PROOF OF RIEMANN HYPOTHESIS VIA ROBIN'S THEOREM

DMITRI MARTILA

Abstract

I show that the minimum of the function $F=\mathrm{e}^{\gamma} \ln (\ln n)-$ $\sigma(n) / n$ is found to be positive. Therefore, $F>0$ holds for any $n>5040$.

MSC Class: 11M26, 11M06.

Robin's Theorem [1] states that if

$$
\begin{equation*}
F=\mathrm{e}^{\gamma} \ln (\ln n)-\frac{\sigma(n)}{n}>0 \tag{1}
\end{equation*}
$$

for $n>5040$, where $\gamma \approx 0.577$ is the Euler-Mascheroni constant and $\sigma(n)$ is the sum-of-divisors function, the Riemann hypothesis is true.

In the following I use methods of functional analysis to show that the minimum of F has to be positive. According to the fundamental theorem of arithmetic, one has

$$
\begin{equation*}
n=\prod_{i=1}^{\kappa} p_{i}^{\alpha_{i}} . \tag{2}
\end{equation*}
$$

Hence, F is a unique function of the powers α_{g} via $n=n_{0} p_{g}^{\alpha_{g}}$, where p_{g} is not a divisor of n_{0}. Methodologically, derivatives with respect to α_{g} can be taken by calculating finite differences [2]. Therefore,

$$
\begin{equation*}
\frac{\Delta p_{g}^{\alpha_{g}}}{\Delta \alpha_{g}}=p_{g}^{\alpha_{g}}-p_{g}^{\alpha_{g}-1}=p_{g}^{\alpha_{g}}\left(1-1 / p_{g}\right) \tag{3}
\end{equation*}
$$

and, accordingly,

$$
\begin{equation*}
S(n)=\frac{\Delta}{\Delta \alpha_{g}} \ln (\ln n)=\frac{1}{n \ln n} \frac{\Delta n}{\Delta \alpha_{g}}=\frac{1-1 / p_{g}}{\ln n} . \tag{4}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
\frac{\sigma(n)}{n}=A u\left(\alpha_{g}\right), \quad u\left(\alpha_{g}\right)=1+\frac{1}{p_{g}}+\frac{1}{p_{g}^{2}}+\ldots \frac{1}{p_{g}^{\alpha_{g}}} . \tag{5}
\end{equation*}
$$

[^0]p_{g} is not a divisor of A, as it is made obvious by a simple example in the Appendix. Again, the finite difference results in
\[

$$
\begin{equation*}
\frac{\Delta}{\Delta \alpha_{g}}\left(\frac{\sigma(n)}{n}\right)=A\left(u\left(\alpha_{g}\right)-u\left(\alpha_{g}-1\right)\right)=\frac{A}{p_{g}^{\alpha_{g}}} . \tag{6}
\end{equation*}
$$

\]

By analysis, the minimum of F can be found via

$$
\begin{equation*}
0=\frac{\Delta F}{\Delta \alpha_{g}}=\mathrm{e}^{\gamma} \frac{1-1 / p_{g}}{\ln n}-\frac{A}{p_{g}^{\alpha_{g}}}=\mathrm{e}^{\gamma} \frac{1-1 / p_{g}}{\ln n}-\frac{\sigma(n)}{n u\left(\alpha_{g}\right) p_{g}^{\alpha_{g}}}=0 . \tag{7}
\end{equation*}
$$

This means

$$
\begin{equation*}
\mathrm{e}^{\gamma}\left(1-1 / p_{g}\right)\left(1+p_{g}+p_{g}^{2}+\ldots+p_{g}^{\alpha_{g}}\right)=\sigma(n) \frac{\ln n}{n} \tag{8}
\end{equation*}
$$

and resummed

$$
\begin{equation*}
\mathrm{e}^{\gamma}\left(1-1 / p_{g}\right) \frac{p_{g}^{\alpha_{g}+1}-1}{p_{g}-1}=\mathrm{e}^{\gamma}\left(p_{g}^{\alpha_{g}}-\frac{1}{p_{g}}\right)=\sigma(n) \frac{\ln n}{n} \tag{9}
\end{equation*}
$$

or

$$
\begin{equation*}
p_{g}^{\alpha_{g}}=\mathrm{e}^{-\gamma} \sigma(n) \frac{\ln n}{n}+\frac{1}{p_{g}} . \tag{10}
\end{equation*}
$$

For a given n, this formula provides values for p_{g} and α_{g}. The higher p_{g} is chosen, the lower α_{g} is found. The highest prime $g=\kappa$ has $\alpha_{\kappa}=1$. From Eq. (8), one has

$$
\begin{equation*}
\frac{\sigma(n)}{n}=\mathrm{e}^{\gamma} \frac{p_{\kappa}^{2}-1}{p_{\kappa} \ln n}, \tag{11}
\end{equation*}
$$

and inserting to Eq. (1) one obtains

$$
\begin{equation*}
F p_{\kappa} \ln n=\mathrm{e}^{\gamma} p_{\kappa} \ln n \ln (\ln n)-\mathrm{e}^{\gamma}\left(p_{\kappa}^{2}-1\right), \tag{12}
\end{equation*}
$$

where n is a potential counter-example. As the powers in Eq. (2) up to $i=\kappa$ are at least $1, \alpha_{i} \geq 1$, Eq. (10) gives

$$
\begin{equation*}
n \geq \prod_{i=1}^{\kappa} p_{i}=\exp \left(\theta\left(p_{\kappa}\right)\right) \tag{13}
\end{equation*}
$$

where θ is the first Chebyshev function with $\lim _{x \rightarrow \infty}(\theta(x) / x)=1$ [3]. Therefore, $n>\exp \left(p_{\kappa} / 2\right)$ inequality, and the right hand of the Eq. (12) is positive. This means, that F cannot have negative values.

Appendix: on the sum-of-Divisors function

As an example, I consider $n=28=2 \cdot 14=2 \cdot 2 \cdot 7=2^{2} \cdot 7$. Therefore, $\sigma(28)=(1+7)\left(1+2+2^{2}\right)=1+2+4+7+14+28$ and

$$
\begin{equation*}
\frac{\sigma(28)}{28}=\frac{1+7}{7} \cdot \frac{1+2+2^{2}}{2^{2}} \tag{A1}
\end{equation*}
$$

Selecting $p_{g}=2$, one has $A=(1+7) / 7$ and $u_{g}=\left(1+2+2^{2}\right) / 2^{2}$.

REFERENCES

[1] Guy Robin, "Grandes valeurs de la fonction somme des diviseurs et hypothése de Riemann." J. Math. pures appl, 63(2): 187-213 (1984).
[2] Jordán, op. cit., p. 1 and Milne-Thomson, p. xxi. Milne-Thomson, Louis Melville (2000): The Calculus of Finite Differences (Chelsea Pub Co, 2000)
[3] Apostol, Tom M. (2010). Introduction to Analytic Number Theory. Springer.

[^0]: eestidima@gmail.com, Independent Researcher J. V. Jannseni 6-7, Pärnu 80032, Estonia.

