A New Attempt to Check Whether Ramanujan's Formula $\pi^{4} \approx 97.5-1 / 11$ is a Part of Some Completely Accurate Formula

Janko Kokošar ${ }^{1}$
${ }^{1}$ SIJ Acroni d.o.o., Cesta Borisa Kidriča 44, SI-4270 Jesenice, Slovenia, janko.kokosar@gmail.com

February 17, 2024

Abstract

Intuitively, it seems that Ramanujan's formula $\pi^{4} \approx 97.5-1 / 11$ is an approximation for some perfectly accurate formula for π. Here is one attempt to prove this. The principle of proof, however, is based on closeness of the every rest term to the inverse of integers. Although it is indeed somewhat closer to integers than it is on average, this proof is not complete. So we cannot say for sure whether this proves or disproves that this Ramanujan's formula has higher approximations; however, it gives hints and opens up space for further research. Moreover, this attempted proof is quite original. Also, such a method could also help in physics.

1 Introduction

I came across Ramanujan's formula [1-3]

$$
\begin{equation*}
\pi^{4} \approx 97.5-1 / 11 \tag{1}
\end{equation*}
$$

The formula is very simple and very accurate, maybe even the most simple and accurate among the formulas that are approximate for π and which are not supposed to be part of the completely exact formula for π. With such a precise and simple formula, intuition hints us that it is only a part of some completely exact formula for π.

Similarly, our intuition hints at some physical formulas, such as Eq. (8) in Ref. [4]. It would be well to check such intuitions, i.e. in general it would be well to develop some system where we would estimate for both such types of formulas what these probabilities are, [3]. Physical formulas have a disadvantage because the measurements of physical constants are limited in accuracy, but this disadvantage does not exist with mathematical constants such as π. So, for the sake of the development of such a system, it would be good to find out for the above formula if either it is just random, or it is a part of some completely accurate formula for π.

I asked an expert on Ramanujan, and he said that to the best of his knowledge of this Ramanujan mathematics, Eq. (1) is not a part of a perfectly precise formula. But such experts should have said more here.

However, I undertook some such analysis, which is described below. The approach is statistical. It is not exact, but it indicates the way how this could be proved.

2 The first calculation

I am trying to find a continuation with the following formula

$$
\begin{equation*}
22 \pi^{4}=Z_{0}+1 / 363893 \bullet 9185948275382260911148230846962304592806150700 \ldots \tag{2}
\end{equation*}
$$

where $Z_{0}=2143=22 \times(97.5-1 / 11)$, so Equation " $22 \pi^{4} \approx Z_{0}$ " is only Eq. (1). (Sign • means decimal point, so it is easier to notice it. This will be used where necessary.)

I noticed that the denominator is close to an integer. The deviation is only:
$o_{1}=-0.081405172461773908885176915303769540719384929939696468590477263 \ldots$
So I make the next step of this formula
$22 \pi^{4}=Z_{0}+1 / Z_{1}+1 / 1626663387702 \bullet 140856794990826442569779214847497211534792897518343030620 \ldots$
Where $Z_{1}=363894$, so here we round to an integer and so on.
Note: The improvements follow this pattern throughout the document.
Now, the deviation from integer is:
$o_{2}=0.140856794990826442569779214847497211534792897518343030620 \ldots$

And the next step is $22 \pi^{4}=Z_{0}+1 / Z_{1}+1 / Z_{2}-1 / 18785276046233368436963209 \bullet 86446262128910816644904993895658 \ldots$
Where $Z_{2}=1626663387702$.
Now, the deviation from integer is:
$o_{3}=0.1355373787108918335509500610434171612923497471048907487832802361 \ldots$
And the next step is
$22 \pi^{4}=Z_{0}+1 / Z_{1}+1 / Z_{2}+1 / Z_{3}-$
$1 / 2603610896783789419814126181633772925661714322493895 \bullet 053407 \ldots$
where $Z_{3}=-18785276046233368436963210$.

Now, the deviation from integer is:
$o_{4}=-0.053407844800196142897905281347686559276107531925726069121921474814$
905734963456215869206398823293641457491071680355917077695678778466613401 3775590775258236849693990908874352025930957864151526435...

And the next step is
$22 \pi^{4}=Z_{0}+1 / Z_{1}+1 / Z_{2}+1 / Z_{3}+1 / Z_{4}$
$+1 / 12692498128713841548167559386868236993394212875639930372812667711595389675$ $4998173958397444503914207334649 \bullet 7876972939217222727323411762002845098745580594$ 361373929164017018523152400443644986994137823574428001837713568414466380088014 483678474079202720140258511101642923743604874980621796322212395086306990789431 511793982278206486245046207802396925853004281318326783455832771560754753614604 112873677491981111808388279558158789438557781483049691646732221783083736376878 2209077379189508801132196449717746689729707343128...
where $Z_{4}=-2603610896783789419814126181633772925661714322493895$.

Now, the deviation from integer is:
$o_{5}=-0.2123027060782777272676588237997154901254419405638626070835982981 \ldots$
And the next step is
$22 \pi^{4}=Z_{0}+1 / Z_{1}+1 / Z_{2}+1 / Z_{3}+1 / Z_{4}+1 / Z_{5}$
$+1 / 75881985549447342286084491947653507550371351704545628520755740283708062463$ 080555642318811682506854712810080717435259505098060211878852024537230248979738 $095106348543154553121162703593608598067552976744772260480 \bullet 82952808613369256371$ 438367242909849694032725885400507143039349360358884631550899275216121601930517 204340280425575140917565329512617661262588451150700967101451884200017194722222 760730525121475523899929490244796512173853664910227767378185953129689889861689 039769794068113197555452133247657587025921276446384225797246140405889408575073 5427831512290562...
where $Z_{5}=12692498128713841548167559386868236993394212875639930372812667711595$ 3896754998173958397444503914207334650 .

The deviation from integer is
$o_{6}=-0.17047191386630743628561632757090150305967274114599492856960650639$ $6411153684491007247838783980694827956597195744248590824346705 \ldots$

And the next step is
$22 \pi^{4}=Z_{0}+1 / Z_{1}+1 / Z_{2}+1 / Z_{3}+1 / Z_{4}+1 / Z_{5}+1 / Z_{6}$
$+1 / 33777269230650539841384538364468972930286296331320748917194428949109122551$ 614476323112132838296227716659471869777431419380396684794238497567006203387446 28382333975383678531128675583026584150468578606838505586529454003257280335631 43527547369835325883587771070516634711360645661567560065667628877222822706021 58454090997946704943363867276534856234621242648555190180708583724489438590530 $852243133058122237128932305362892908 \bullet 2150722135423029860882021904868899709609$ 40272449543672135715489638132476760143777386238189784428711143038872259389117 23990433214704830259148149708822307873132362484660414534506419794116382999938 28090240148091126463928546181664622710624141276060164174201528993392838494345 6961648708005787808165380898091354488432286989644048...

Where $Z_{6}=758819855494473422860844919476535075503713517045456285207557402837$ 08062463080555642318811682506854712810080717435259505098060211878852024537230 248979738095106348543154553121162703593608598067552976744772260481.

The deviation from integer is:
$o_{7}=0.215072213542302986088202190486889970960940272449543672135715489638132$ 47676014377738623818978442871114303887225938911723990433214704830259148149 70882230787313236248466041453450641979411638299993828090240148091126463928 5461816646227106241412760601641742015289933928384943...

The next step is:
$22 \pi^{4}=Z_{0}+1 / Z_{1}+1 / Z_{2}+1 / Z_{3}+1 / Z_{4}+1 / Z_{5}+1 / Z_{6}+1 / Z_{7}$
$-530474810245743356547229434797754627947180917104097352712553796001475$
03203826921507926794513532551294849468550591940766605292020204368530808943
01227324170307181051679179139301687349626329292059678412453160681509000019 27967616667970261513133608957749726659776590869468881038999343236751135668 44075653653850532772060617695390358038867430435324357004496312751502520095 02020203122873952918392339142839255011190477279052779221935070339104612294 92594502800564561765051657774660420528361954067839634447889562780882100828

43111121416134917597186478383634984232662217336537624758271795853393559874 33660786382321814119817226179462895843168305175094375767057275431535408025 30894600724085649955264635623194814290741329112052514405733451600416881104 21318282794673251647986062723661076489139384488120321198281250922044307031 $12985088849013315413903641983 \bullet 38842780675318305394351873666841904502166331$ 82730771490209355104592535151512567043102543585951576839587543059934507712 68855589079275609818646712558297683131167456421512888413922557431514113003 75913139700470649168438319771807624510149235455712316299242630378108538675 00133870953163848087936505852147580547875655365039861697407177080733683275 80803621980169915014333959844295385861203926437422963226629460286590472378 95100090702582274018849950244116816162387707579929398554605096817715843904 71670425710182171147245302962910226044588271732252609497940985316161639113 65155244973083513835532822434616542018854475883358263061765924468704043259 29420329004323194922444268940683906344644503912502446632326254438506937687 71921238883433609391917851650734893285449105044968798850152481583672164071 89209935243230706278724726563716760195760400940503761469225734939467043730 28899758011742147915020143800060874912772494994288630847023829633250619878 85241288619156580995089553020838205202235630393098763652359214910126755418 686362420882626235491215399741...

Where $Z_{7}=337772692306505398413845383644689729302862963313207489171944289491$ 09122551614476323112132838296227716659471869777431419380396684794238497567006 20338744628382333975383678531128675583026584150468578606838505586529454003257 28033563143527547369835325883587771070516634711360645661567560065667628877222 82270602158454090997946704943363867276534856234621242648555190180708583724489 438590530852243133058122237128932305362892908.

The deviation from integer is:
$o_{8}=$
$-0.388427806753183053943518736668419045021663318273077149020935510459253$ 51515125670431025435859515768395875430599345077126885558907927560981864 67125582976831311674564215128884139225574315141130037591313970047064916 84383197718076245101492354557123162992426303781085386750013387095316384 80879365058521475805478756553650398616974071770807336832758080362198016 9915014333959844295385861203926437422963226...

Where $Z_{8}=$ - 530474810245743356547229434797754627947180917104097352712553796001475 03203826921507926794513532551294849468550591940766605292020204368530808943 01227324170307181051679179139301687349626329292059678412453160681509000019 27967616667970261513133608957749726659776590869468881038999343236751135668 44075653653850532772060617695390358038867430435324357004496312751502520095 02020203122873952918392339142839255011190477279052779221935070339104612294 92594502800564561765051657774660420528361954067839634447889562780882100828 43111121416134917597186478383634984232662217336537624758271795853393559874 33660786382321814119817226179462895843168305175094375767057275431535408025 30894600724085649955264635623194814290741329112052514405733451600416881104 21318282794673251647986062723661076489139384488120321198281250922044307031 12985088849013315413903641983 , etc.

3 Analysis of results of o_{i}

We are mainly interested here in analysis of the values of o_{i}, although maybe in future the correlations among the values of Z_{i} could also be interesting for analysis. If the values of o_{i} were random, then their average of $\left|o_{i}\right|$ should be close to 0.25 for a large number of o_{i} s. Here comes the question of how to evaluate deviation from random distribution of $o_{i} \mathrm{~s}$. Namely, it is interesting that o_{1} to o_{7} are all smaller than 0,25 . I simply ended here when $o_{8}>0.25$, because I assume that once $o_{8}>0.25$ happens, then the values of o_{i} at $i>8$ will no longer be very small, so the probability of randomness, p, will no longer decrease. ${ }^{1}$ However, there is a question as to what exactly would be the best statistical calculation of p.

Namely, there are several options, and the essential ones are:

1. This series may actually consist only of terms $1 / Z_{i}$. (Where any Z_{i} is an integer, except for 0 . i means a counter.)
2. $1 / Z_{i}$ can be a good approximation only at the beginning, then not anymore.
3. It can be some other formula independent of $1 / Z_{i}$.
4. This formula may not exist at all, and o_{i} s are just random.

Now it is necessary to make such analysis, that it will find probability for every one of such options. In these calculations, o_{1} should not be taken into account in principle, because we obtained this hypothesis with its help. (But this is not 100% sure, this can also be an indicator that the exact background formula exists.) As one estimate, I chose to calculate the average of $\left|o_{2}\right|$ to $\left|o_{8}\right|$, which is $0.188011 \ldots$, and simulated the probability that such a low value is just a coincidence in these 7 locations, which is, in other words, the calculation of the p value, and it gives $p \approx 0.15$. However, this is really just the beginning of a model that maybe would be calculated correctly once in future. But we do not know how to choose these intervals.

For every option of 1 to 3 it is difficult to choose the right statistical estimate, i.e. the right model for calculation of p. Even if we only assume option 1, these $\left|o_{i}\right| \mathrm{s}$ need not always be very small.

So the models for three $p \mathrm{~s}$ are not clear.

4 Repeated calculation with factor 6

Value $\left|o_{1}\right|$ decreases if we take into account the factors 2, 3, and 6 . Namely, 363894 is divisible by 6 . The cofactor 60649 is a prime. This way we get a smaller deviation from integer.
$6 \times 22 \pi^{4}=6 \times 2143+1 / 60648 \bullet 986432471256371015185803847449371743213435845010050588568253 \ldots$
Now the denominator is 6 times closer to integer than in Eq. (2).
The deviation from integer is only
$o_{1}=-0.013567528743628984814196152550628256786564154989949411431746210 \ldots$
I do the next step of this formula
$132 \pi^{4}=12858+1 / 60649+1 / 271110564617 \bullet 023476132498471073761629869141249535255798816253 \ldots$
Deviation from integer is only:
$o_{2}=0.023476132498471073761629869141249535255798816253 \ldots$
Again, I do the next step of this formula

[^0]$132 \pi^{4}=12858+1 / 60649+1 / 271110564617-1 / 3130879341038894739493868 \bullet 3107437702148513$ 61074841656492763...

The deviation is:
$o_{3}=0.310743770214851361074841656492763 \ldots$
The next step of this formula is
$132 \pi^{4}=12858+1 / 60649+1 / 271110564617-1 / 315449781708146948807233172017206937415829083$
$71773 \bullet 72887672212172496724354800183240007121412321671398$
The deviation is:
$o_{4}=0.27112327787827503275645199816759992878587678328602$

5 Conclusions about the second calculation

So here a smaller number of consequtive terms with $\left|o_{i}\right|<0.25$ is, but it could prove significant that $\left|o_{1}\right|$ and $\left|o_{2}\right|$ are much smaller than before, they are very close to zero.

Otherwise, it is possible to try factors 2 and 3 here.

6 Conclusions

So we wonder how much to believe in this derivation. I have not yet provided tangible statistical proof. In my intuitive opinion, the upgrade for Eq. (1) is not so credible as the physical background of Eq. (8) in Ref. [4]. But I posted this derivation here, so that it is published, and so that better analyzes will follow, i.e. that someone will find an answer to this problem.

Otherwise, it would be good if $\left|o_{i}\right|<0,25$ were true at all i s. This would mean that $p \approx 0$. But they break up at $i=8 .{ }^{2}$ Now the question is how to assess this statistically, how much to take into account in the sequence, and either the initial ones or all of them are important. Additionally, we have to ignore the $\left|o_{1}\right|$, but not always.

Indeed, here the real formula in the background (if it exists) can be based on either of points 1,2 , or 3 in Section 3. Even at point 1 it is possible that these integers can only be known at the beginning, but then they hide to something else. Therefore, it is difficult to evaluate this statistically.

I admit that I have never seen such fast convergence. So, maybe this will be also one control for 4 points in section 3.

Otherwise, the main goal for this formula is to check whether or not it is a part of a completely exact formula for π. A broader goal is to develop a system where we would more accurately estimate the probability of the existence of exact and simple formulas for π that are not part of a completely exact formula. At the same time, in a more general way, the aim is to develop a similar system, where for the guessed physical formulas we will find the probability that they have a physical basis, for instance Eq. (8) in Ref. [4].

However, whatever is already with Eq. (1), this paper is already proof that many digits of π can be practically used in physics. Namely, this paper is a part of an attempt to help count how many exact and simple formulas for π there are that are just random, i.e., are not a part of some exact formula for π. So this paper tries to find out for Eq. (1), if either it is random, or is a part of some exact formula

[^1]for π. (Intuitively, it seems to be a part of an exact formula, but one would have to prove either this or the opposite.) This would once give the probability p that some formula for π is random. Analogously, we are interested in guessed simple and very accurate formulas in physics, for example for Eq. (8) in Ref. [4], what is the probability p that this formula has no physical basis. In any case, some system for determining such probabilities should be built, e.g. Ref. [3].

Maybe one day a similar method will be found that will also prove or disprove my claim. Perhaps there will also be a supplement to this method of mine and a final assessment of what we get from it. There is also AI software that may do this one day, $[7,8]$.

References

[1] Janko Kokosar, "An Unintentional Repetition of the Ramanujan Formula for π, and Some Independent Mathematical Mnemonic Tools for Calculating with Exponentiation and with Dates," viXra, 1-11 (2020); Preprint https://vixra.org/abs/2005.0208.
[2] Janko Kokosar, "A Somewhat Intuitive Visual Representation of the Formulae for π^{3} and Ramanujan's π^{4}," viXra, 1-9 (2022); Preprint https://vixra.org/abs/2212.0017.
[3] Janko Kokosar, "Similarity of a Ramanujan Formula for π with Plouffe's Formulae, and Use of This for Searching of Physical Background for Some Guessed Formula for the Elementary Physical Constants," viXra, 1-12 (2022); Preprint https://vixra.org/abs/2206.0147.
[4] Janko Kokosar, "Guessed formulae for the elementary particle masses, interpretation and arguments of them and a new view on quantum gravity," viXra, 1-19 (2011); Preprint https://vixra.org/abs/1103.0025.
[5] Web Page https://www.mathsisfun.com/calculator-precision.html.
[6] Web Page https://www.wolframalpha.com/examples/mathematics/numbers/arbitrary-precision.
[7] Technion - Israel Institute of Technology, "The Ramanujan Machine: Researchers have developed a 'conjecture generator' that creates mathematical conjectures," PHYS.ORG, (2022); Link https://phys.org/news/2021-02-ramanujan-machine-conjecture-mathematical-conjectures.html.
[8] Gal Raayoni, Shahar Gottlieb, Yahel Manor, George Pisha, Yoav Harris, Uri Mendlovic, Doron Haviv, Yaron Hadad Ido Kaminer, "Generating conjectures on fundamental constants with the Ramanujan Machine," Nature 590, 67-73 (2021); Link https://www.nature.com/articles/s41586-021-03229-4.

[^0]: ${ }^{1}$ Of course, it would be interesting to have calculated terms of o_{i} at $i>8$. Maybe someone will calculate it.

[^1]: ${ }^{2}$ At the beginning it even looked like this, with a large number of i 's was valid $\left|o_{i}\right|<0,25$, I used software [5]. Then I realized that the software was using a rounded value for π, so the calculations were wrong. The calculations published here are probably correct, because I started to combine the result with [6].

