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Abstract

A discrete Hopf fibration of S15 over S8 with S7 (unit octonions) as
fibers leads to a 16D Polytope P16 with 4320 vertices obtained from the
convex hull of the 16D Barnes-Wall lattice Λ16. It is argued how a sub-
sequent 2 − 1 mapping (projection) of P16 onto a 8D-hyperplane might
furnish the 2160 vertices of the uniform 241 polytope in 8-dimensions, and
such that one can capture the chain sequence of polytopes 241, 231, 221, 211
in D = 8, 7, 6, 5 dimensions, leading, respectively, to the sequence of Cox-
eter groups E8, E7, E6, SO(10) which are putative GUT group candidates.
An embedding of the E8 ⊕ E8 and E8 ⊕ E8 ⊕ E8 lattice into the Barnes-
Wall Λ16 and Leech Λ24 lattices, respectively, is explicitly shown. From
the 16D lattice E8 ⊕ E8 one can generate two separate families of Elser-
Sloane 4D quasicrystals (QC’s) with H4 (icosahedral) symmetry via the
“cut-and-project” method from 8D to 4D in each separate E8 lattice.
Therefore, one obtains in this fashion the Cartesian product of two Elser-
Sloane QC’s Q×Q spanning an 8D space. Similarly, from the 24D lattice
E8⊕E8⊕E8 one can generate the Cartesian product of three Elser-Sloane
4D quasicrystals (QC’s) Q × Q × Q with H4 symmetry and spanning a
12D space.

Keywords : Division Algebras, Hopf fibrations, Barnes-Wall lattice,
Leech lattice, Exceptional Lie Algebras, Grand Unification, Quasicrystals.
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1 Discrete Hopf Fibrations of S15 lead to the
Polytopes associated with E8, E7, E6, SO(10)

The four Hopf fibrations

S1 → S1, S3 → S2, S7 → S4, S15 → S8 (1)

Dixon [1] discussed two specific Hopf lattice fibrations resulting from the
discrete Hopf fibrations of S7 over S4, and S15 over S8 [1]. One of them is the
Hopf lattice fibration of the E8 lattice over the Z

5 cross-polytope (with 2×5 = 10
vertices) where the fibers were provided by the 24 root vectors of the D4 lattice
so that one generates the 10× 24 = 240 roots of the E8 lattice. Related to the
last of the four Hopf fibrations, Dixon also discussed the Hopf lattice fibration
of the 16-dim Barnes-Wall lattice Λ16 [2] over the cross-polytope (orthoplex) Z9

with the E8 lattice as fibers. The 240 root vectors of the E8 lattice as fibers, and
the cross-polytope (orthoplex) Z9 as the base, with 2× 9 = 18 vertices, leads to
a total of 18× 240 = 4320 lattice sites which matches the kissing number of the
Λ16 Barnes-Wall lattice. Namely, the centers of the 4320 spheres packing the
16D space at each lattice site correspond to the 4320 vertices associated with
the 4320 minimal vectors of the Λ16 lattice of norm 4.

It is well known (to the experts) that the 240 real roots of the E8 Gossett
421 polytope in 8D can be projected to two Golden-ratio scaled copies of the
120 root H4 600-cell quaternion in 4D, see [7] and references therein. The 600-
cell in 4D has 120 vertices that correspond to the 120 roots of H4. This very
specific projection from 8D to 4D is possible due to the fact that the 8 simple
roots of E8 can be geometrically “folded” into two Golden-ratio scaled copies
of the 4 simple roots of the Coxeter non-crystallographic group H4 in 4-dim [7]
(240 = 2× 120).

A convex polytope P16 in 16D can be geometrically obtained by taking the
convex hull of the 4320 vertices associated to the 4320 minimal vectors of the
Λ16 lattice. There is a uniform 8D polytope 241 [8] with E8 for its Coxeter
group and which has 2160 vertices and 17520 = 240 + 17280 7-faces. 240 of
those 7-faces are comprised of uniform 231 polytopes with E7 for their Coxeter
group, and the other 17280 7-faces are 7-simplices (higher dim version of the
tetrahedron).

It is known that any finite simply-laced Coxeter-Dynkin diagram can be
folded into I2(h) where h is the Coxeter number (height) which corresponds
geometrically to the projection to the Coxeter plane. The number of roots is
equal to the rank times the height. For example, in the case of E8 one has
240 = 8 × 30, leading to 8 polygons with 30 vertices. Because none of the
Coxeter groups in 16D, A16, B16, C16, D16 , can be geometrically “folded” into
E8, it is very unlikely that one will be able to project the P16 polytope to two
Golden-ratio scaled copies of the uniform 241 polytope in 8D, and which would
have been consistent with the 2160 + 2160 splitting of the 4320 vertices of the
parent 16D polytope P16.
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However, it is still plausible that the P16 polytope admits enough reflection
symmetries such that one could find a judicious 8D-hyperplane through the
centroid of P16, with the right orientation, and perform a 2−1 map (projection)
from 16D to 8D of all the 4320 vertices of P16, and obtain the sought-after 241
polytope with its 2160 vertices for the 8D projection. In other words, does the
P16 polytope admit at least one 8D hyperplane for a “mirror” such that its
4320 vertices are symmetrically arranged into 2160 pairs with respect to this
8D “mirror” ?

In a given coordinate system, the 2160 vertices of the 8D polytope 241 can
be defined as follows [8] : there are 16 (24) vertices obtained from permutations
of

(±4, 0, 07) (2)

where 07 denotes seven zero entries. There are 1120 (16×C8
4 = 16×70) vertices

obtained from permutations of

(±2,±2,±2,±2, 0, 0, 0, 0) (3)

and 1024 (27 × 8) vertices of the form

(±3,±1,±1, . . . ,±1) (4)

where the 1’s must have an odd number of minus signs. The total number of
vertices is 2160 and lie on a S7 hyper-sphere of radius 4. In section 2 we shall
explicitly display the coordinates of the 4320 minimal vectors of the Barnes-
Wall lattice Λ16 of length-squared equal to 4 such that the tips of all the vectors
(vertices) lie on a S15 hyper-sphere of radius 2. By joining the tips of all these
vectors in S15 one constructs the convex polytope P16. By a simple inspection,
one finds that a rescaling of P16, followed by an orthogonal projection to 8D
will not generate the 2 − 1 map yielding the 2160 vertices of 241 displayed in
eqs-(2,3,4).

However, this goal might be attained, firstly, by performing a rescaling of the
vertices V of P16 : V → V′ = λV, with λ > 1, followed by a SO(16) rotation
of these rescaled vertices , V′ → V′′, and a SO(8) rotation of the vertices W
of 241 : W → W′, and finally, one projects onto an 8D hyperplane the rescaled
and rotated vertices of P16 . This projection π can can be realized in terms of a
8× 16 rectangular matrix M that maps the 16 entries of V′′ into the 8 entries
of W′ ∈ 2′41. By a prime in 2′41 one means that the original polytope 241 with
coordinates given by eqs-(2,3,4) has been rotated. The SO(16) rotations can be
implemented via the use of the 120 bivectors Γmn of a Clifford algebra Cl(16)
in 16D. While the SO(8) rotations can be implemented via the use of the 28
bivectors γab of a Clifford algebra Cl(8) in 8D. In doing so, one has

(V′′) = λ
(
eiθmnΓ

mn

V e−iθmnΓ
mn

)
, V ∈ P16, m, n = 1, 2, . . . , 16; λ > 1

(5a)
where the Clifford vectors are V ≡ XmΓm, V′′ ≡ X ′′

nΓ
n. From eq-(5a) one

can obtain the transformation of the coordinates X ′′
n = X ′′

n(Xm). Because the
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120 bivector Γmn generators do not commute (in general) one cannot factorize
the exponential in eq-(5a) into a product of exponentials. The SO(8) rotations
involving the vertices W of 241 are given by

(W′) =
(
eiθabγ

ab

W e−iθabγ
ab

)
, W ∈ 241, a, b = 1, 2, . . . , 8 (5b)

with W ≡ Xaγ
a, W′ ≡ X ′

bγ
σ. There are 28 bivector generators in 8D and from

(5b) one obtains the transformation of the coordinates X ′
b = X ′

b(Xa).
Consequently, the combined rescaling-rotation-projections leads to equations

of the form

π(V′′) = λ π
(
eiθmnΓ

mn

V e−iθmnΓ
mn

)
=

(
eiθabγ

ab

W e−iθabγ
ab

)
= W′

(6)
such that the end result is that pair of vertices V1,V2 ∈ P16 are mapped to a
single vertex W of the 241 polytope. It is in this way how the 2− 1 map from
P16 to the 241 polytope could be constructed, if possible. At first sight, as one
scans through all the 4320, 2160 vertices of P16, 241, respectively, one encounters
an over-determined system of equations whose number is much larger compared
to the 28 + 120 + 128 + 1 = 277 parameters at our disposal. However one must
not forget that not all of the equations are independent due to the very large
number of symmetries.

There are 120 antisymmetric parameters θmn associated with the SO(16)
rotations implemented by the 120 bivectors Γmn of the Clifford algebra Cl(16)
in 16D. There are 8×16 = 128 parameters associated with the 8×16 entries of
the rectangular matrix M implementing the 16D → 8D projection. The total
number is 120+128 = 248 which agrees with the dimension of the e8(8) algebra
comprised of 128 non-compact Yα (spinorial) generators and 120 compact Xµν

generators. A chiral spinor S+ in 16D has 128 entries. The (anti) commutators
are [Xµν , Xρσ] = ηµσXνρ ± permutations. [Xµν , Yα] ∼ Γ β

µνα Yβ , and {Yα, Yβ} ∼
Γµν

αβ Xµν , with µ, ν = 1, 2, . . . , 16, and α, β = 1, 2, . . . , 128.
The fact that 128 spinorial generators Yα of the e8(8) algebra are linked to

the above construction of the 2 − 1 map of P16 to 241 might be related to the
fact that the spin group is the double cover of the rotation group. This property
of spinors was crucial in the construction of E8 from a Clifford algebra in 3D
by [11]. The H3 Coxeter group in 3D admits a natural lift to H4 in 4D, by
simply adding one node in the Coxeter diagram, and in turn, the H4 can be
geometrically “unfolded” into E8 via the reverse mechanism explained earlier
: the 8 simple roots of E8 can be geometrically folded into two Golden-ratio
scaled copies of the H4 roots.

One may ask, why focus our attention to the 241 polytope in 8D with 2160
vertices, half as many as the 4320 vertices of P16 ? One of the reasons why the 241
polytope is important is because the centroids of 240 of its 7-faces (comprised of
uniform 231 polytopes with E7 for their Coxeter group) are precisely positioned
at the 240 vertices of the Gosset 421 polytope in 8D. As its 240 vertices represent
the root vectors of the simple Lie group E8, this Gosset polytope is sometimes
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referred to as the E8 root polytope.There are a total of 28 − 1 = 255 uniform
polytopes with E8 symmetry in 8D1.

Another very important and salient feature is that there is a chain-sequence
of three polytopes 241, 231, 221 in D = 8, 7, 6 dimensions whose Coxeter groups
are E8, E7, E6, respectively. In particular, the 7-dim facets of 241 contains 231
polytopes (and 7-simplices), and in turn, the 6-dim facets of 231 contains 221
polytopes (and 6-simplices).

There is also the sequence of three polytopes 421, 321, 221 in D = 8, 7, 6
dimensions whose Coxeter groups are E8, E7, E6, respectively

2. One can proceed
further by noticing that the 6-dim 221 polytope has for 5-facets : (i) 27 211
polytopes (5-orthoplexes, cross polytopes) with D5 as their Coxeter group, and
(ii) 72 5-simplices with A5 for their Coxeter group. Therefore, one may descend
still further along the chain of polytopes . . . 221 → 211 leading to E6 → E5 =
D5 = SO(10).

One can see that these chain-sequences of polytopes are very relevant in
constructing extensions of the Standard Model of particle physics because the
groups E8, E7, E6, SO(10) are among the many candidates to construct grand
unified theories (GUT) [12], [13], [14] beyond those based on the groups SU(5)
and SU(4)× SU(2)× SU(2) (Pati-Salam). From SO(10) there are two natural
branching routes to the standard model group SO(10) → SU(5) → SU(3) ×
SU(2)×U(1), and SO(10) → SU(4)×SU(2)×SU(2) → SU(3)×SU(2)×U(1).

Another physical application is that there are polytopes whose number of
vertices has a one-to-one correspondence with the number of fundamental par-
ticles associated to the GUT model one hopes to construct. For instance, Boya
[15] found a natural correspondence among the vertices of the self-dual 24-cell
(the octacube) in 4D and the particle content of the minimal supersymmetric
standard model that requires 128 bosons and 128 fermions in two different sets,
the ordinary particles and their supersymmetric partners.

To sum up : starting from the 16D Polytope P16 with 4320 vertices (obtained
from the convex hull of the Barnes-Wall lattice Λ16), we conjectured that a
2− 1 projection onto a judicious 8D-hyperplane could exist, implementing the
adequate reflection symmetry, in order to furnish the 2160 vertices of the uniform
241 polytope in 8-dimensions, so that one can then capture the chain sequence of
polytopes 241, 231, 221, 211 in D = 8, 7, 6, 5 dimensions, leading, respectively, to
the sequence of Coxeter groups E8, E7, E6, SO(10), and which are putative GUT
group candidates. All these findings resulted from the discrete Hopf fibration of
S15 over S8 [1] with S7 (unit octonions) as fibers. And, in doing so, we hope to
answer Dixon’s question of whether or not his construction of the Barnes-Wall
lattice Λ16 has any physical applications [1].

1One may notice that 255 is the number of generators of the Clifford Cl(8) algebra excluding
the unit generator

2There is also the sequence of 142, 132, 122 polytopes in D = 8, 7, 6 dimensions whose
Coxeter groups are E8, E7, E6, respectively
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2 The Barnes-Wall, Leech Lattices and the
Cartesian Products of Quasicrystals

The Barnes-Wall Lattice

The Barnes–Wall lattice Λ16 is the 16-dimensional positive-definite even in-
tegral lattice of discriminant 28 with no norm-2 vectors. It is the sublattice
of the 24-dim Leech lattice fixed by a certain automorphism of order 2, and is
analogous to the Coxeter–Todd lattice [2].

There are 480 vectors obtained from permutations of

1√
2
(±2,±2, 014) (7)

where 014 denotes 14 consecutive zero entries. And 3840 vectors obtained from
permutations of

1√
2
(±1,±1,±1, . . .± 1, 08) (8)

where 08 denotes 8 consecutive zero entries. All the minimal vectors have norm
4 (these vectors are not roots) where by norm one means the length squared
of the vectors. It is worth pointing out an interesting numerical coincidence
with these numbers of {480, 3840} vectors. There are 480 = 2× 240 octonionic
multiplication tables and 3840 = 16× 240 split-octonionic multiplication tables
[1]. Adding the numbers of vectors yields 2×240× (1+8) = 4320. We shall see
below that in the case of the 24D Leech lattice one has 3×240×(1+16+162) =
196560 minimal vectors of norm 4 (these vectors are not roots).

The E8 lattice is constructed from 112 vectors ( 2
2×8×7

2 = 112) obtained from
permutations of

(±1,±1, 06) (9)

after taking an arbitrary combination of signs and an arbitrary permutation of
coordinates. And 128 vectors (27 = 128) obtained from permutations of

1

2
(±1,±1,±1, . . . ,±1) (10)

with the condition that one takes an even number of minus signs.3. All roots
have norm 2. The E8 lattice is related to 240 integral octonions [5].

The purpose now is to embed the rank-16 lattice E8 ⊕ E8 directly into a
rescaling of Λ16 and establish a one-to-one correspondence among the 480 =
240+240 roots of E8 ⊕E8 with 480 of the rescaled 4320 minimal vectors of the
Λ16 lattice. The 16-dim lattice E8 ⊕E8 was instrumental in the construction of

3The requirement of having an even number of minus signs reduces the number from 28 to
27
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the 10D Heterotic string (there is also the 16-dim lattice Λ(D16) corresponding
to SO(32)). Firstly, one performs a rescaling of the vectors in eqs-(7,8) by a
factor of 1√

2

1√
2
(±2,±2, 014) → 1

2
(±2,±2, 014) = (±1,±1, 014) (11)

1√
2
(±1,±1,±1, . . .± 1, 08) → 1

2
(±1,±1,±1, . . .± 1, 08) (12)

And then one embeds the vectors in 8D into 16D by arranging the 8 entries
of the 8D-vectors in the following two ways

(±1,±1, 06|08), (08|06,±1,±1) (13)

And
1

2
(±1,±1,±1, . . . ,±1|08),

1

2
(08| ± 1,±1,±1, . . . ,±1) (14)

where we indicate by 08 an array of 8 extra zeros separated from the slot of the
initial 8 entries in order to perform the embedding. In this way the entries in
eqs-(11,12) have the same structure as the entries in eqs-(13,14), and by direct
inspection one can see that the entries (after permutations in the appropriate
slot) of eq-(13) describe 112 + 112 of the vectors of E8 ⊕ E8, while the entries
(with an even number of minus signs) of eq-(14) describe the other 128 + 128
vectors of E8⊕E8, and such that 240 vectors of one copy of E8 are orthogonal to
the 240 vectors of the second copy of E8. Therefore, in this straightforward way
one has embedded the rank-16 lattice E8⊕E8 into a rescaling of the Λ16 lattice.
The E8 lattice provides the maximal packing of spheres in 8D. The Leech yields
the maximal packing in 24D [6]. For further details of the mathematics of E8

see [4].

The Leech Lattice

The Leech lattice is an even unimodular lattice in 24-dimensional Euclidean
space. The minimal vectors of the 24D Leech lattice Λ24 [2] consists of : (i)
97152 (27 × 759) vectors obtained from permutations of

1√
2
(±18, 016) (15)

and an even number of minus signs. (ii) 1104 (2 × 24 × 23) vectors obtained
from permutations of

1√
2
(±22, 022) (16)

and (iii) 98304 (212 × 24) vectors obtained from permutations of

1

2
√
2
(∓3, ± 123) (17)
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The total number of vectors is 196560 which is the kissing number of the Leech
lattice. The vectors have norm 4.4

Because the Λ16 Barnes-Wall lattice is a sublattice of the 24-dim Leech
lattice L24, one can embed the rank-24 lattice E8 ⊕ E8 ⊕ E8 into a rescaling
of the Leech lattice by the same factor of 1√

2
. One now embeds the vectors in

8D into 24D by arranging the 8 entries of the 8D-vectors in the following three
ways (involving the cyclic permutations of slots)

(±1,±1, 06|08|08), (08|08|06,±1,±1) (08|06,±1,±1|08) (18)

and

1

2
(±1,±1,±1, . . . ,±1|08|08),

1

2
(08|08| ± 1,±1,±1, . . . ,±1),

1

2
(08| ± 1,±1,±1, . . . ,±1|08) (19)

A simple inspection of eqs-(18,19) and eqs-(15,16) shows that one has an em-
bedding of the rank-24 lattice E8⊕E8⊕E8 into a rescaled Leech lattice L24 by
a factor of 1√

2
.

The Leech lattice was instrumental in the 24-dimensional orbifold compact-
ification of the 26-dim bosonic string down to two dimensions. The automor-
phism group of the string twisted vertex operator algebra is the Monster group
as shown by [19], and whose order is close to 1054.

The 120 elements of the group of icosians [2] are provided by 120 unit
quaternions whose coefficients are comprised of elements of the form a + bτ
belonging to the Golden field Q[τ ], with a, b rationals and τ = 1

2 (1+
√
5) is the

Golden ratio, and σ = 1
2 (1 −

√
5) = 1 − τ = − 1

τ is its Galois conjugate. An
example of an icosian is the following unit quaternion

q =
1

2
(τe1 + σe2 + e3) ⇔

1

2
(0, τ, σ, 1) =

1

2
(0, τ, 1− τ, 1) ⇒ qq̄ = 1 (20)

where the icosian x = αeo + βe1 + γe2 + δe3 is represented by x = (α, β, γ, δ),
and each entry belongs to Q[τ ].

There are two norms for such vectors [2]. The quaternionic norm QN(x) =
xx̄ which is a number of the form u+v

√
5, with u, v rational. And the Euclidean

norm EN(x) = u + v. With respect to the quaternionic norm the icosians
belong to a four-dim space over the Golden field Q[τ ]. But with respect to the
Euclidean norm they lie in an eight-dim space. The latter Euclidean norm was
instrumental in the Turyn-type construction for the Leech lattice based on the
three-dim lattice over the icosians (x,y, z) [2].

Instead of using icosians to construct the Leech lattice, one can use octonions
instead. To our knowledge the first one to use octonions in order to represent the
Leech lattice over O3 was Dixon [1]. Wilson, later on [17] provided the following

4As a reminder, the norm of a vector is defined as the length squared
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representation of the Leech lattice over O3 : If L is the set of octonions with
coordinates on the E8 lattice, then the Leech lattice is the set of triplets (x, y, z)
such that

x, y, z ∈ L; x+ y, y + z, x+ z ∈ Ls̄; x+ y + z ∈ Ls (21)

with

s =
1

2
(−e1 + e2 + e3 + e4 + e5 + e6 + e7) (22)

where e1, e2, . . . , e7 are the seven imaginary octonionic units squaring to −1.
The Dixon and Wilson’s representations are actually equivalent as shown by

[1]. The end result is that inner shell of Λ24 containing the minimal vectors
is broken into three subsets with orders 3 × 240; 3 × 240 × 16; 3 × 240 × 162,
respectively, the sum of all three orders being 3× 240× (1+16+162) = 196560
which is the kissing number of the Leech lattice. The first subset with 3 ×
240 = 720 vectors has a one-to-one correspondence with the 720 roots of the
E8 ⊕E8 ⊕E8 lattice as shown above corresponding to the canonical embedding
of E8 ⊕ E8 ⊕ E8 into a rescaling of Λ24 after a cyclic permutation of the entry
slots as displayed by eqs-(18,19).

An intuitive explanation of the above 16, 162 factors is the following. Since
24 = 8+16, there are many ways to perform the embedding of an 8D basis frame
of vectors into 24D. The 240 roots of E8 are given by linear combinations of
the 8 simple roots β1, β2, . . . , β8 which comprise the 8D basis frame of vectors.
There is room to perform translations of this 8D basis frame of vectors along
the 16 transverse dimensions (to the 8 dimensions) in 24-dimensions. And
also one can perform GL(16, Z) “rotations” of this basis frame in the extra 16-
dimensions. This simplistically explains the origins of the 16, 162 factors in the
above counting of minimal vectors. 16 for translations and 16×16 for GL(16, Z)
“rotations”. The 16 discrete translations and GL(16, Z) transformations can be
combined into GA(16, Z), the general affine group over the integers. There is
still an extra factor of 3 (in 3× 240) that escapes us but it might be related to
the triality property of SO(8).

Octonions and icosians can also be used to construct regular and uniform
polytopes. The 600-cell in 4D has 120 vertices and H4 is the Coxeter group.
The coordinates of the locations of those 120 vertices in 4D can be represented
in terms of the entries of 120 icosians (unit quaternions). Given the one-to-one
correspondence between a vertex V and an icosian ι, one can define the group
composition V1 ∗V2 of two vertices in terms of the quaternionic product of the
two icosians as follows

V1 ∗V2 = V3 ⇔ ι1 ι2 = ι3 ⇔ V3 (23)

The upshot of establishing this vertex-icosian correspondence is that one can
generate the positions of all the 120 vertices of the 600-cell from the composition
law described by eq-(23) simply by starting with the quaternionic product of
two icosians and generating the rest by successive iterations. An excellent video
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of the construction of the 120 vertices of the 600-cell based on the product of
icosians can be found in [16].

The E8 lattice [4] is also closely related to the nonassociative algebra of real
octonions O. It is possible to define the concept of an integral octonion analo-
gous to that of an integral quaternion. The integral octonions naturally form a
lattice inside O [1], [5]. This lattice is just a rescaled E8 lattice. (The minimum
norm in the integral octonion lattice is 1 rather than 2). Embedded in the oc-
tonions in this manner the E8 lattice takes on the structure of a nonassociative
ring [4].

A similar construction of the 120 vertices of the 600-cell in 4D works for
the 240 vertices of the E8 Gosset 8D-polytope based on the integral octonions
of norm 1. Because the octonions are a noncommutative and nonassociative
normed division algebra, these 240 vertices have a multiplication operation
which is no longer a group but rather a loop, in fact a Moufang loop [18]. In
other words, the subset of unit-norm integral octonions is a finite Moufang loop
of order 240, and which has a one-to-one correspondence with the 240 vertices
of the E8 Gosset polytope.

The octonions are nonassociative but alternative. On the other hand, the
sedenions are not associative nor alternative, and are not a normed division
algebra because they have 84 zero divisors5. As a result the norm of a product
of two sedenions is not equal to the product of their norms. And because of
this fact, it would be difficult to generate the coordinates of the locations of the
vertices of polytopes in 16D from the products of unit sedenions.

We finalize this work with some remarks about lattices and Quasicrystals.
From the 16D lattice E8 ⊕ E8 one can generate two separate families of Elser-
Sloane 4D quasicrystals (QC’s) with H4 (icosahedral) symmetry via the “cut-
and-project” method from 8D to 4D in each separate E8 lattice [9]. Therefore,
one obtains in this fashion the Cartesian product of two Elser-Sloane QC’sQ×Q
spanning an 8D space. Because E8 is a crystallographic group, and there are
no non-crystallographic groups in D > 4, one cannot obtain an 8D QC via the
“cut-and-project” method of the 16D Barnes-Wall Λ16 lattice down to an 8D
model set. Instead one obtains the Cartesian product Q × Q of two 4D QC’s
with H4 symmetry and spanning an 8D space. Similarly, from the 24D lattice
E8 ⊕E8 ⊕E8 one can generate the Cartesian product of three Elser-Sloane 4D
quasicrystals (QC’s) : Q×Q×Q with H4 symmetry and spanning a 12D space.

A family of quasicrystals of dimensions 1, 2, 3, 4 governed by the E8 lattice
was constructed by [10]. The icosian ring associated with the unit quaternions
with coefficients in the Golden field Q[τ ], and the standard “cut-and-projection”
method from R2d to Rd was instrumental in the construction. Nested sequences
of quasicrystals formed systems whose symmetries were all derivable from the
arithmetic of the icosians. The use of Coxeter diagrams clarified the relationship
of E8 and quasicrystal symmetries and lead to the fundamental chain A1×A1 ⊂
A4 ⊂ E6 ⊂ E8 that underlies five-fold symmetry in quasicrystals. The role of the

584 = 14× 6, where 14 is the dimension of the g2 algebra associated with G2 which is the
automorphism group of the octonions. And the factor of 6 = 3! corresponds to the order of
the symmetric group S3
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non-crystallographic Coxeter groups H2 ⊂ H3 ⊂ H4 in D = 2, 3, 4 dimensions,
respectively, was essential.

Quasicrystalline compactifications of string theory based on a class of asym-
metric orbifolds were constructed by [20]. The set of points of a one-dimensional
cut-and-project quasicrystal or model set, while not additive, was shown to
be multiplicative for appropriate choices of acceptance windows. This permits
the introduction of Lie algebras over such aperiodic point sets [21]. More re-
cently, (nonassociative) Jordan Algebras over Icosahedral cut-and-project QC
have been constructed by [22].

The most immediate project is to test the existence of a 2 − 1 map (pro-
jection) of P16 (with 4320 vertices) into a judicious 8D hyperplane leading to
the 241 polytope with 2160 vertices. If this is feasible one would have found a
nice geometric framework of grand unified model groups, polytopes and discrete
Hopf fibrations of (hyper) spheres which are deeply connected to the existence
of the four normed division algebras : real, complex, quaternion and octonions
[23]. Furthermore, it is worth exploring further the arguments of [24] related to
how the ADE Coxeter graphs unify Mathematics and Physics.
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