Fit probability density function without knowing the form of distribution

Dajun Chen

Abstract

This paper proposes two methods for fitting probability density function only with samples from the distribution. The methods are inspired by Generative Adversarial Networks¹. The demos run in Pytorch and they are available on https://github.com/chendajunAlpha/Fit-probability-density-function.

Motivation

After reading the paper of GAN^1 , I wonder what will happen if the labels equal 1 or -1 instead of 1 or 0 during training the discriminative model, and how about 1 or 2, 31 or 11, and so on, so I may try a or b to get the best a and b by doing some mathematical things.

Method one

Denote two distributions by D_1 and D_2 .

Denote the probability density functions of D_1 and D_2 by $p_1(x)$ and $p_2(x)$, respectively.

Denote the probabilities of D_1 and D_2 on the interval $[x, x + \Delta x]$ by $P_1([x, x + \Delta x])$ and $P_2([x, x + \Delta x])$, respectively.

Denote the sets of samples from D_1 and D_2 by S_1 and S_2 , respectively.

Denote the numbers of elements in S_1 and S_2 by n_1 and n_2 , respectively.

Denote the neural network to fit the probability density function $p_1(x)$ by f(x).

Denote sample in $S_1 \cup S_2$ by $\vec{s} = (i, j, x)$, where x is the value, j differentiates the samples whose

values are the same, and $i = \begin{cases} 1 & \vec{s} \in S_1 \\ \\ 2 & \vec{s} \in S_2 \end{cases}$

Let
$$label(\vec{s}) = label(i, j, x) = \begin{cases} a & i = 1 \\ b & i = 2 \end{cases}$$

Denote the number of labels which equal a at the position x by $n_1(x)$.

Denote the number of labels which equal b at the position x by $n_2(x)$.

Let
$$loss = E[f(x) - label(i, j, x)]^2$$

After training, f(x) = E[label(i, j, x)]

$$=\frac{a\cdot n_1(x)+b\cdot n_2(x)}{n_1(x)+n_2(x)}$$

$$= \lim_{\Delta x \to 0} \frac{a \cdot P_1([x, x + \Delta x]) \cdot n_1 + b \cdot P_2([x, x + \Delta x]) \cdot n_2}{P_1([x, x + \Delta x]) \cdot n_1 + P_2([x, x + \Delta x]) \cdot n_2}$$

$$= \lim_{\Delta x \to 0} \frac{a \cdot p_1(x) \cdot \Delta x \cdot n_1 + b \cdot p_2(x) \cdot \Delta x \cdot n_2}{p_1(x) \cdot \Delta x \cdot n_1 + p_2(x) \cdot \Delta x \cdot n_2}$$

$$= \frac{a \cdot p_1(x) \cdot n_1 + b \cdot p_2(x) \cdot n_2}{p_1(x) \cdot n_1 + p_2(x) \cdot n_2} \cdot \lim_{\Delta x \to 0} \frac{\Delta x}{\Delta x}$$

$$= \frac{a \cdot p_1(x) \cdot n_1 + b \cdot p_2(x) \cdot n_2}{p_1(x) \cdot n_1 + p_2(x) \cdot n_2}$$

When b = 0, $f(x) = \frac{a \cdot p_1(x) \cdot n_1}{p_1(x) \cdot n_1 + p_2(x) \cdot n_2} = \frac{a \cdot p_1(x)}{p_1(x) + p_2(x) \cdot n_2/n_1}$

When D_2 is a uniform distribution, let $p_2(x) = \begin{cases} p_2 & x \in [l,r] \\ & , \text{then} \\ 0 & x \notin [l,r] \end{cases}$

$$f(x) = \frac{a \cdot p_1(x)}{p_1(x) + p_2 \cdot n_2/n_1} \quad \forall x \in [l, r]$$

When $p_2 \cdot n_2/n_1$ is large enough to ignore $p_1(x)$, $f(x) \approx \frac{a \cdot p_1(x)}{p_2 \cdot n_2/n_1} \quad \forall x \in [l, r].$

Considering $p_2(x) = \begin{cases} p_2 & x \in [l,r] \\ & , \text{ and divisor has to be non-zero, the interval } [l,r] \text{ has to cover} \\ 0 & x \notin [l,r] \end{cases}$

the interesting area of D_1 .

When
$$a = p_2 \cdot n_2/n_1$$
, $f(x) \approx p_1(x) \quad \forall x \in [l, r]$.

Method two

Denote the same as the method one, then

$$f(x) = \frac{a \cdot p_1(x) \cdot n_1 + b \cdot p_2(x) \cdot n_2}{p_1(x) \cdot n_1 + p_2(x) \cdot n_2}.$$

When $a = 0, b = 1, n_1 = n_2, p_2(x) = \begin{cases} p_2 & x \in [l, r] \\ & , \\ 0 & x \notin [l, r] \end{cases}$

$$f(x) = \frac{p_2}{p_1(x) + p_2} \quad , \quad \forall x \in [l, r] \quad \Rightarrow$$
$$p_1(x) = p_2 \left(\frac{1}{f(x)} - 1\right) \quad , \quad \forall x \in [l, r]$$

Reference

¹ Goodfellow I , Pouget-Abadie J , Mirza M ,et al.Generative Adversarial Nets[C]//Neural Information Processing Systems.MIT Press, 2014.DOI:10.3156/JSOFT.29.5_177_2.