A Theoretical Account of the Proton-Electron Mass Ratio

James Bonnar email: bonnarj@gmail.com

January 2024

Abstract

The experimental value of the proton-electron mass ratio is

$$
\frac{m_{p}}{m_{e}} \sim 1836.15267343(11) .
$$

A recent investigation by the author revealed that the dimensionless number could be extremely well approximated by the simple closedform expression:

$$
\sqrt[4]{11366719876399} \sim 1836.15267343109087
$$

That such an accurate value could be generated by such a simple formula inspired me to try to account for this fact.

[^0]
The Proton-Electron Mass Ratio

Suppose the proton and electron are isotropic radiators of unobservable virtual particles as allowed by the Heisenberg uncertainty principle and further suppose these virtual particles possess a certain amount of power. If the power of a transmitter, call it T_{x}, is denoted by P_{t} and if isotropic radiators (transmitters which will radiate energy uniformly in all directions) are assumed, then the power density at a distance R from the transmitter is equal to the radiated power divided by the surface area $4 \pi R^{2}$ of an imaginary sphere of radius R, i.e., the power density at range R from an isotropic radiator is

$$
\begin{equation*}
=P_{t} / 4 \pi R^{2} \quad \text { Watt } / \mathrm{m}^{2} . \tag{1}
\end{equation*}
$$

The target intercepts a portion of the incident energy and re-radiates it in all directions. It is only the power density re-radiated in the direction of the original transmitter (echo) that is of interest. The signal cross-section of the target determines the power density returned to the transmitter for a particular power density incident on the target. It is denoted by σ. The reradiated power density returning back at the transmitter (now the receiver) is (1):

$$
\begin{equation*}
\frac{P_{r}}{\sigma_{r}}=\frac{P_{t} \sigma_{t}}{4 \pi R^{2} \cdot 4 \pi R^{2}} . \tag{2}
\end{equation*}
$$

The cross-section has units of area, but it can be misleading to associate the cross-section directly with the objects physical size. The cross-section is more dependent on shape than size.

Simple algebraic manipulation of Eqn. 2 leads to:

$$
\begin{equation*}
R=\sqrt[4]{\frac{P_{t}}{P_{r}} \frac{\sigma_{t} \sigma_{r}}{(4 \pi)^{2}}} \tag{3}
\end{equation*}
$$

Now for an ansatz. For reasons that will become clear momentarily, suppose that the distance from the proton to the electron $R_{p, e}$ does not equal the distance from the electron to the proton $R_{e, p}$ (i.e., the distance is nonreflexive) and that that discrepancy means that the motion of the electron along an arc length s and an equivalent amount of motion of the proton along an arc length s^{\prime}, where $|s|=\left|s^{\prime}\right|$, would result in the traversal of different central angles (thus an apparent difference in relative inertia even though the two particles may be moving the same distance and speed along s (electron) and s^{\prime} (proton), i.e.,

$$
\begin{equation*}
\frac{R_{p, e}}{R_{e, p}}=\sqrt[4]{\frac{P_{t, p}}{P_{r, p}} \cdot \frac{P_{r, e}}{P_{t, e}}}=\frac{m_{p}}{m_{e}} \tag{4}
\end{equation*}
$$

Eqn. 4 essentially amounts to relativistic quantization of spacetime and it is proposed that the virtual particles are actually creating spacetime and relative mass. Given that, the proton-electron mass ratio would be completely accounted for if it could be proven experimentally that

$$
\begin{equation*}
B=\frac{P_{t, p}}{P_{r, p}} \cdot \frac{P_{r, e}}{P_{t, e}}=11,366,719,876,399 \tag{5}
\end{equation*}
$$

and that, in essence, would account for the protonelectron mass ratio simply by introducing a new constant of nature, which we'll call Bonnar's constant, and denote it by B.

Now suppose the theory is factual and further suppose $P_{t, p} / P_{t, e}=1$, then we have

$$
\begin{equation*}
\frac{P_{t, p}}{P_{r, p}} \cdot \frac{P_{r, e}}{P_{t, e}}=\frac{\sigma_{p}}{\sigma_{e}} . \tag{6}
\end{equation*}
$$

We can use this fact to solve for the approximate radius of the electron in the following way: The accepted value for the radius of a proton is $r_{p}=$ $8.4 \times 10^{-16} \mathrm{~m}$, giving us a cross section $\sigma_{p}=\pi r_{p}^{2}=$ $2.2167 \times 10^{-30} \mathrm{~m}^{2}$ for the proton.

So we have

$$
\frac{2.2167 \times 10^{-30} \mathrm{~m}^{2}}{\sigma_{e}}=11,366,719,876,399
$$

This gives

$$
\sigma_{e}=\pi r_{e}^{2}=1.9501668 \times 10^{-43} \mathrm{~m}^{2}
$$

and we have

$$
r_{e}=2.49 \times 10^{-22} \mathrm{~m}
$$

Note that experimentally, observation of a single electron in a Penning trap suggests the upper limit of the particle's radius to be about 10^{-22} meters (2).

References

1. Sharma, K.K., S.K. Kataria \& Sons, Introduction to Radar Systems.
2. Dehmelt, H. (1988). "A Single Atomic Particle Forever Floating at Rest in Free Space: New Value for Electron Radius". Physica Scripta. T22: 102-110.

[^0]: *(C)2024 by James Bonnar. All rights reserved worldwide under the Berne convention and the World Intellectual Property Organization Copyright treaty.

