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Abstract: By studying the phase change of relativistic matter wave in the process of electron collision, the 

interaction formula of strongly correlated electron system is derived, a mathematic formula of the Pauli exclusion 

principle is proposed, its validity in superconductor is checked. The predicted superconducting gap is in good 

agreement with the experimental results of 21 typical superconductors. In addition, the interaction formula clearly 

shows that at very low temperature, the collision between some electrons and lattice will become neither energy gain 

nor energy loss, which provides a new insight for the study of superconductivity mechanism.  

 

1. Introduction 

In 1911, Dutch scientist H. K. Onnes and others found that mercury resistance disappeared at 

very low temperature, showing a superconducting state. Since then, the research on 

superconductivity has been widely concerned. On the one hand, a variety of superconducting 

materials with practical potential have been found, on the other hand, great progress has been 

made in the study of superconductivity mechanism [1,2]. Many efforts have been made to 

elucidate the mechanism of superconductors [3~6]. Scientists have put forward a variety of 

theories, among which BCS theory and GL theory are more important. However, BCS theory 

can not explain the reason for the existence of the second type superconductors, especially the 

limit temperature (the critical transition temperature of superconductors should not be higher 

than 40K), which has been broken through by the second type superconductors. 

Relativistic matter wave provides a basic concept for the study of strongly correlated 

quantum systems in superconductors[7]. In this paper, by studying the phase change of 

relativistic matter wave in the process of electron collision, the interaction formula of strongly 

correlated electron system is derived, a mathematic formula of the Pauli exclusion principle is 

proposed, its validity in superconductor is checked. The predicted superconducting gap is in 

good agreement with the experimental results of 21 typical superconductors.  

 

2. Relativistic matter waves in particle collision 

Consider a particle in the electromagnetic vector potential A, the relativistic matter wave is 

given in path integral by 
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This is the definition of relativistic matter wave [7], where m is the mass of the particle q, u is 
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the 4-vector velocity field in the particle beam, A is the electromagnetic 4-vector potential, 

=1,2,3,4, x4=ict; the integral path takes on any mathematical path L from x0 to x in the particle 

beam (the L is not particle track, it is a mathematical path in the velocity field). 

Now consider two particles 1 and 2, as shown in Fig.1, their relativistic matter waves are 

given by 
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Fig.1   Particle 1 scatters off particle 2. 

 

Where, R=p+qA is known as the canonical momentum in the analytical mechanics[8]. The 

superscripts denote particle 1 or 2. The two particles with the separation r, provides the 

Coulomb 4-vector potentials by each other, that are given by 
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According to Eq.(2), the R can be generalized into matrix form 
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For a pure Coulomb interaction, the matrix S would be a simple matrix whose S
(11)

=S
(22)

=0 in 

accordance with Eq.(3); for a complicated interaction, it is easy to prove that the interaction 

matrix S must be a Hermitian matrix: S
+
=S due to |(1)

|=| (2)
|=1, see the proof in appendix A. 

According to the theory of group, the Hermitian S is a linear combination of Pauli matrix 

set in terms of SU(2) symmetry: 
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where the Pauli matrices (SU(2) group) are given by 
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and c1, c2, c3 are three independent, first order small, real parameters. Now, we discuss every 

term in Eq.(5) and clarify their physical meanings as follows. 

 

(1) c1 works, c2=c3=0, this case is 
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 . (7) 

Using Eq.(3) to determine the coefficient c1, it turns out that this equation represents the pure 

Coulomb interaction between the two particles. 
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In this case, R is simply the canonical momentum of the particles. 

 

 (2) c1 and c3 work, c2=0, this case is 
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Let us observe their total canonical momentum R, they are 
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Substituting Eq.(9) into Eq.(10), we get 
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Recall that c3 is a real coefficient of SU(2) group symmetry, c3 can be evaluated using the 

energy exchange in Eq.(12); or c3 can be evaluated using the momentum exchange in Eq.(13). 

Both Eq.(12) and Eq.(13) have mathematical singularity: if the numerator is non zero, the 

denominator of Eq.(12) does not allow the two particles to have the same relativistic energy, 

otherwise the SU(2) group parameter c3 will blow up; the repulsion between the two particles 

will blow up (assume that attraction and resonance make no sense). In the same way, the two 

particles will not be allowed to have the same momentum vector in Eq.(13). This is just what 

the Pauli exclusion principle implies. In terms of the above formalism, the Pauli exclusion 
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principle means that the two particles (Fermions, identical) cannot share the same relativistic 

energy Er and momentum, i.e. 
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If the two particles are in a overall stationary state, their overall wave function is in the form 
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Comparing Eq.(15) with (16), we find the energy conservation law as follows  
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This is just the physical meaning of R4, we can infer that R is responsible for the total canonical 

momentum conservation. To note that the R in Eq.(12) contains not only the electromagnetic 

potential A but also other new ingredients, the numerator of the group parameter c3 should be 

non zero in general. 

The numerator of the group parameter c3 in Eq.(12) involves the sum of the electric 

interactions of the two particles between each other; substituting the Coulomb potential of 

Eq.(3) into it, we get 
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where r is the distance between the two particles. In Fermi electron gas, the numerator of c3 should 

be associated with temperature T, with combination of Eq.(12) and (13), so that the group parameter c3 is 

written in the form as 
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For the Fermi electron gas, let experiments determine the numerator factors H(T,1/r) and 

M(T,1/r). Only observing the particle 1, its matter wave R is given by 
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It is equivalent to the situation in which the particle 1 is posed in a new electromagnetic filed as 
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The first term in A
(1,new)

 is just what we proposed: the interaction formula of the Pauli exclusion 

principle. The second term represents the pure Coulomb interaction. The Eq.(21) is called as 

the mathematic formula of the Pauli exclusion principle. 

 

(3) c1 and c2 work, c3=0, this case is 
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Since the entries of the interaction matrix S have imaginary numbers, we have to consider the 

momentum having real-part momentum and imaginary-part momentum as follows 
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In the 4 dimensional space-time, it is 
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In this case, using the perturbation theory, if one only observes the particle 1, from Eq.(22) we 

have 
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Obviously, the c2 terms in Eq.(25) stand for a perturbation. The particle 1 whose complex 

momentum is p
(1)

 can be regarded as a pair of particles whose momenta are p
(1)Re

, and p
(1)Im

 

respectively, there is a long story about the pairing mechanism for the dual particles; to cut a 

long story short, in the author’s earlier papers[7], p
(1)Re

 and p
(1)Im

 are connected to spin up and 

spin down when c2 terms in Eq.(25) stand for a perturbation. 

3. Application to Superconductor 

In this section, we will check the validity of A
(1,new)

 for the Fermi electron gas in 

superconductor. Consider two electrons, their matter waves with SU(2) group symmetry are 

given by 
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The phase angles of the matters waves consist of three interacting parts: (1) the Coulomb 

interaction between the two particles by the group parameter c1. (2) the spin interaction 

between the two particles by the group parameter c2. (3) the Pauli exclusion principle by the 

group parameter c3. 

In this paper we only focus on the Pauli exclusion principle formula, leaving the spin 

coupling effect (Cooper pair) as an opening problem, i.e., in this paper we always take c2 =0. 

Consider two neighboring electrons 1 and 2 on the Fermi energy surface of a 

superconductor, with energy E1 and E2 respectively, if the electron 1 collides with the crystal 

lattice duo to its thermal motion and hope jump to a higher energy E3, suppose that  E1 < E2 < 

E3, then the electron 1 will get a trouble: its energy will equal to E2 at some moment when 

increasing its energy from E1 to E3, the Pauli exclusion formula will blow up at that moment 

due to the denominator being E1-E2=0; the new electromagnetic field in Eq.(21) will blockade 

the jump, because its denominator becomes zero and the Pauli exclusion term blows up to ban 

the electron 1 having energy across the energy E2 of its neighboring electron 2, as shown in 

Fig.2(a).  
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Fig.2   Electron energy levels in the Fermi electron gas. 

 

This is called as the singularity blockade effect. This leads to that the electron 2 blockades any 

neighboring electrons jumping to higher energies (higher than energy E2), as shown in Fig.2(b). 

This singularity blockade effect also means that the electrons on the Fermi energy surface have 

the energy gap E=E2 -E1 in Fig.2(b) which allows electron 1 to do thermal activity, while the 

electrons inside the Fermi energy surface have no thermal activity because their singularity 

blockade effect for each other allow only very weak thermal activity (jail effect). The Fig.2(b) 

tells us that the energy gap E=E2 -E1 should be at least the order of thermal energy 3kT/2 in 

magnitude to support the thermal activity of electron 1. Considering the kinetic energy 

distribution of thermal electrons as the Maxwell’s distribution, so the energy gap in a 

superconductor is estimated by the singularity blockade effect as in the range 
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3 6

2 2
E kT kT   . (29) 

where k is the Boltzmann constant, the energy gap mounts on the Fermi energy surface of the 

electron gas, only a few electrons with the higher energy E2 become local leaders bullying over 

other neighboring electrons in its vicinity, as shown in Fig.3 

 

Fig.3   Only a few electrons become local leaders bullying over other neighboring electrons. 

 

How to reduce the Pauli exclusion effect? According to the formula in Eq.(21) and reality 

of physics, the numerator of c3 must go to zero if the two electrons separate far apart. Therefore, 

the numerator can eliminate the singularity of the formula. The Pauli principle only works for 

the neighboring electron pairs. Another way reducing the singularity is to let temperature go 

down enough, the strength of interaction between the electrons 1 and 2 becomes so weak that 

the numerator may go close to zero, as a result, the energy gap on the Fermi energy surface also 

becomes narrow. 

Consider the electron 1 colliding with the crystal lattice with the gain in energy through a 

phonon 

 D DE   . (30) 

where D is the Debye frequency of the crystal lattice, by definition, the phonon has the 

maximal energy in the crystal lattice, we doubt: whether the electron 2 as local leader allows the 

electron 1 to absorb up the phonon? If the energy gap E=E2 -E1 is small than the phonon 

energy ED, then, arming with the singularity blockade effect, the electron 2 will ban the electron 

1 to absorb the phonon. In order to avoid the singularity of E1=E2, the electron 1 will give up the 

phonons with energy larger than E, which happens at the condition 

 DE    . (31) 

As the result, the electron 1 has no energy gain or loss during collision with the crystal lattice 

through touching a ED phonon; this is equivalent to a kind of elastic collision with the crystal 

lattice, it means the zero resistance for the electron 1 scattering of the crystal lattice. Therefore, 

as the temperature falls down to a critical Tc, the energy gap equals to or becomes less than the 

maximal energy ED of phonons, some electrons have no energy gain or loss during collision 

with the crystal lattice under the control of the singularity blockade effect, thus, the 

superconductivity occurs. The critical temperature is determined by 
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 ; 3 6
2

c D

g
E kT g     . (32) 

According to the singularity blockade effect, our calculation of energy gap formula Eq.(32) 

agrees well with experimental data for 21 typical superconductors[1] as in the Table 1. 

 

Table 1 Comparison of energy gaps for 21 typical superconductors 

Material Tc,K 2E, mV g=2E/kT g, this prediction g, BCS prediction 

Hf 0.13 0.044 3.9 36 3.53 

Cd 0.52 0.14 3.2 36 3.53 

Zn 0.85 0.23 3.2 36 3.53 

Al 1.2 0.35 3.4 36 3.53 

In 3.4 1.05 3.6 36 3.53 

Hg 4.2 1.7 4.6 36 3.53 

Pb 7.2 2.7 4.3 36 3.53 

Nb 9.3 3.0 3.8 36 3.53 

V3Ge 11.2 3.1 3.2 36 3.53 

V3Si 17.1 5.4 3.7 36 3.53 

Nb3Sn 18.1 4.7 3.0 36 3.53 

K3C60 19 5.9 3.6 36 3.53 

Rb3C60 29 7.5 3.0 36 3.53 

Ba0.6K0.4BiO3 18.5 5.9 3.7 36 3.53 

(Nd0.925Ce0.075)2CuO4 21 7.4 4.4 36 3.53 

(La0.925Sr0.075)2CuO4 36 13 4.3 36 3.53 

YBa2Cu3O7- 87 30 4.0 36 3.53 

Bi2Sr2Ca2Cu3O10 108 53 5.7 36 3.53 

Tl2Ba2Ca2Cu2O8 112 44 4.5 36 3.53 

Tl2Ba2Ca2Cu3O10 105 28 3.1 36 3.53 

Hg2Ba2Ca2Cu3O8 131 48 4.3 36 3.53 

 

The proposed interaction formula for strong correlated system has a striking advantage: it 

provides us a new mechanism for explaining why the electrons can collide with the crystal 

lattice without gain or loss in energy, although this paper has not discussed the spin pair. In the 

same way, the singularity blockade effect can also be used to explain the super-fluidity at an 

extreme low temperature: collision without gain or loss in energy, although some are in fermion 

system (
3
Hellium liquid, superconductor) while others are in boson system (

4
Hellium liquid, 

excitons) [2]. 

In fact, the singularity blockade effect belongs to three-body problem (e.g. particle 1 and 2, 

phonon), for which the relativistic matter waves seem to be suitable, rather than traditional 

quantum wave differential equations. In fact, there are many new properties of relativistic 

matter wave that remains to be studied[7,9]. 

4. Conclusions 

By studying the phase change of relativistic matter wave in the process of electron collision, the 
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interaction formula of strongly correlated electron system is derived, a mathematic formula of 

the Pauli exclusion principle is proposed, its validity in superconductor is checked. The 

predicted superconducting gap is in good agreement with the experimental results of 21 typical 

superconductors. In addition, the interaction formula clearly shows that at very low temperature, 

the collision between some electrons and lattice will become neither energy gain nor energy 

loss, which provides a new insight for the study of superconductivity mechanism.  

 

 

Appendix A 

Theorem 1: The interaction matrix S is a Hermitian matrix: S
+
=S. 

Proof: The wave function of the j-th particle is given by 
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where the duplicated indices imply summation over (Einstein summation convention). We 
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 

 


, (34) 

regarding S as smaller quantities for the interaction, then we have  

 

0

0

0

( ) ( ) ( ) ( )

( )

( ) ( ) ( )

( )

( ) ( ) ( ) 2

( )

exp [ ( , ) ]

exp

1 ( )

x
j j jk k

x L

x
j jk k

x L

x
j jk k

x L

i
p t S p dx

i
S p dx

i
S p dx O S

  

 

 







 
  

 

 
  

 

 
   

 







x

. (35) 

Typically, we demand the matter wave function to meet the normalization: 

 
( ) 2 ( ) ( )*| | 1 (no sum over j)j j j     . (36) 

where 

 

( ) ( ) ( ) ( )

0( )

( )* ( ) ( ) * ( ) * * ( )*

0( )

1

1 [ ] [ ] [ ]

x
j j jk k

L

x
j j k kj j

L

i
S p dx

i
p S d x

 

 

 

  

 
  

 

 
   

 





 , (37) 

The transpose operation used in the above expression is a preparation for the consistency of 

matrix calculation in it, we have 
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0 0

0 0

( ) 2 ( )* ( )

(no sum over j)

( ) * ( ) * * ( )* ( ) ( ) ( )

( ) ( )

( ) * ( ) * * ( ) ( )

( ) ( )

( ) * (

| | |

1 [ ] [ ] [ ] 1

1 [ ] [ ] [ ] 1

1 [ ] [

j j j

x x
k kj j j jk k

x L x L

x x
k kj jk k

x L x L

k kj

i i
p S d x S p dx

i i
p S d x S p dx

i
p S

   

   



  

 



   
     
   

  
    
  

 

 

 

0 0

) * * ( ) ( ) 2

( ) ( )
] [ ] ( )

x x
jk k

x L x L

i
d x S p dx O S    

. (38) 

We know 

 
( ) * * ( )[ ] [ ]k kp d x p dx     . (39) 

thus 

 
( ) ( ) ( )* ( ) ( )

0( )
1 [ ]

x
j j kj jk k

L

i
S S p dx        . (40) 

The integral path is an arbitrary mathematical path; therefore, the normalization of  leads to 

the conclusion 

 

( ) ( ) ( )* ( )1 0j j kj jkS S

S S

 



    


 . (41) 

Proof finished. 
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