L[n]garithms

Juan Elias Millas Vera
 Zaragoza (Spain) February (2024)

Dedicated to Arya, a cat with a tiger soul.

0- Abstract

I introduce in this paper a new perception of the concept of logarithm. Generalization of the $\log a(b)$ and doing some combinations we can assume that the log concept is just a case of a more abstract idea.

1- Introduction

The log concept was developed by John Napier in 1614. The main idea of logarithms is to be the inverse of exponential function so

$$
\begin{equation*}
e^{\mathrm{f}(\mathrm{x})} \Leftrightarrow \log _{e} f(x) \tag{1}
\end{equation*}
$$

but we can carry this concept to 3-variable base-power being this variables numerical

$$
\begin{equation*}
b=a^{c} \Leftrightarrow \log _{a} b=c \tag{2}
\end{equation*}
$$

One simple application of that is the riemannian surfaces in which we could see a difference of concepts between the exponent concept and the power of a function concept, the idea could be very similar but topologically speaking there exists particularities.

2- L[n]garithms

Following my paper about algebraic operation notation ${ }^{1}$, we can establish a more complex concept of logarithm, from the basic arithmetic operations, we define the mathematical expression

$$
\begin{equation*}
l[n] g_{a} b=c \tag{3}
\end{equation*}
$$

As a the expanded concept of the canonical logarithm. And we assign this different behaviors:

$$
\begin{gathered}
l[1] g_{a} b=c \Leftrightarrow b=a+c \\
l[2] g_{a} b=c \Leftrightarrow b=a \cdot c \\
l[3] g_{a} b=c \Leftrightarrow b=a^{c} \\
l[-1] g_{a} b=c \Leftrightarrow b=a-c \\
l[-2] g_{a} b=c \Leftrightarrow b=a \div c \\
l[-3] g_{a} b=c \Leftrightarrow b=\sqrt[c]{a}
\end{gathered}
$$

and with null concept

$$
\begin{equation*}
l[0] g_{a} b=c \Leftrightarrow a=0, b=0, c=0 \Leftrightarrow 0=0 \tag{10}
\end{equation*}
$$

to the more recent concepts of Hyperoperations

$$
\begin{align*}
& l[4] g_{a} b=\left(c_{1}, c_{2}\right) \Leftrightarrow b=a^{\left(c_{1} \uparrow\left(c_{2}\right)\right)} \tag{11}\\
& l[5] g_{a} b=\left(c_{1}, c_{2}, c_{3}\right) \Leftrightarrow b=a^{\left.\left(c_{1} \uparrow c_{2} \uparrow\left(c_{3}\right)\right)\right)} \tag{12}\\
& I[-4] g_{a} b=\left(c_{1}, c_{2}\right) \Leftrightarrow b=\sqrt[{c_{2} \sqrt{c_{1}} \sqrt{a}}]{\sqrt{c_{3}} \sqrt{c_{2}} \sqrt[c_{c_{1}}]{a}} . \tag{13}\\
& l[-5] g_{a} b=\left(c_{1}, c_{2}, c_{3}\right) \Leftrightarrow b=\sqrt{\sqrt{2}} . \tag{14}
\end{align*}
$$

I used Knuth's up arrow to the optimal visualization of the concept, not using exponent towers cause the font problems.
So as we can see the classic logarithm is just a case of this more global concept, being the classic logarithm tool just a part in a bigger set of mathematical tools

$$
\begin{equation*}
l[3] g_{a} b=\log _{a} b \tag{15}
\end{equation*}
$$

3- Numerical examples.

Lets do some numbers to help the memorization of concepts.

$$
\begin{align*}
& l[1] g_{4} 6=2 \Leftrightarrow 6=4+2 \tag{16}\\
& l[2] g_{5} 10=2 \Leftrightarrow 10=5 \cdot 2 \tag{17}\\
& l[3] g_{4} 16=2 \Leftrightarrow 16=4^{2} \tag{18}\\
& l[-1] g_{17} 12=5 \Leftrightarrow 12=17-5 \tag{19}
\end{align*}
$$

*The positive value in the numerical result should be done, remember to apply negative sign as indication of operation not as indication of negativeness.

$$
\begin{gather*}
l[-2] g_{8} 4=2 \Leftrightarrow 4=8 \div 2 \tag{20}\\
l[-3] g_{9} 3=2 \Leftrightarrow 3=\sqrt[2]{9} \tag{21}
\end{gather*}
$$

The hyperoperations constructions are left to the reader.

4- Conclusions.

As we could see the $1[n]$ garithm concept is very near to algebraic structures of the lineal equations and a very interesting aspect of functional analysis which can be applied to number theory for example. The main conclusion is that $1[n] g$ tool are just a reconsideration of the equation problem solving.

5- References:

${ }^{1}$ Millas Vera, Juan Elias. Number Notation for Operations and Hyperoperations (https://vixra.org/abs/2311.0112)

Ideas for the paper from:

- Ramanujan, Srinivasa. HIGHLY COMPOSITE NUMBERS. Proceedings of the London Mathematical Society, 2, XIV, 1915, 347-409.
- Zalamea, Fernando. YouTube video: Seminario de Filosofía Matemática - RIEMANN (3) -2020-II

