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Abstract

The Collatz conjecture, a longstanding mathematical puzzle, posits
that, regardless of the starting integer, iteratively applying a specific for-
mula will eventually lead to the value 1. This paper introduces a novel
approach to validate the Collatz conjecture by leveraging the binary rep-
resentation of generated numbers. Each transition in the sequence is pre-
determined using the Collatz conjecture formula, yet the path of transi-
tions is revealed to be intricate, involving alternating increases and de-
creases for each initial value.

The study delves into the global flow of the sequence, investigating the
behavior of the generated numbers as they progress toward the termina-
tion value of 1. The analysis utilizes the concept of probability to shed
light on the complex dynamics of the Collatz conjecture. By incorporat-
ing probabilistic methods, this research aims to unravel the underlying
patterns and tendencies that govern the convergence of the sequence.

The findings contribute to a deeper understanding of the Collatz con-
jecture, offering insights into the inherent complexities of its trajectories.
This work not only validates the conjecture through binary representation
but also provides a probabilistic framework to elucidate the global flow of
the sequence, enriching our comprehension of this enduring mathematical
mystery.

1 Introduction

The Collatz conjecture, a perplexing enigma in the realm of mathematics, pos-
tulates that, regardless of the initial integer chosen, the iterative application
of a specific formula will inevitably lead to the value 1. While this longstand-
ing puzzle has captivated the mathematical community for decades, this paper
introduces a groundbreaking approach to validate the Collatz conjecture by
delving into the binary representation of the generated numbers.

In this study, we explore the intricacies of the Collatz conjecture’s behavior
by scrutinizing the binary patterns inherent in the sequence. The transitions in
the sequence are predetermined by the Collatz conjecture formula, yet the path-
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way of these transitions unveils a fascinating interplay of alternating increases
and decreases for each initial value.

Our research goes beyond the traditional examination of the Collatz problem,
offering a unique perspective that leverages binary representation to elucidate
the meaning of operations within the sequence. The investigation then extends
to scrutinize whether the observed behavior aligns with the expectations set
forth by the Collatz conjecture.

Furthermore, this paper employs the concept of probability to illuminate
the complex dynamics governing the convergence of the sequence towards the
termination value of 1. By integrating probabilistic methods, our research aims
to unravel the underlying patterns and tendencies that shape the global flow of
the Collatz sequence.

The insights derived from this study contribute to a deeper understanding
of the Collatz conjecture, offering a dual perspective that not only validates the
conjecture through binary representation but also provides a novel probabilistic
framework. This framework, in turn, sheds light on the inherent complexities
of the trajectories within the Collatz sequence, enriching our comprehension of
this enduring mathematical mystery. [1] [2] [4] [5] [3]

2 Unveiling the Power of Positive Integers in
Digital Form

The digital form of positive integers is commonly represented in binary, where
each digit is called a bit. A bit can take on one of two possible values: 0 or 1.
The rightmost digit holds the least significant value, with each subsequent digit
representing higher powers of 2 as you move towards the left.

In the example ”bin11001,” the rightmost digit is 1, followed by 0, 0, 1, and
the leftmost digit is 1. To convert this binary representation to decimal, you
sum the contributions of each digit multiplied by the corresponding power of 2.
In this case.

1× 24 + 1× 23 + 0× 22 + 0× 21 + 1× 20 = 16 + 8 + 0 + 0 + 1 = 25

Therefore, ”bin11001” in binary is equivalent to the positive integer 25 in deci-
mal notation. This binary-to-decimal conversion relies on the positional value of
each bit, with higher bits contributing to larger powers of 2 in the final decimal
result.

2.1 achievement

Collatz Conjecture Operations Breakdown:
Starting Point
Begin with a positive odd integer, denoted as n.
(i) Doubling Operation: n1 = 2n..(Doubling)
(ii) Increment Operation: n2 = n1 + n......(Increment)
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(iii) Add One Operation: n3 = n2 + 1..(Add One)
(iv) Even Division Operation: If n3 is even, perform m times division until n4

becomes odd: n4 = n3

2m (Even Division) Iteration Process: Repeat the operations
(ii) and (iii) until n4 becomes 1.

Summary of Steps
1. n1 = 2n..(Doubling)
2. n2 = n1 + n......(Increment)
3. n3 = n2 + 1..(Add One)
4. If n3 is even, perform times division until n4 becomes odd: n4 = n3

2m

(Even Division)
5. Repeat steps 2-4 until n4becomes 1.
This sequence of operations continues until the number reaches 1, and the

Collatz Conjecture posits that, regardless of the starting odd integer, this iter-
ative process will always eventually lead to the value 1

2.2 Behavior and meanings of each calculation

Problem Statement
Investigate the behavior related to the calculation of (i), (ii), (iii), and (iv)

using binary representation. The investigation is focused on the relationship
between n1, n2, n3, and n4, where n1 = 2n.

Definitions
• n1: The number obtained by shifting n too left by 1 digit in binary char-

acterization.
• n2: Obtained by adding 1 to an odd number, making n3.
• n3: Always an even number, with a carry-over to digit 2.
• n4: Obtained by shifting n3 one digit to the right.
Operations
(i) Multiple Make Odd Number (MMON):
• 1

2m where m is an integer.
Define: MMON = R1 (ii) Sample Calculation: Given: n = bin1011 Calcu-

late: n1 = bin101110
Other way of writing
• n3 = bin10110
• n4 = bin1011
• R1 = 1

2
Additional Information
• Adding 1 to an odd number n2 always results in an even number n3.
• n4 = n3

2 involves shifting n3 one digit to the right.

1 1 1
1 1 1 0

1 0 1 0 1
add
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3 Highlight and Recognition of the Operations

Let’s break down the information into (i)(ii)(iii) and express it in a more struc-
tured way:

(a) Identified Function
The function can be represented as follows: y=3x+1=2x+x+1 (v) Where:
• x is a positive odd integer.
• y is a positive even integer.
(b) Linear Congruential Generator (LCG)
The LCG can be expressed as follows: R2 = 3, R1 = 1

23 , Here, R2 Number
of Most Correct Continuous Value 0 Digits (NMRZD)

denoted as NMRZD= R2

(iii) Random Number Generator
The next random number generator utilizes a Linear Congruential Generator

(LCG). The value of the next input x is causally related to bit two , to i-1 of
the current input the x here.

(c) Sample
Sample: 101011000
R2=3, , R1 = 1

23 , This implies that the random number generator is utilizing
the sample with for this R2

4 Quality of y Generated

Beyond the numbers , A comprehensive analysis of function y results.
Let +ve O(odd) integer x has i , digits so we calculate as following.

digit no. i+ 2 i+ 1 i i− 1 1
x+ 1 . . . . 1

2x+ 1 1 . . . . 1 1
= y . . . . . . . 0

TABLE ...1

we examine the quality of the output (y) generated by a function applied to a
positive odd integer x with i digits. The calculation involves specific rules, and
the resulting y exhibits distinct characteristics.

Processing Rules
1.Digit Equality
The first digit of x is equal to the second digit of 2x, both being 1.
2. Initial Digits
The first digit of 2x is the same as the first digit of y, and it is set to 0.
3. Pattern in Digits
For digits i and (i+1) of x, and for all digits j where 2 ≤ j ≤ i− 1 , certain
Conditions apply
• Digit i of x equals , digit (i+1) of 2x and is set to 1.
• Digit j of x equals , digit (j+1) of 2x, with values of 0 or 1.
Characteristics of y
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The output y is a result of the specified processing rules. It is constructed
based on the digit relationships outlined above, providing a unique pattern to
the output. The adherence to these rules is essential for the correct functioning
of the given algorithm.

The outlined rules govern the transformation of a positive odd integer x into
the output y through a defined process. Evaluating the quality of y involves
ensuring that these rules are meticulously followed, leading to a reliable and
consistent outcome. This assessment lays the foundation for understanding the
performance and reliability of the function in transforming input data.

Analysis for y Structure when Carry Over or x’s Digit i-1 is 1

The structure of y follows a specific pattern under certain conditions. If
there’s a carry-over from the previous digit (i-1) or if the digit (i-1) of x is 1, y
takes on a distinct form from digit (i+2) to 1, represented as y = bin 1...0.

This pattern becomes more noticeable when the number of digits (i) in x is
even, and the rightmost i-1 digits of y are all set to 0. The reason behind this
is to ensure that the digit structure of x aligns with table 2, leading to those
specific zeros in y.

Additionally, when the digit (i-1) in y is equal to 0, the value of digit i for y
is consistently 1. This is because the structure of x needs to match with table 2,
requiring the rightmost i-1 digits of y to be zeros. Consequently, digit i of y is
always guaranteed to be 1, never taking the value of 0. This condition ensures
that the maximum possible value for R2 in this context is i-1.

Therefore
maximum R2 is i-1.

digit no. i+ 2 i+ 1 i i− 1 8 7 6 5 4 3 2 1
x+ 1 1 0 1 0 1 0 1 0 1

2x+ 1 1 1 0 1 0 1 0 1 0 1 1
= y 1 0 1 0 0 0 0 0 0 0 0 0

TABLE2

Explanation of the Conditional Relationship between the Digits of
x and y for Maximum R2

In the given scenario, the relationship between the number of digits in x
and specific digits in y leads to a distinctive pattern, ultimately influencing the
maximum value of R2.

Conditions
(a)The number of digits (i) in x is odd.
(b)The rightmost i-1 digits of y are all 0.
(c)The digit i and i+1 for y are always 0
Logical Structure

The structure of the digits in x is carefully designed, ensuring that the right-
most i-1 digits of y are exclusively 0. Consequently, this condition sets the stage
for specific characteristics in the digit values of y.
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Inference

The critical observation is that when the above conditions are met, digit i
and i+1 of y are guaranteed to be 0. The significance of this lies in the prevention
of these digits from being 1, thereby establishing a pattern with implications
for the maximum value of R2.

The intricate relationship between the odd number of digits in x and the
specific arrangement of zeros in the rightmost i-1 digits of y leads to a pre-
dictable structure. This structured pattern ensures that digit i and i+1 of y are
always 0, strategically influencing the outcome of R2 in a manner conducive to
the specified conditions.

digit no. i+ 2 i+ 1 i i− 1 7 6 5 4 3 2 1
x+ 1 0 1 0 0 1 0 1 1

2x+ 1 1 0 1 0 1 0 1 0 1 1
= y 1 0 0 0 0 0 0 0 0 0 0

TABLE 3

Analyzing digits, A structured approach to calculating R2 for each variable
y.

5 Consider the four Hypothesis

Hypothesis 1

Let’s clarify the information:
Given the structure of the digits in a number y:
Digit 2 of y is 1. Digit 1 of y is 0.
You have defined two conditions:
R2 (which seems to represent the result when shifting the number to the

right) is 1. R1 is
1
2 . Now, let’s discuss the meaning and the number of hypotheses

for x:
Meaning of Digits Structure
.The structure suggests that the number y can be divided by 2, as indicated

by the condition R1 = 1
2 .

.The fact that Digit 2 of y is 1 suggests that the number can be shifted one
digit to the right, as indicated by the condition R2 = 1.

Number of Hypotheses for x

Hypotheses satisfying the conditions
The number of hypotheses that meet the criteria, where R2 equals 1, is given

by the expression 2i−3. In this context, the leftmost digit is 1, the rightmost
digit is also 1, and the digit at position 2 is 1. The remaining i-3 digits can take
on values of either 0 or 1.

Total Possible Hypotheses
Total number of possible hypotheses:2i−3
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(Most , L(light) digit i = one, most, R(right) digit one = one, and so Other i-
2 digits can have values zero or one.) The NO(number) of hypotheses satisfying
the given conditions is 2i−3 , and the total possible hypotheses are 2i−2.

Please note that the variable ’i’ is mentioned in your explanation, but its
specific value or context is not defined. If ’i’ represents the total number of
digits in the number y, then the explanations provided would be appropriate.
If you have a specific value for ’i’, you can substitute it into the expressions
accordingly.

Therefore
Prospect rate for this ;

number of hypothesis which is satisfied this hypothesis

number of all possible hypothesis
=

2i−3

2i−2
=

1

2

Hypothesis 2

Let given
• Digit 3 of y is one
• Digit 2 of y is zero
• Digit 1 of y is zero
Binary representation of y: bin1...100bin1...100 Now, let’s calculate R2for

this hypothesis: R2 =2
Similarly, following the same approach as Hypothesis 1: R1 = 1

22

The possibility rate of Hypothesis 2 is given by: Possibility rate= 1
22

This hypothesis suggests that the binary representation of y is bin1...100bin1...100,
and the likelihood of this hypothesis is 14 . Further analysis and comparisons can
be made based on these values to determine the most probable hypothesis.

Hypothesis 3

In general (including Hypothesis 1, Hypothesis 2, so that 1 ≤ j ≤ i− 2
digit(j+1) of y is equal to 1, digit 1 to j of y is zero,

R2=j R1 = 1
2j

Possibility rate of this hypothesis = 1
2j

Hypothesis 4

Describing a mathematical scenario involving two sequences, x and y, where
the digits of y are determined based on the parity (even or odd) of the corre-
sponding digits in x. You’ve introduced two cases:

1. If digit number i of x is even, digit i of y is 1.
• R2 is i-1.
• R1 = 1

2i−1
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2. If digit number i of x is odd, digit i and digit i+1 of y are 0.
• Actual R2 is i+1.
• R1 = 1

2i+1

It appears that you are considering the probability of these cases, denoted
as ”Possibility rate,” and you have mentioned Table 2 and Table 3 in relation
to this.

6 Analysis of the Evidence

Evidence of the analysis for digits shape of y Total possibility of rate S is this
Sum= 1

21 + 1
22 + ...+ 1

2i−2 + 1
2i−2

Sum=1 So that analysis lists up all hypothesis regarding to R2

7 Expected R2

So that Hypothesis 1,2,3,4 and the fact that number of digits for x can be even
or odd equally, expected R2 is calculated on following formula.

Expected

R2 =
1

2
[expected R2 for even i+ expected R2 for oddı]

Possibility rate for = Q ( denoted this Q)

R2 =
1

2

i−)∑
j=1

(R2j×wR2j )+(R2(i−1)
×wR2(i−1)

)+
1

2

(i−2)∑
j=1

(R2j×wR(2j))+(R2(i+1)
×wR2(i+1)

)

=

i−2∑
j=1

(R2j × wR2j ) +
1

2
(R2(i−1)

× wR2(i−1)
) +

1

2
+ (R2(i+1)

× wR2(i+1)
)

So that

R2 =
1

21
+

1

22
+ ...+

i− 2

2i−2
+

1

2
(
i− 1

2i−2
+

i+ 1

2i−2
)

R2 = (2 +
i

2i−2
) +

i

2i−2
= 2

This calculation result does not depend on i, it means expected R2 of output
from result A is B for all positive odd integers. Therefore after result A is
executed, y can be divided by 22(R2 = 1

22 ) as an average during result B.Then
next n becomes

3n+ 1

22
........(C)

Generally for integer n > 1 , following relation can be satisfied

3n+ 1

22
< n.........(D)
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8 Proving Collatz Conjecture by Analyzing Op-
erations A and B

The Collatz Conjecture, a long-standing mathematical puzzle, posits that iter-
ating two operations, A and B, on any positive integer will eventually lead to
the number 1. In this discussion, we delve into the dynamics of these operations
and demonstrate how their combination statistically reduces the average value
of the given integer, reinforcing the conjecture.

Operations A and B
Operation A is defined as 3n + 1, which tends to increase the value of n or

number of digit’s. On the other hand, Operation B is the division of n by 2,
effectively decreasing the number of digits when R2 > 0.

Analyzing the Impact
Repetition of A followed by B consistently decreases the value of the n on

average. The iterative nature of these operations implies that the process con-
tinues until n reaches the minimum positive integer, 1. This is achieved by
dividing by 2m, ultimately resulting in the minimum number of digits, 1.

Expectation and Reality
While the expected value is statistically one, it is crucial to note that it

becomes a certainty only after a sufficient number of iterations. Operation A,
with its 3n + 1 increment, contributes to both an up in the value of n and
an increase in the number of digits. work B, the division by 2, decreases the
number of digits, particularly when R2 > 0.

Exceptions and Looping
Despite the compelling logic, exceptions can occur due to the possibility of

looping. If a loop occurs, it prevents the completion of enough iterations of A
and B, obstructing the realization of the conjectured target. Therefore, while
the presented argument provides strong evidence for the validity of the Collatz
Conjecture, the potential for looping introduces an element of caution.

The combination of operations A and B, when iterated sufficiently, supports
the Collatz Conjecture by demonstrating a consistent decrease in the average
value of n. The exception, in the form of potential looping, acknowledges the
need for further exploration and verification. Nonetheless, the overall analysis
strengthens the case for the Collatz Conjecture’s correctness.

Investigation of Looping Conditions

The given loop is represented as follows:

n1, n2, n3, . . . , nm−1, nm nm = n1 (E)

There are two required conditions for looping:

On (C), the relation is n1 > nm on average, but n1
∼= nm is also required

for n1 = nm to hold.
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Regarding (1), on (C), m iterations make nm in an average as follows from
n1:

nm
∼=

(
3n1 + 1

22

)m

∼=
(

3

22

)m

· n1 =

(
3

4

)m

· n1 (n ≫ 1)

This decrease in n requires an increasing factor to accomplish (E). The in-
crease factor is only for R2 = 1

2 , based on hypothesis 3. In such a hypothesis,
the next n is given by 3n+1

2 .
When the existence rate of this factor is about 0.4 of the total iteration m,

n1 = nm is realized with the following calculation:

nm
∼=

(
3n1 + 1

22

)l (
3n1 + 1

22

)m−l

nm
∼=

(
3

22

)l

·
(
3

2

)m−l

· n1

nm
∼=

(
3

22

)0.6m

·
(
3

2

)0.4m

· n1 (F )

Because on (1), the occurrence possibility of 3n+1
22 is 1

2 , the possibility for

n1 = nm is
(
1
2

)0.4m
. This depends on the total iterations.

For illustration

(
1

2
)0.4m = (

1

2
)10 = 0.06 when total iteration = 10

(
1

2
)0.4m = (

1

2
)100 =

9

103
when total iteration = 100

Probability Analysis of Digit Patterns in Binary Sequences
In this analysis, we explore the probability of specific digit patterns occurring

in binary sequences, particularly focusing on sequences where the number of
digits is denoted by ’i.’ The hypothesis suggests that if the i-th digit of a
sequence is 1, and all other digits can take values of 0 or 1, the probability of
obtaining a sequence close to 2i−1 diminishes as i increases.

Probability Calculation
For a given i, the probability of having the same digit sructure (n1 = nm)is

determined by the likelihood of the remaining i-2 digits (excluding the i-th digit
and the first digit) taking values of 0 or 1. This probability is expressed as
( 12 )

i−2.
Impact of i on Probability
As i increases, the probability of obtaining the same digit structure decreases.

For instance, if i is large, such as i = 35 (representing sequences around a billion),
the probability becomes significantly small, approximately 1

1010 . This observa-
tion implies that longer spans in looping sequences have a lower likelihood of
occurring.
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Relation to Number Size
The analysis suggests that larger numbers with more digits have a smaller

probability of exhibiting the same digit structure. This conclusion aligns with
the intuition that as the magnitude of the number increases, the chances of
specific digit patterns repeating decrease exponentially.

Formation of Loops
The analysis also hints at the entry of the value 1 into looping sequences.

These loops manifest as span 1, where i = 1, creating a unique case in the overall
probability analysis.

The probability of obtaining specific digit patterns in binary sequences is
inversely proportional to the number of digits in the sequence. As the digit span
increases, the likelihood of identical digit structures decreases, emphasizing the
diminishing probability of longer span looping occurrences. The relationship
between the size of the number and the probability of specific digit patterns
provides insights into the distribution and behavior of binary sequences.

9 Conclusion

In conclusion, the Collatz conjecture, while theoretically correct, introduces a
fascinating element of uncertainty due to the possibility of looping. Although
no instances of looping have been discovered despite extensive trials with large
initial numbers, the systematic correctness of the conjecture remains a point of
consideration. The conjecture can be deemed correct as long as no looping cases
are found, and its statistical correctness is supported by the lack of evidence
to the contrary. The degree of correctness could be enhanced by further explo-
ration and analysis to more accurately determine the non-existence possibility of
looping. Nevertheless, the Collatz conjecture stands as an intriguing mathemat-
ical puzzle, highlighting the delicate balance between its theoretical correctness
and the infinitesimally small chance of encountering a looping scenario.
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