1SHELL = 4∫ M1 r2dr = 4∫(3KG3[KG1–KG2]MMc2/16r2)r2dr = (3KG3[KG1–
KG2]MMc2/4)r = 4KG5MMr. Evaluating between R and r, M1SHELL = 4KG5MM(r – R). To get 
the full mass inside of r, but outside of R, we must also add the mass inside of R by evaluating Eq. 
(266) at R to get: 
M1OUT = 4KG5MM(r – R) + KG5MMR = 4KG5MMr – 3KG5MMR (for r > R) (268) 
Eq. (263) gives M2 = –KG4PG

2 as a negative field-mass-density. For r < R, Eq. (244) informs that 
PGLIN = (3[KG1–KG2]MSc2/16RS

3)r, and therefore, recalling that PGLIN is the magnitude of PGLIN, 
M2 = –KG4PGLIN

2 = –KG4(3[KG1–KG2]MMc2/16R3)2r2 for r < R. The total second-field-mass 

within a sphere of radius r, M2IN, is found by integrating M2 within the sphere, M2IN = 4∫ 
M2 r2 dr = 4∫ –KG4(3[KG1–KG2]MMc2/16R3)2r4dr = –4KG4(3[KG1–KG2]MMc2/16R3)2r5/5, 
or: 
M2IN = –(4KG4/5)(3[KG1–KG2]MMc2/16R3)2r5 = –KG6(MM/R3)2r5 (for r < R) (269) 
In Eq. (269) KG6 is a combination of other constants: 
KG6 = (4KG4/5)(3[KG1–KG2]c2/16)2 = 9KG4[KG1–KG2]2c4/320  (270) 
For r > R, Eq. (249) informs that PGLOUT = (3[KG1–KG2]MSc2/16r2)r̂, and therefore, M2 = –
KG4PG

2 = –KG4PGLOUT
2 = –KG4(3[KG1–KG2]MMc2/16r2)2 for r > R. The total second-field-mass 

M2SHELL within a spherical shell of outer radius r and inner radius R can be found by integrating 

M2 within that shell, M2SHELL = 4∫ M2 r2dr = –4∫ KG4(3[KG1–KG2]MMc2/16r2)2r2dr = 
4KG4(3[KG1–KG2]MMc2/16)2/r = 5KG6(MM)2/r evaluated between R and r, and we must also 
add the mass from Eq. (269) evaluated at R leaving M2OUT = 5KG6(MM)2/r – 5KG6(MM)2/R – 
KG6(MM)2/R, or: 
M2OUT = 5KG6(MM)2/r – 6KG6(MM)2/R (for r > R) (271)  
Starting with Newtonian gravity, Eq. (250), and then adding the first and second field-masses to 
M for the case when r < R we obtain the force on m: 
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FGIN = –(GNmmMM/R3)[r + KG5r2 – KG6(MM/R3)r3]r̂ (m << M ; r < R) (272) 
Eq. (272) is relevant to the core of a galaxy when we look at an individual star within the core. In 
this case the whole galactic core is the larger mass, and the individual star is the smaller mass. 
Again starting with Newtonian gravity, Eq. (250), and then adding the first and second field-
masses to M for the case when r > R we define an effective mass MEFF and get the force on m: 
MEFF = MM – 3KG5MMR – 6KG6M

2M2/R  (274) 
FGOUT = –GNmm(MEFF/r2 + 4KG5MM/r + 5KG6M

2M2/r3)r̂ (m << M ; r > R) (275) 
D.6. Dark Matter. Consider a force on a star in a spiral galaxy far from the galactic core. With 
the mass of the galactic core much greater than the mass of the star, Eq. (275) applies. We can see 
that at large r, the term proportional to 1/r eventually dominates. Equating the centrifugal force 
mv2/r to a gravitational force proportional to 1/r we see that the velocity of distant stellar orbits 
will be independent of r, consistent with observations. Presently, this constant velocity is believed 
to indicate the existence of a substance called dark matter. Since the 1/r term in Eq. (275) was 
derived from the first-field-mass, we see that the first-field-mass is a major contributor to what is 
now known as dark matter. 
Further observations of dark matter come from ultra diffuse galaxies, or UDGs. Some UDGs have 
very little dark matter compared to most galaxies[20]. This can be readily understood if some 
UDGs have no large central mass such as what is now called a black hole. If there is a large central 
mass, then Eq. (275) applies and there will be a large amount of dark matter. If there is no large 
central mass, then Eq. (272) applies and there will be very little dark matter. 
Eq. (268) gives a first-field-mass that grows with radius if there is a large galactic central mass. If 
this scaling were to go on indefinitely, the dark mass associated with such galaxies would become 
very large indeed. However, here we recall that Eq. (268) only applies if one mass is much smaller 
than the other mass. For the case of two neighboring galaxies, this condition no longer holds. Also, 
between such galaxies there will be a location where the aetherial displacement PG is zero, and by 
Eq. (262) we see that the first-field-mass will be zero at such a location. Therefore, the first-field-
mass will not continue to increase outside of galaxies. It will instead appear within them, but be 
diminished between them, which is again consistent with observations. 
Neglecting the 1/r3 term, we will now set mv2/r equal to the force of Eq. (275) to solve for KG5. 
With m = M = 1 and MEFF = M, mv2/r = GNmM(1/r2 + 4KG5/r), or v2 = GNM(1/r + 4KG5), or, 
KG5 = (v2 – GNM/r)/4GNM = 9.90x10-22 m-1 ≈ 10-21 m-1 (276) 
The second equation in Eqs. (276) results from substituting in v = 1.93x105 m/s at 80 kpc from 
Gnedin, et al., [21], r = 80 kpc = 2.469x1021 m, and M = 1.279x1041 kg from McMillan[22] for the 
mass of the Milky Way. We also use the standard value of GN = 6.674x10-11 m3/kg-s2. 
The connection between the theory presented herein and observations is often the same as that 
given by presently prevailing theory, as we have derived Maxwell’s Equations, the Lorentz Force 
Equation and Newtonian gravity. But now we see that our theory makes a new and specifically 
testable prediction for where dark matter should exist. One needs to simply calculate PG from 
relevant massive bodies, then calculate M1 from Eq. (262), and then integrate M1 over the 
region of interest to find the amount of dark matter within that region. 
D.7. Classic Tests of General Relativity. Any new theory of gravity must of course agree with 
the classic tests of general relativity just as well as general relativity does. The first classic test of 
general relativity involves the gravitational redshift. To calculate it from the quantum luminiferous 
aether we begin with Eq. (250), and we then set one mass equal to a stellar mass and the other 
mass equal to the energy of a photon (hf) divided by c2. By integrating the force GNMSTARhf/c2r2 
over the distance traveled, we can find the energy change as the photon moves radially outward 
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from the surface (at R0) of the star: EPHOTON(r) – EPHOTON(R0) = GNMSTARhf/c2r – GNMSTARhf/c2R0. 
We then assign the photon energy at r = infinity to hf and obtain the Newtonian limit for the redshift 
EPHOTON(R0) = hf + GNMSTARhf/R0c2 = hf(1 + GNMSTAR/R0c2). 
The second classic test of general relativity involves advances of the perihelia. To calculate those 
advances we numerically integrated Eq. (275). Results of the numerical integration are presented 
in Table 1. 
Table 1. Competing Calculations of “Anomalous” Perihelion Advances. 

Planet Radius a 
(106 km) 

Period T 
(days) 

Pitjeva Eq. (275) 
W/O KG5 

Eq. (275) 
With KG5 

Mercury 57.9 88.0 42.976 +/- 0.005 42.977 42.977 
Venus 108.2 224.7 8.644 +/- 0.033 8.623 8.589 
Earth 149.6 365.2 3.846 +/- 0.007 3.837 3.804 
Mars 227.9 687.0 1.343 +/- 0.007 1.351 1.322 

Jupiter 778.6 4,331 0.067 +/- 0.093 0.0622 0.0453 
Saturn 1,433.5 10,747 -0.010 +/- 0.015 0.0135 0.00104 
Uranus 2,872.5 30,589 -3.89 +/- 3.90 0.00238 -0.00646 

Neptune 4,495.1 59,800 -4.44 +/- 5.40 7.75e-4 -0.00630 
Pluto 5,906.4 90,560 2.84 +/- 4.51 4.17e-4 -0.00565 

To achieve the results in Table 1 we used the value for KG5 from Eq. (276) and then we set KG6 so 
that it obtained a good fit to the data: 
KG6 = 8.9167x10-28 m/kg (293) 
Table 1 refers to work done by Pitjeva[23] who included over 250 parameters in a very complex 
numerical calculation. On the other hand, we have only used a very simple two-body calculation 
to obtain our results. Nonetheless, our simplified results are substantially in agreement with Pitjeva 
and general relativity. 
The third classic test of general relativity involves the bending of light. It is well known that light 
bends in gravitational fields two times more than a naïve Newtonian approach would suggest.[24] 
Up to this point in our development we have not yet proposed a Gravitational Flow Law, but there 
must of course be one and so we propose: 
The Extrinsic-Energy Flow Speculation. When extrinsic-energy flows through the aether, the 
tension in the positive (negative) attached-aether is reduced (increased) in the directions 
perpendicular to the flow with the magnitude of reduction (increase) proportional to the flow. 
The above assertion is called a speculation rather than a law since more than one speculation may 
work to achieve the empirical result. 
Light bending is treated in full detail in Ref. 1 and here we’ll just give an overview. The 
gravitational flow speculation results in a change to the force due to tension that is different in Z 
than in X and Y:  
FTPZ = KTPXQ = KT0(1 – KG1E)XQ (294) 
FTNZ = KTNXQ = KT0(1 – KG2E)XQ (295) 
FTPX = FTPY = KT0(1– KG1E)XQ – KT0KF4FEXQ (296) 
FTNX = FTNY = KT0(1– KG2E)XQ + KT0KF4FEXQ (297) 
The forces of Eqs. (294) to (297) lead to energies and cube distortions within the analytic-cubes, 
and this is what leads to light bending that is a factor of two greater than the Newtonian amount. 
The light bending analysis in Ref. 1 is similar to what we’ve done with the Coulomb force and 
Newtonian Gravity. Slices and strips within a spherical shell are made, and then individual cubes 



 

26 
 

within the strips are evaluated. The energy of each cell is calculated both with and without a virtual 
displacement. The force on the sphere is found by dividing the energy difference caused by the 
virtual displacement by the amount of that virtual displacement. The resulting force leads to the 
empirical light bending formula. (Again, see Ref. 1 for details.) 
While not one of the original tests of general relativity, the Shapiro effect[25] is often called the 
fourth classic test. This test involves the changing light speed as light goes past a massive object 
such as the sun. Recall now Eq. (107), T0 = m0c2. Throughout our evaluations we’ve seen that 
various aetherial parameters can vary depending upon conditions, and so we modify Eq. (107) to: 
VLIGHT = (T/m)1/2 (342) 
In Eq. (342) T and m may vary from their nominal values. In Ref. 1 we derive: 
TP = (KT0/X0)[1 – 2Kc|PG|/0 – 4KcKGC|PG|/0] (343) 
TN = (KT0/X0)[1 – 2Kc|NG|/0 – 4KcKGC|NG|/0] (344) 
We then go on to propose: 
The Aetherial Inertial-Mass Assignment. The aetherial inertial-mass density equals the field energy 
density plus the gravitational potential energy density divided by c2. 
Now recall Eq. (22), KT0X0

2 = 2KQ0/X0
2, Eq. (11), ET = (1/2)KT0XQ

2, and Eq. (12), EQ = KQ0/XQ
2. 

We see that the sum of the quantum energy and tension energy is EQ + ET = KT0X0
2. Recall again 

Eq. (107), T0 = m0c2, and also recall Eq. (15) FT0 = KT0XQ. T0 is the tension force per unit area, T0 
= KT0XQ/XQ

2 = KT0/XQ and m0c2 is the equivalent mass-energy per unit volume which is (EQ + 
ET)/X0

3 = KT0X0
2/X0

3. = KT0/X0. Therefore we see that Eq. (107) simply results from the leading 
term of the field energy. 
Now the gravitational potential energy is EP = EN = 0 where 0 is the aetherial density and  
is the gravitational potential. From Eq. (246), SO = GSRS

3/3r0 – GSRS
2/20 and resetting the 

arbitrary constant so that  is zero at infinity we get a potential of SO = GSRS
3/3r0. Using Eq. 

(238), GS = 3[KG1–KG2]ES0/2 = 9[KG1–KG2]MSc20/8RS
3, we get  = 3[KG1–

KG2]MSc20/80r = K/0r, where we have defined K = 3[KG1–KG2]MSc20
2/80. This leaves 

EP = EN = 0 = K/r (347) 
By our inertial mass assignment, using Eqs. (225) and (347) we get  
m = [(KT0/X0)(1 – 4Kc

2KGC|PG|2/0
2) + K/r]/c2 (348) 

We can now substitute Eqs. (343) and (348) into Eq. (342) to form the expression for the speed of 
light as it passes near the sun:  
VLIGHT = (T/m)1/2 =  (349) 
c{(KT0/X0)[1–2Kc|PG|/0–4KcKGC|PG|/0]/[(KT0/X0)(1–4Kc

2KGC|PG|2/0
2)+K/r]}1/2 

Near the sun we assume KT0/X0 >> K/r >> (KT0/X0)2Kc|P|/0 >> (KT0/X0)4Kc
2KGC|PG|2/0

2 and 
VLIGHT ≈ c[1 – K/2(KT0/X0)r]  (350) 
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Figure 10. Geometry of Relevance for Calculating the Shapiro Effect. 
In Figure 10, M is the planet Mercury, E is the earth and S is the sun. We will assume that the 
deflection of light by the sun is small enough that we can consider the path to be predominantly 
along the x axis of the figure. We then have dx/dt = VLIGHT ≈ c[1 – K/2(KT0/X0)r], which for a 
small incremental spatial advance dx we can rearrange to dt ≈ (dx/c)[1 + K/2(KT0/X0)r]. From 
this, and noting that r = (x2+RMIN

2)1/2 all along the path, the time for light to go from Mercury to 

Earth is t = ∫ dt = (1/c) ∫ [1 + K/2(KT0/X0)(x2 + RMIN
2)1/2]dx. Evaluating the integral, 

TME = x/c + (KX0/2cKT0)ln[(x2 + RMIN
2)1/2 + x]  (351) 

We now evaluate the delay time of Eq. (351) between –XM and XE, 
TDELAY = (KX0/2cKT0)ln[(RE + XE)/(RM – XM)] (352) 
When constants are fit, Eq. (352) is the same equation as that given by general relativity in the low 
field limit, which is in agreement with experimental data for all values of RMIN. 
While not a classic test of general relativity, gravitational waves are also important. Recall that for 
electromagnetism we have derived Eq. (104), m0(∂2P/∂t2) = T0∇2P – KF3JT, where m0(∂2P/∂t2) is 
the inertial-mass density multiplied by the acceleration, T0∇2P is the tension force and KF3JT is the 
detached-aether flow force. Following the same reasoning and derivation, for gravitational 
disturbances we get m0(∂2PG/∂t2) = T0∇2PG + FGFP, where FGFP is the extrinsic-energy flow force 
on the positive-attached-aether. In both the electromagnetic and gravity cases we will get waves 
upon the aether in regions where KF3JT and FGFP are zero, respectively. And since the mass and 
tension densities are the same aetherial attributes for both cases, we see that gravity waves should 
move at the same speed that light waves do. 
 

Part E. Dense Stellar Objects. 
Unlike the theory of general relativity, we have no singularity and no concept of a “black hole”. 
However, since gravitational fields of dense, ultra massive objects have been observed near the 
center of many galaxies, it is important to have some modeling of what these objects might be. 
Ref. 1 discusses dense stellar objects in an appendix since it does not contain the rigor of the main 
paper. The goal of the study is to obtain a simple modeling for dense stellar objects that achieves 
a rough quantitative agreement with the data so that the model can explore the effects that field-
mass has on those objects. An approach to modeling of dense stellar objects is proposed that 
involves analyzing small cubes of matter within white dwarfs and neutron stars, rather than treating 
the whole star as a single degenerate quantum system. The argument is made that collisions 
between the fermions of a dense star will lead to a collapse of the fermion’s wave function, and 
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these collapses therefore form cubic square-well boundaries. Within such square-wells, many 
fermions can be in degenerate states, but far less than for an entire star. The analysis then develops 
an expression for the quantum-pressure at the walls of the cube, and this can then be used along 
with the equation of hydrostatic equilibrium to develop numerical integration programs to 
calculate the mass, radius and density profile of dense stellar objects. By including an empirical 
adjustment factor of 1.2, those numerical programs give an excellent match to present observations 
for the case of white dwarfs. The factor of 1.2 is reasonable, since we neglect the effects of fusion, 
internal Coulomb interactions, star rotation and thermal effects in our modeling. 
Our numerical model is then used to study the effects of the field-masses. It is determined that the 
first-field-mass is not significant. However, the second-field-mass can become important. Recall 
Eq. (271), M2OUT = 5KG6(MM)2/r – 6KG6(MM)2/R, for r > R. Evaluating Eq. (271) at the edge 
of the sphere shows that M2OUT = –KG6(MM)2/R when r = R. Hence, when M is large and R is 
small, the second-field-mass may become quite large. In Ref. 1 we find that the second-field-mass 
is of the order of 0.1% of the stellar mass for typical white dwarf masses. 
Table J11. Results of Simplistic Numerical Integrations for a Neutron Star, Various WD0 
Values. 

Evaluation Point WD0 
(kg/m3) 

Radius 
(m) 

Positive 
Mass (Ms) 

Negative 
Mass (Ms) 

Net Mass 
(Ms) 

Neutron-Degeneracy/Free 
Space Boundary 1x1018 17209 1.3191 0.4414 0.8777 

~10 Times Greater than the 
Electron-Degeneracy/Free 

Space Boundary 
1x1018 173810 1.3191 0.6980 0.6211 

Neutron-Degeneracy/Free 
Space Boundary 1x1019 16234 5.6251 3.8744 1.7508 

~10 Times Greater than the 
Electron-Degeneracy/Free 

Space Boundary 
1x1019 163963 5.6251 4.6975 0.9277 

Neutron-Degeneracy/Free 
Space Boundary 1x1021 19600 99.455 95.285 4.169 

10 Times Greater than the 
Electron-Degeneracy/Free 

Space Boundary 
1x1021 196000 99.455 97.962 1.493 

Neutron-Degeneracy/Free 
Space Boundary 1x1024 22300 2274 2268 6.19 

10 Times Greater than the 
Electron-Degeneracy/Free 

Space Boundary 
1x1024 223000 2274 2272 1.84 

Neutron-Degeneracy/Free 
Space Boundary 

1x1027 26009 118571 118562 9.20 

~10 Times Greater than the 
Electron-Degeneracy/Free 

Space Boundary 
1x1027 262692 118571 118569 2.26 

For neutron stars, the mass density gets much larger and so does the effect of the negative second-
field-mass. Table J11 presents results for a simplistic numerical evaluation of various neutron stars. 
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All numerical calculations begin at the center of the star and integrate outward. By increasing the 
assumed starting density different masses and radii are predicted for the neutron stars. It is seen 
that the negative second-field-mass becomes very nearly equal to the normal mass as the neutron 
stars become more massive. Also, it is seen toward the bottom of the table that even with enormous 
central densities, the observed net mass remains quite limited. 
Of course it may be possible that something changes inside of neutron stars when pressures get 
very high. Two possibilities come to mind quickly: 1) we can speculate that very high pressure 
will force matter into a state made up of exotic particles; and/or 2) we can speculate that the 
gravitational force equation becomes altered as pressures become very high. The appendix in Ref. 
1 evaluates both of these speculations. Crushing the neutrons into a single new type of exotic 
matter does not fit observations. (It is possible that crushing matter into several different types of 
exotic matter over different pressure regions would fit observations, but this speculation was not 
studied.) However, a simple proposal that PG and NG saturate at high pressures does fit observed 
data, as shown in Tables J13, J14 and J15. (The gMult factor is related to the point where saturation 
occurs.)  
An ultra-massive object named Sgr A* is observed at the center of the Milky Way galaxy. A recent 
measurement[26] gives a diameter of 51.8 arc-seconds (6.18x1010 m) for the central ring around 
Sgr A*, and it is seen that the radii calculated for Sgr A* in Tables J13, J14 and J15 are within that 
value. However, one aspect of the results shown in Tables J13, J14 and J15 is quite significant, 
and that is the amount of negative second-field-mass predicted to exist within supermassive 
objects. The tables indicate that the vast majority of the hadronic mass is cancelled out by the 
second-field-mass in supermassive neutron stars. Of course, the model used to produce Tables J13, 
J14 and J15 is only speculative and other models are certainly possible. 
Table J13. Results of Numerical Integration Assuming a Saturation Effect for Various Initial 
Densities, gMult = 1. 

Description NS0 
(kg/m3) 

Stellar 
Radius (m) 

Positive 
Mass (Ms) 

Negative 
Mass (Ms) 

Net Mass 
(Ms) 

0.75 Ms N-Star 4.1x1017 20877 1.345 0.5901 0.7548 
1.9 Ms N-Star 5.0x1017 30639 4.765 2.861 1.904 
46 Ms N-Star 8.0x1017 244681 2422 2377 45.92 

332 Ms N-Star 1.0x1018 1.511x106 570,184 569,852 331.8 
Sgr A* 1.62x1018 2.297x109 2.005x1015 2.005x1015 3.807x106 

Andromeda 
Central Star 

1.74x1018 1.220x1010 3.001x1017 3.001x1017 9.076x107 

TON 618 1.96x1018 3.138x1011 5.110x1021 5.110x1021 5.758x1010 
 
Table J14. Results of Numerical Integration Assuming a Saturation Effect for Various Initial 
Densities, gMult = 0.3. 

Description NS0 
(kg/m3) 

Stellar 
Radius (m) 

Positive 
Mass (Ms) 

Negative 
Mass (Ms) 

Net Mass 
(Ms) 

1.0 Ms N-Star 1.05x1017 33757 1.405 0.4199 0.9849 
Sgr A* 3.6x1017 2.778x109 7.823x1014 7.823x1014 4.230x106 

TON 618 4.35x1017 3.977x1011 2.294x1021 2.294x1021 6.184x1010 
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Table J15. Results of Numerical Integration Assuming a Saturation Effect for Various Initial 
Densities, gMult =0.1. 

Description NS0 
(kg/m3) 

Stellar 
Radius (m) 

Positive 
Mass (Ms) 

Negative 
Mass (Ms) 

Net Mass 
(Ms) 

1.1 Ms N-Star 3.0x1016 52279 1.362 0.261 1.101 
Sgr A* 9.41x1016 3.352x109 3.589x1014 3.589x1014 3.677x106 

TON 618 1.14x1017 5.396x1011 1.497x1021 1.497x1021 6.779x1010 
 

Part F. Closing Comments. 
F.1. Present Problems of Physics are Addressed. Above we see that the quantum luminiferous 
aether addresses many of the problems of present physics. By stepping away from the point-like 
theory of relativity, the infinities associated with points are no longer a fundamental issue. We 
have presented a speculative alternative to one such infinity, as we propose a saturation effect that 
leads to supermassive neutron stars as an alternative to relativity’s black holes. There is no longer 
a cosmological constant to be concerned with. Dark matter is understood. And by returning to a 
flat and Euclidean space, absolute time, and absolute simultaneity, we can easily understand 
quantum mechanics as an instantaneous collapse of wave functions. (The concept of 
“instantaneous” is once again valid.) 
F.2. An Understandable Physical Model. Beyond addressing problems that are acknowledged 
by the present physics community, the model presented herein is also a return to a physical model 
of our world, in contrast to the present emphasis on mere mathematical models. This makes physics 
understandable once again. Equations simply accepted as “nature’s laws”, which include 
Maxwell’s Equations, the Lorentz Force Equation and Newton’s Equation of Universal 
Gravitation, are all found to have a common physical underpinning. 
To see some of the physical interpretations that the theory herein enables, we begin by recalling 
Poisson's Equation, Eq. (55), ∇2 = –D/0. In Eq. (55) and elsewhere herein, D is identified as 
free, detached-aether. Conventionally D is identified as electric charge. From this observation we 
see that electric charge is an amount of aether that has become detached from the predominant 
attached-aether. Positive-aether is positive electric charge and negative-aether is negative electric 
charge. This identification shows that the positive (and separately, the negative) attached-aether 
includes an infinite sea of charge, which is internally attached and in the state of a solid. And since 
electric current is understood as the motion of electric charge, electric currents are now identified 
as moving detached-aether. 
Physical interpretations can also be found for the static electric field, the vector potential, and light.  
The scalar potential  satisfies Eq. (56), PL – NL = ∇(P – N) = –0∇/0.With the static electric 
field E = –∇ from Eq. (123), this reveals that the static electric field is simply proportional to the 
longitudinal aetherial separation PL – NL. Next, consider Eq. (114), PT = –NT = –KF3A/0T0. We 
see that the vector potential A is proportional to the transverse displacement of the aether from its 
nominal position. And of course, light is now identified as an aetherial wave, just as the classical 
theorists anticipated. 
F.3. Topics for Future Consideration.  
This paper has presented the theoretical foundations for the quantum luminiferous aether, and 
while it accomplishes much, there are several areas where future work can and should be done. 
One area for future study involves doing a deeper analysis. In this work we have shown that 
Maxwell’s Equations, the Lorentz Force Equation, and the equations of gravity all result from an 
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aetherial model wherein we have kept terms to first order in non-vanishing quantities. Future 
efforts may involve analyses that include the discarded terms.  
Future efforts may also involve more analysis and observation regarding the aetherial quantum 
itself. Nothing in the theory presently determines the size of the aetherial quantum: the aetherial 
quantum size Q is one of only three free parameters for our theory, the other two being the 
coupling parameters KGC and Kc. (See Ref. 1.) Since Maxwell’s Equations coupled with quantum 
mechanics gives such an excellent treatment of the hydrogen atom, we can speculate that Q is 
sub-atomic, but more work needs to be done concerning a better determination of Q.  
A reviewer of this work mentioned that the cubic nature of the quanta shown in Figure 1 may 
imply that the aether has an underlying lattice structure, and that this might lead to artifacts that 
can be observed experimentally. If each aetherial quantum is in its own cubic potential well, then 
such artifacts may indeed be found. However, there is another possibility. If we postulate that 
quantum states collapse only when a momentum transfer occurs, then the boundary of the 
bounding cubic square-well will be determined only when momentum transfers are robust enough 
to define the square-well boundaries. In this case, this larger cubic square-well may contain many 
aetherial quanta within a degenerate quantum system. And in this case, the quantum shown in 
Figure 1 should be viewed as a representative quantum, with properties set so that a collection of 
such representative cubes yields the same tension, quantum, delta, and gamma force fields as what 
are found at the boundaries of the larger well. In this latter case, no artifacts of a lattice are 
expected. (In Ref. 1 a representative quantum cube is used to analyze an electron degenerate 
system in white dwarfs; please refer to Ref. 1 for details on this analytic approach, as this approach 
can be applied to the aetherial quanta as well.) In either interpretation of Figure 1 (a single quantum 
in its own cubic square-well or a representative quantum within a larger cubic square-well) the 
derivations of the fundamental physics equations follow. The question for further research is which 
of these two interpretations best represents nature. 
Another reviewer of this work raised the issue as to why positive-detached-aether is predominantly 
contained within protons while negative-detached-aether is predominantly contained within much 
lighter electrons, and under what conditions detached-aether might occur elsewhere. Of course, 
negative-detached-aether also occurs in anti-protons, while positive-detached-aether occurs in 
positrons, and there is a large particle zoo of other particles that contain electric charge. Why the 
detached-aether forms within certain specific particles is a question for future research. 
Other topics for future studies include those related to cosmology such as dark energy, the big 
bang, gravitational lensing by galaxies, anisotropies in the cosmic microwave background, 
inflation, and the baryonic Tully–Fisher relation. While all of these topics are important, they 
predominantly involve observations from very far away. Note that the observations themselves are 
presently interpreted by assuming that general relativity is correct, and this then leads to certain 
conclusions which may no longer be accurate once when we consider them under the aether-based 
theory described herein. 
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