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A comparison of the spectra of many European barometers shows that,
despite the large distances between the sensors, the air pressure changes in
phase at certain very low frequencies. The period lengths of around 60 hours
are not related to the length of the day and do not provide any information
about the possible causes of these oscillations. Over a period of twenty years,
constant amplitudes and phase modulations are measured at a few discrete
frequencies.

1 Motivation

The Earth never stands still. Neighbouring celestial bodies and earthquakes create forces
that periodically deform the Earth and its surrounding atmosphere. The measured ac-
celerations allow conclusions to be drawn about the location and strength of the causes.
The Moon, Sun and planets produce about 13,000 perturbation frequencies, which are
tabulated in [3]. Measurements show additional spectral lines from unknown sources.
One possible cause could be continuous gravitational waves. To test this suspicion, ex-
tensive �les of air pressure were examined, which, unlike gravimeters, are hardly a�ected
by earthquakes. Irregular weather phenomena do not produce continuous signals.

2 The Spectrum

The air pressure is not measured continuously, but at �xed intervals of e.g. one hour
(Ts = 1 hour). The reciprocal of Ts is referred to as the sampling frequency fs. The
analog low-pass �lter with the cut-o� frequency 0.5 · fs is usually omitted. Therefore,
the measurement of atmospheric pressure violates the Nyquist-Shannon sampling the-
orem and the spectrum is ambiguous. The total spectrum, which may contain very
high frequencies, is folded into the range 0 < f < 139 µHz, as shown in Figure 1. A
strong signal of the frequency 300 µHz appears at 22.2 µHz (aliasing) and can lead to
misinterpretations.
If the analysis is restricted to f < 20 µHz, the ambiguity can be ignored, as the

amplitudes in the lowest range are at least a factor of 105 higher than the spectral lines
and the noise in the high frequency range (f > 150 µHz).
The spectrum in �gure 1 obviously consists of a continuum and a few strong spectral

lines. Since the noise amplitude at f ≈ 1 µHz is about 107 times larger than at f ≈
100 µHz, it is neither the commonly observed 1/f noise nor the 1/f2 noise. Is it noise
or are there other causes?
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Figure 1): Spectrum of air pressure in Germany, one sample per hour. The database is
the average air pressure between the years 2000 and 2020. The prominent maxima are
explained in the text.

We know what causes the strong spectral lines:

� Although the atmosphere approximates the shape of the Earth, it is not perfectly
spherical. Since the density, pressure and temperature of the atmosphere depend
on the time of day, barometers measure periodic changes at the frequencies f ≈
n · 11.57 µHz = n/(24 hours) with n ∈ 1, 2, 3, ....

� A special feature is the lonely peak at 22.3643 µHz. This is the strongest frequency
at which the moon deforms the earth and atmosphere (tides). This and many other
"astronomical" lines [3] are easy to identify because their frequencies are constant
and unmodulated.

All the spectral lines in the �gure 1 are well below the lowest natural frequency of the
Earth (0S2 at 300 µHz). This refutes the common assumption that resonant antennas
are needed to detect vibrations from extraterrestrial sources.

3 The search area

The table [3] contains several frequency ranges without spectral lines produced by celes-
tial bodies in the solar system. In fact, the large gap at 4.1 µHz < f < 7.45 µHz contains
several consistent lines measured at widely separated locations in Europe (see �gure 2).
If you add the raw data before the spectrum is calculated, you can see that not only the
frequencies of the pressure but also the phases are consistent across Europe. As there is
no known cause for this synchronous pulsation of the air masses in Central Europe, the
properties of several striking coincidences are examined in detail.
From the synchrony of the oscillations it follows that the wavelength λ is signi�cantly

larger than the distance between the locations shown in �gure 2. Assuming λ ≈ 6× 107

m, the propagation speed of these waves is calculated to be at least v = λf ≈ 300 m/s.
This is approximately the speed of sound in air.
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Figure 2): Superimposing a narrow range
of air pressure spectra from Amster-
dam, Berlin, Brussels, Bern, Budapest,
Dublin, London, Paris, Vienna and
Stockholm over the period 1990-01-01 to
2022-07-01 reveals surprising similarities
with no known cause.

4 Data source and preparation

From the �gure 2 you can see that the frequency resolution ∆f should be better than 1
nHz. This value can only be achieved by analysing su�ciently long data chains. Using
the equation

Tmin ·∆f ≥ 0.5 (1)

from Küpfmüller [4], we calculate a minimum duration of 16 years. The DWD [2] stores
air pressure data from many weather stations, which is a good data source after some
preliminary work. In order to reduce the in�uence of local peculiarities and isolated data
gaps, the records of as many barometers as possible, which are distributed throughout
Germany and have been in operation for at least ten years, are added. In the period
2000 to 2009, 64 data chains were found, in the period 2010 to 2019 only 51 data chains.
The coherent addition of many data sets improves the signal-to-noise ratio (SNR) and
makes spectral lines visible that would disappear in the noise when analysing individual
data chains.

5 Phase modulation broadens the bandwidth of the signal

Signals are never perfectly monochromatic, and the deviations allow conclusions to be
drawn about the properties of the source and the transmission path. To obtain this
information, it is necessary to identify and analyse the sidebands, i.e. the accompanying
frequencies on either side of the carrier frequency. If the SNR is poor, no amplitude
modulation can be detected because all the associated spectral lines would have to be
signi�cantly above the noise. This does not apply to frequency or phase modulation if
one is limited to a few discrete modulation frequencies. A Modi�ed SuperHet (MSH) is
a suitable method for demodulating signals below the noise level: You modulate a local
auxiliary oscillator so that its modulation matches the modulation of the signal. If the
imitation is successful, the di�erence frequency fsignal − fosz is constant. This is a clear
and easy to control criterion. Since all the energy of the signal is then concentrated in a

3



single spectral line, the signal can be �ltered in a very narrow band and easily identi�ed
in the noise (see �gure 4). The following analysis is limited to this type of modulation.
Figure 3 shows the typical spectrum of a phase-modulated signal. The structure is

usually very complex and sometimes hardly distinguishable from noise.

Figure 3): Example of a signal spectrum
of frequency 6 µHz phase modulated with
only two di�erent frequencies (without
noise). The total energy is distributed
over more than 40 weak spectral lines oc-
cupying a wide frequency range called the
Carson bandwidth.

Figure 4): Power spectrum (Welch
method) of the signal at f = 4.478 µHz
after applying the MSH method. Com-
pensation of the phase modulations (see
table 1) has eliminated the sidebands and
increased the amplitude of the carrier fre-
quency. The MSH method shifts the sig-
nal frequency to fZF = 1/(1000 hours).

6 The search procedure

Any signal transmission requires a certain bandwidth, which is often much smaller than
the signal frequency. This allows the frequency of a su�ciently wide range around the
signal frequency to be reduced to about 0.3 µHz (superhet method) and then the distance
between two data points to be spread by a factor of a thousand (decimation to Ts =
1000 hours). There are two consequences: The time needed for all the calculations is
signi�cantly reduced and the demodulation is limited to slow modulations with periods of
several weeks. This limitation can be overcome if the modulation frequencies are known.
It makes little sense to look for symmetrical structures as in Figure 3 in a noisy signal

mixture as in Figure 2. This is mainly because a spectrum destroys all phase information.
The MSH method avoids this problem: it does not involve any amount formation and
does not destroy any phase information, so it can recognise and combine related spectral
lines.
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MSH iteratively determines the values of a slow frequency drift and several periodic
phase modulations of a signal. In the end, all modulations are eliminated, the total
energy of the signal is concentrated in a narrow band around the central frequency, and
the amplitude of this spectral line is increased to a level signi�cantly above the noise
level. (Figure 4).

7 Results

The spectra of widely separated barometers in Germany show several consistent lines.
The tables 1, 2 and 3 show the properties of some striking lines. The meaning of the rows:

�Row-2: The modulation frequency of the signal
�Row-3: The period P = 1/fmod

�Row-4: The individual phase shift of the modulation. The reference time is the start of
the measurements on January 2000
�Row-5: The modulation index η of the phase modulation (see section 8)

Table 1): The signal at f = 4.47803 µHz is phase modulated with six di�erent frequencies.
The frequency drift is ḟ = 45.2× 10−20 Hz/s.

Mod-1 Mod-2 Mod-3 Mod-4 Mod-5 Mod-6

fmod (nHz) 0.934 3.42 14.28 31.638 38.70 94.96

P (years) 33.9 9.26 2.22 1.0012 0.819 0.334

φ 4.07 5.44 0.93 4.84 1.79 3.86

η 1.83 2.99 4.59 4.24 4.22 3.62

Table 2): f = 5.854 µHz. The frequency drift is ḟ = 0.88× 10−20 Hz/s

Mod-1 Mod-2 Mod-3 Mod-4 Mod-5 Mod-6 Mod-7

fmod (nHz) 0.963 4.45 9.219 16.78 31.496 40.907 57.13

P (years) 33 7.1 3.44 1.89 1.006 0.775 0.55

φ 0.62 2.84 4.33 5.08 0.797 -0.017 0.766

η 0.39 0.93 2.32 1.59 1.795 0.917 2.07

Table 3): f = 6.3158 µHz. The frequency drift is ḟ = 35.5× 10−20 Hz/s

Mod-1 Mod-2 Mod-3 Mod-4 Mod-5 Mod-6 Mod-7

fmod (nHz) 0.946 1.236 4.187 12.03 32.3021 39.26 57.51

P (years) 33.5 25.7 7.6 2.64 0.982 0.808 0.55

φ 1.69 0.671 4.724 2.87 0.074 4.56 1.96

η 1.44 1.595 4.90 2.652 3.383 5.722 2.00
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In data sets that cover a period of only twenty years, it is di�cult to detect periodic
processes that extend over even longer periods. Since it is hard to distinguish from the
(presumably) linear frequency drift, we did not look for slow modulations with P ≥ 40
years.
Summary:

� All signal frequencies increase in proportion to time.

� Each signal is phase-modulated several times.

� The modulation with an oscillation period of P ≈ 1 year (grey �elds) is probably
caused by the Earth's orbit. It follows that the source of the signal is not in the
solar system.

� It has not been investigated whether the signals are modulated in a 24-hour rhythm,
because the modulation index is too small due to the low rotation speed at the
equator.

8 Interpretation of the results

There was no evidence that the signals were amplitude modulated. What could be the
cause of the surprisingly strong and similar phase modulation (PM) of all the signals
studied? The striking improvement in SNR between the original signal in �gure 2 and
the demodulated signal in �gure 4 is the result of eliminating the phase modulations and
can be explained by the following ansatz

y = sin(2πt · fSignal + ϕmodulation) (2)

The two parameters fSignal and ϕModulation have to be adapted to the problem: The
frequency fSignal can change proportionally to the time and ϕModulation can be the sum
of several sine functions. If the modulation consists of a single frequency fmod, the
equation is

y = sin(2πt(fSignal + tḟ) + η · sin(2πtfmod + φ)) (3)

A sinusoidal PM causes the instantaneous frequency of the signal to oscillate periodi-
cally between the limits fSignal +∆f (maximum blueshift) and fSignal −∆f (maximum
redshift). ∆f is called the frequency deviation. The instantaneous frequency is di�cult
and inaccurate to measure because it is never constant over time. It is easier to deter-
mine the modulation index η using the MSH method and calculate ∆f = η · fmod. (φ is
discussed in section 8.2).
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8.1 The speed of the waves

The frequency deviation ∆f can be interpreted physically: If the signal source or the
receiver or both are moving, the received frequency changes depending on the speed
(Doppler e�ect). If the signal propagates at the speed of light c, then the relativistic
equation

∆f = fSignal ·
(√

c+ v

c− v
− 1

)
(4)

applies, where v is the relative velocity between the source and Earth. For vsignal ≪ c it
is usually assumed that the wave propagates in a medium. There are two solutions: If
the observer is at rest with respect to the medium and the source is moving with velocity
vSource, use the equation

∆f =
vSource · fSignal
vSignal − vSource

(5)

If the signal source is at rest and the observer moves with the speed vReceiver, use

∆f =
vReceiver · fSignal

vSignal
(6)

The measurements show that all signals are sinusoidally phase-modulated with P ≈ 1
year (grey cells in the tables 1..4). Assuming that the sources are far outside the solar
system and in the plane of the ecliptic, the distance between the source and the Earth
decreases and increases every six months. Then the speed of the observer varies between
the extreme values �30 km/s < vEarth < 30 km/s.
This means that equation (4) gives a value for ∆f which is a factor of one hundred

lower than the measurement result. Using equation (6) gives vSignal ≈ c/100. The table
4 shows the velocities vsignal for �ve studied signals in the right column. The average is
vsignal = (2.41±0.54)×106 m/s. This speed is much smaller than the speed of light c, but
much larger than the speed of sound in air (see also section 3) and does not correspond
to any known wave phenomenon.

8.2 The direction of the sources

The phase angle φ in equation (3) allows us to calculate the day B = 365 · φ/2π (day
of the year) on which we receive the maximum signal frequency. Six months later we
measure the maximum value of the redshift.
The meaning of columns in table 4:

Column-1: The signal frequency
Column-2: Oscillation period of the signal modulation with P ≈ 1 year
Column-3: The measured phase angle in equation (3)
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Table 4): Summary of the most important signal properties

fSignal P φ Blueshift Redshift η vsignal
(µHz) (Jahr) DOY DOY ×106 m/s

4.478 1.001 4.84 281 99 4.24 1.00

4.678 1.003 3.023 176 358 1.095 4.06

5.4992 0.989 3.81 221 39 2.425 2.12

5.854 1.014 0.797 46 229 1.795 3.13

6.316 0.981 0.074 4 187 3.383 1.73

Column-3: Day of the year when we measure the highest signal frequency
Column-4: DOY when we measure the lowest signal frequency
Column-5: Modulation index of PM-frequency 31.7 nHz (P = 1 year)
Column-6: Speed of propagation of the wave according to equation (6)

8.3 Other phase modulations

Additional PM (P ̸= 1 year) have been measured, the origin of which can only be
speculated. It is unclear whether these PM originate in the source or in the Earth's
environment. The period durations P are similar to the sidereal orbital periods of the
Sun's planets, but di�er signi�cantly. Ignoring the grey �elds in the tables 1..3 and
numbering the remaining periods accordingly, the �gure 5 shows an astonishing regularity
that is also observed in known planetary orbits.

Figure 5): Logarithm of period lengths (in
years). The colours indicate di�erent ta-
bles 1..3. The location numbers have been
chosen to minimise deviations from lin-
earity. Some location numbers are used
more than once.

Although the signals examined here arrive at di�erent frequencies from di�erent direc-
tions (phase φ), the modulation frequencies seem to follow a universal rule. The straight
line in the �gure 5 corresponds to the equation

Pn = P0 · ek·n (7)

with n ∈ 1, 2, 3, 4..., P0 = 70 days and k = 0.51. A similar equation was used by
Dermott [5] to describe the orbital periods of planets. The assumption that the period
durations in row 2 of the tables 1..3 actually describe planetary orbits around distant
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binary systems leads to a major problem: If the periodic �uctuations in air pressure are
indeed caused by gravitational waves (this is contradicted by the far too low propagation
speed compared to the usual assumption), we measure the phase modulations of heavy
binary systems. Even massive planets can only move the two central stars a little,
certainly slower than v ≈ 30 km/s. However, such high speeds would be necessary to
achieve the measured modulation indices of η ≈ 2.5.
If you try to solve this problem numerically with realistic estimates for the masses

involved using the equation (5), you get propagation velocities of the order of vSource ≈
100 m/s in the immediate vicinity of binary stars. Does the speed of the GW decrease so
much in the presence of large masses? We don't know because no one has ever managed
to solve Einstein's complete equations.

9 Summary

There are no known sources in the Earth's environment that produce waves in the fre-
quency range 4.1 µHz < f < 7.45 µHz. However, it is easy to �nd some consistent lines
in the spectra of gravimeters and barometers from distant locations. Closer examination,
using standard communications techniques, shows that all the lines are phase-modulated
several times. The modulation frequencies follow a strange rule, with one exception:
the rhythm of a PM is almost exactly 365 days (table 4). It is therefore likely that the
Doppler e�ect causes the phase modulation due to the Earth's orbital speed and that
the sources are outside the Solar System.
The evaluation of the equations (4) and (6) of the Doppler e�ect excludes that the

waves travel at the speed of light (c = 3×108 m/s) or the speed of sound (v = 340 m/s).
Do these waves need a medium to propagate?
Perhaps the observed oscillations are gravitational waves from binary star systems. In

our Galaxy there are probably more than 105 binary star systems with periods of several
days, which can only be detected visually if the axis of rotation is specially aligned. It is
likely that most of them have planets that force the central binary to move around the
common centre of gravity. In this way, the additional PMs with periods ranging from a
few months to many years can be qualitatively explained. However, the calculation using
the Doppler e�ect leads to extremely low values for the propagation speed of the GW in
the vicinity of large masses, which contradicts all previous assumptions.

10 Data availability

The DWD [2] stores many historical measurement results from German weather stations.
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