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ABSTRACT

Volatility estimation and quantile regression are relevant active research areas in statistics, machine learn-
ing and econometrics. In this work, we propose two procedures to estimate local variances in generic re-
gression problems by using of kernel smoothers. The proposed schemes can be applied in multidimesional
scenarios (not just for time series analysis) and easily in a multi-output framework, as well. Moreover, they
allow the possibility of providing uncertainty estimation using a generic kernel smoother technique. Sev-
eral numerical experiments show the benefits of the proposed methods, even comparing with benchmark
techniques. One of these experiment involves a real dataset analysis.

Index Terms— Quantile regression, kernel smoothers, times series, heteroscedasticity, nearest neigh-
bours.

1. INTRODUCTION

Volatility estimation (intended as local variance or local standard deviation) and quantile regression anal-
ysis are currently important tasks in statistics, machine learning and econometrics. The problem of the
estimation of the volatility arised in financial time series analysis, where the volatility represents the
degree of variation of a trading price series over time, usually measured by the standard deviation of
logarithmic returns. It is still an important active area of research [11]. Quantile regression models study
the relationship between a set of predictor (independent) vector x and specific percentiles (or "quantiles")
of a output (dependent) variable y. Therefore, in quantile regression analysis the goal is to estimate higher
order quantiles of the response/output variable. For instance, considering also second order moments, we
can also express the local/instant variance how confident you are in that current trend prediction [4,10,16].
It is important to remark that most of the standard and/or advance regression methods consider the vari-
ance constant, that does vary with the input variable x [23].

In this work, we propose two procedures for estimating the local variance in a regression problem
and using a kernel smoother approach. Note that the kernel smoother schemes contain several well-known
techniques as special cases, such as the fixed radius nearest neighbours, as an example [5]. The resulting



solution is non-parametric method, hence both complexity and flexibility of the solution grows with the
number of data N . This ensures to have the adaquate flexibility to analyze the data.
The first proposed method is based on the Nadaraya-Watson derivation of a linear kernel smoother [6,23].
The second proposed approach draws inspiration from divisive normalization, a function grounded in
the activity of brain neurons [9]. This function aims to standardize neuron activity by dividing it by the
activity of neighboring neurons. It has demonstrated favorable statistical properties [3, 17, 21] and has
been utilized in various applications [15, 18].
The proposed methods can be applied to time series analysis and/or in more general regression problems
where the input variables are multidimensional. Therefore, our approach can be implemented in spatial
statistical modelling and any other inverse problems [22, 28]. Furthermore, another advantage of the
proposed scenario, is that the generalization for a multi-output scenarios can be easily designed.
From another point of view, this work gives another relevant contribution. The proposed schemes allow
to perform uncertainty estimation with a generic kernel smoother technique. Indeed, a generic kernel
smoother method is not generally supported by a generative probabilistic derivation that yields also an
uncertainty estimation. The Gaussian processes (GPs) and relevance vector machines (RVMs) regression
methods are relevant well-known and virtually unique exceptions [23, 27]).
We have tested the proposed methods in five numerical experiments. Four of them involve the application
of the different schemes to time series analyis, and the comparison with GARCH models which are con-
sidered benchmark techniques for volatility estimation in time series [7]. The last numerical experiment
addresses a more general regression problem, with a multidimensional input variable x of dimension 122,
considering a real (emo-soundscapes) database [12, 13].

2. APPROXIMATING THE TREND

Let us consider a set of N data pairs, such as {xi, yi}Ni=1, where xi ∈ RD, with D ≥ 1, and yi ∈ R. First
of all, we are interested in obtaining a regression function (a.k.a.,“local mean”– trend), i.e., removing the
noise in the signal obtaining an estimator f̂(x) for all possible x in the input space.
One possibility is to employ a linear kernel smoother. More specifically, we consider the Nadaraya-Watson
estimator [6, 23] that has the following form,

E[y|x] ≈ f̂(x) = (1)

=
N∑
n=1

h(x,xn)∑N
j=1 h(x,xj)

yn =
N∑
n=1

ϕ(x,xn)yn,

where ϕ(x,xn) =
h(x,xn)∑N
j=1 h(x,xj)

. Note that, by this definition, the nonlinear weights ϕ(x,xn) are normal-

ized, i.e.,
N∑
n=1

ϕ(x,xn) = 1, ∀x. (2)

As an example, we could consider

h(x, z) = h(x, z|λ) = exp

(
−||x− z||2

λ

)
,

where λ is a parameter that should be tuned. Clearly, we have also

ϕ(x, z) = ϕ(x, z|λ).



The form of this estimator above is quite general, and contains different other well-known methods as
special cases. For instance, it contains the k-nearest neighbors algorithm (kNN) for regression as a specific
case (to be more specific, the fixed-radius near neighbors algorithm). Indeed, with a specific choice of
h(x,xn|λ) (as a rectangular function), the expression above can represent the fixed-radius near neighbors
estimator [5, 23].

Remark. The resulting regression function is flexible non-parametric method. Both complexity and
flexibility of the solution grows with the number of data N .

Remark. The input variables xn ∈ RD are vectors (D ≥ 1), in general. Therefore, the described
methods have a much wider applicability than the techniques that can be employed only for time series
(where the time index is a scalar number, x = t ∈ R). Clearly, the methodologies described here can
be also employed for analyzing time series. Moreover, even in a time series framework, we can obtain a
prediction between two consecutive time instants. For instance, if we have a time series with daily data,
with a kernel smoother we can have a prediction at each hour (or minute) within a specific day.

Learning λ. One possibility for tuning the parameters of the kernel functions is to use a cross-validation
(CV) procedure. In this work, we have employed a leave-one-out cross-validation (LOO-CV) [6].

3. VARIANCE ESTIMATION PROCEDURES

Let assume that we have already computed the trend (a.k.a., “local mean”), i.e., the regression function
f̂(x). Here we present two methods to obtain an estimation of the local variance (or volatility) at each
point x.

METHOD-1 (M1). If the weights ϕ(x,xn) are adequate for linearly combined the outputs yi and
obtaining an proper approximation of E[y|x], one can extend this idea for approximating the second
non-central moment E[y2|x] as

E[y2|x] ≈ q̂(x) =
N∑
n=1

ϕ(x,xn)y
2
n. (3)

hence

v̂(x) = q̂(x)−
(
f̂(x)

)2
≈ var[y|x], (4)

which is an estimator of the instant variance. Note that q̂(x) and f̂(x) and obtained with the same weights

ϕ(x,xn) = ϕ(x,xn|λ),

with the same value of λ (obtained using a LOO-CV procedure). Thus, a variant of this procedure consists
into learning another value of λ2, i.e., obtaining other coefficients ϕ2(x, z) = ϕ2(x, z|λ2), in the Eq. (3)
considering the signal y2n (instead of yn).

METHOD-2 (M2). Let us define the signal obtained as the estimated square errors

vn =
(
yn − f̂(x)

)2
, n = 1, ..., N.



If f̂(x) ≈ E[y|x] as assumed, vn is a one-sample estimate of the variance at x. Then, the goal is to
approximate the trend of this new signal (new output) sn,

v̂(x) =
N∑
n=1

ϕ2(x,xn)vn,

where we consider another parameter λ2, i.e.,

ϕ2(x, z) = ϕ2(x, z|λ2),

that is tuned again with LOO-CV but considering the new signal vn. Note that v̂(x) can be interpreted
as estimation of the instant variance of the underlying signal. As alternative, also completely different
kernel functions (as ϕ2) can be applied (that differs for the functional form with respect to ϕ, instead just
for the choice of λ).

Remark. Again, as for estimating the trend, note that the two procedures above can be applied for
multivariate inputs xn ∈ RD, and not just for scalar inputs (as in the time series).

Remark. If one divides x by v̂(x) we get a signal with uniform local variance, i.e. we have removed
the (possible) heteroscedasticity. In [17], this procedure was used to define the relation kernels in the
divisive normalization, and thus equalize locally the energy of neuron responses.

4. EXTENSIONS AND VARIANTS

The use of linear kernel smoothers as regression methods is not mandatory. Indeed, the ideas previously
described can be employed even applying different regression methods:

1. Choose a regression method. Obtain a trend function f̂(x) ≈ E[y|x] given the dataset {xi, yi}Ni=1.

2. Choose one method for estimating the instance variance (between the two below):

• M1. Choose a regression method (the same of the previous step or a different one). Consid-
ering the dataset the dataset {xi, y2i }Ni=1 and obtain q̂(x) ≈ E[y2|x]. Then, compute v̂(x) =

q̂(x)− (f̂(x))2.

• M2. Choose a regression method (the same of the previous step or a different one). Consider-
ing the dataset the dataset {xi, vi}Ni=1 where vn = (yn − f̂(x))2, obtain the function v̂(x).

4.1. Multi-output scenario and other extensions

In a multi-output framework, we have N data pairs, such as {xi,yi}Ni=1, where xi ∈ RD, but in this case
also the outputs are vectors yi ∈ RDY . Hence, for the local trend we have also a vectorial hidden function
f̂(x) : RD → RDY for all possible x in the input space. Then, we could easily write

f̂(x) =
N∑
n=1

ϕ(x,xn)yn. (5)



Regarding the estimations of local variances follow the same procedures, defining the following vectorial
quantities: q̂(x) ≈ E[y2|x] for M1, v̂(x) = q̂(x)− (f̂(x))2 and vn = (yn − f̂(x))2 for M2.
Furthermore, we could also consider different local parameters λ, for instance λn with n = 1, ..., N , or
more generally, with λ = λ(x). In this case, we would have different coefficient functions ϕn(x,xn) (one
for each input xn), so o that trend would be

f̂(x) =
N∑
n=1

ϕn(x,xn)yn. (6)

4.2. Example of alternative to the kernel smoothers for time series analysis

Let us consider a time series framework, i.e., the input is a scalar time instance, x = t ∈ R, then the dataset
is formed by the following pairs {ti, yi}Ni=1. Let also consider that the intervals, ti − ti−1, are constant, in
this case, we can skip the t index, and consider the dataset {ti, yi}Ni=1. In this scenario, as an alternative,
one can be use an autoregressive (AR) model,

yi = a1yi−1 + a2yi−2 + ...+ aWyi−W + εy, (7)

where εy is a noise perturbation and the coefficients ai, for i = 1, ...,W , are obtained by a least squares
(LS) minimization and the length of the temporal window W (i.e., the order of the AR filter) is obtained
using a spectral information criterion (SIC) [24, 26]. Then, considering the estimated coefficients âi by
LS, and Ŵ by SIC, we have

f̂(ti) = f̂i = â1yi−1 + â2yi−2 + ...+ âŴyi−Ŵ . (8)

Just as an example, in order to apply M2 for the estimating the instant variance, we can set vi = (yi− f̂i)2,
and assume another AR model over vi with window length now denoted as H ,

vi = b1vi−1 + b2vi−2 + ...+ bHvi−H + εv, (9)

where again the estimations b̂i can be obtained by LS, and Ĥ by SIC. The resulting instant variance
function is

v(ti) = vi = b̂1vi−1 + b̂2vi−2 + ...+ b̂Ĥvi−Ĥ . (10)

Clearly, the application of M1 could be performed in a similar way.

Remark. The resulting estimators in this section are still a linear combination of (a portion) of the
outputs. Therefore, we still have linear smoothers (or better linear filters, since only considering combi-
nations of past samples). However, note that in Eqs. (8)-(10) the coefficients of the linear combinations
are obtained by least squares (LS) method. Hence, we have a window of length W (and then H) but this
differs from the use of a rectangular kernel function for two reasons: (a) the window only considers past
samples; (b) the coefficients are not all equals (to the ratio 1 over the number of samples included in the
window) but they are tuned by LS.



Table 1: Proposed methods (specific implementations).

Method KS-1-1 KS-1-2 KS-2-1 KS-2-2 KS-10-1 KS-10-2 AR-based
For trend estimation Eqs. (1)-(12), α = 1 Eqs. (1)-(12), α = 2 Eqs. (1)-(12), α = 10 AR - Section 4.2

For variance estimation M1 M2 M1 M2 M1 M2 AR and M2 - Section 4.2

5. NUMERICAL EXPERIMENTS

5.1. Applications to time series

In this section, we consider 5 different numerical experiments with different (true) generating models.
Here, we focus on time series (x = t ∈ R) for two main reasons: (a) first of all, for the sake of simplicity
(we can easily show a realization of the data in one plot), (b) and last but not the least, we have relevant
benchmark competitors such as the GARCH models [8, 14, 29], that we can also test. Note that GARCH
models have been specifically designed for handling volatility in time series.
More specifically, in this section, we test our methodologies and different GARCH models in four easy
reproducible examples. These four examples differ for the data generating model. Indeed, the data are
generated as the sum of a mean function, f(x), and an error term, s(x)ε(x), i.e.,

y(x) = f(x) + s(x)ε(x)

y(t) = f(t) + s(t)ε(t), ε(t) ∼ N (0, 1). (11)

where we have used the fact that we are analyzing time series, i.e., x = t ∈ R. The functions f(t) and s(t)
are deterministic, and represent for the trend and the standard deviation of the observations y(t). Whereas
ε(t) ∼ N (0, 1) represent a standard Gaussian random noise. Note also that v(t) = s(t)2. In order to keep
the notation of the rest of the paper, note that the dataset {tn, yn}Nn=1 will be formed by the N pairs,

xn = tn, yn = y(tn),

where yn will be generated according to the model above. The four experiments consider:

1. f(t) = sin(0.5t), s(t) = 0.2.

2. f(t) = t, s(t) = 2|t|.

3. f(t) = 0.5t2, s(t) = 5 sin(0.3t).

4. f(t) = 0 and s(t) generated by a GARCH model.

In all cases, the generated data y(t) and the undelying standard deviation s(t) (or variance v(t) = s(t)2)
are known, hence we can compute errors and evaluate the performance of the used algorithms. For the
application of the proposed methods we consider a nonlinear kernel function as

h(t, tn) = exp

(
−(t− tn)α

λ

)
, (12)

with α ∈ {1, 2, 10}. The parameter λ is tuned by LOO-CV. We test 7 different combinations, each one
mixing a specific trend approximation method with a specific variance estimation technique:



• Based on kernel smoothers: we consider different regression methods based in Eqs. (1) and (12).
Furthermore, for the variance estimation we consider both procedures M1 and M2 described in
Section 3. More specifically:

– KS-1-1: α = 1 and M1,

– KS-1-2: α = 1 and M2,

– KS-2-1: α = 2 and M1,

– KS-2-2: α = 2 and M2,

– KS-10-1: α = 10 and M1,

– KS-10-2: α = 10 and M2.

• Based on AR models: we apply the method described in Section 4.2, that employs two auto-
regressive models, one for the trend and one for the variance, jointly with procedure M2.

Table 1 summarizes all the seven considered specific implementations. Moreover, we test several
GARCH(p,q) models: GARCH(1,1), GARCH(2,2), GARCH(5,5) and GARCH(10,10) (using a Mat-
lab implementation of GARCH models).

Remark. The GARCH models work directly with the signal without trend, i.e., |yn − f̂n|. In order
to have a fair comparison, we use a kernel smoother with α = 2, i.e., applying Eqs. (1)-(12) with α = 2
(as in the KS-2 methods).

We recall that GARCH models have been specific designed for making inference in heteroscedastic
time series.

5.1.1. Experiment 1

As previously said, in this first example we consider

y(t) = sin(0.5t) + 0.2 ε(t), ε(t) ∼ N (0, 1),

i.e., where f(t) = sin(0.5t) and s(t) = 0.2 ( in this case we have homoscedastic series). We generate
N = 104 data with t ∈ [−10, 10]. We apply all the algorithms, compute the mean absolute error (MAE),
and repeat and average the results over 104 independent runs. Figure 1(a) depicts one realization of the
generated data with the model above.
Results: Figures 1(b)-1(c) provide the results in this example. Figure 1(b) shows the MAE obtained
in estimating the trend, and Figure 1(c) depicts the MAE in estimating the standard deviation. In this
case, regarding the trad, we see that the AR-based has an MAE higher than the rest when estimating the
trend, but the other MAEs are quite similar. Similar outcomes are also obtained for approximating with
the standard deviation, although the smaller MAE are provided by the GARCH models. Regarding the
estimating of the standard deviation, the M1 seems to provide better results than M2, in this example.
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(a) Realization of the data in the example
5.1.1.

(b) MAE in trend estimation. (c) MAE in standard deviation estimation.

Fig. 1: (a) A realization of the data (red dots) generated by the model in Section 5.1.1; the function f(t)
is shown dashed black line and the two continue blue lines depict f(t) ± 2s(t) (containing approx. 95%
of the probability mass). (b)-(c) Box-plots of the MAEs of the different algorithms of the experiment in
Section 5.1.1.

5.1.2. Experiment 2

in this second example, we consider

y(t) = t+ 2|t| ε(t), ε(t) ∼ N (0, 1),

where f(t) = t and s(t) = 2|t| (i.e., in this case, we are heteroscedastic scenario). As previously, we
generate N = 104 data with t ∈ [−10, 10]. We apply all the algorithms, compute the mean absolute error
(MAE), and again we repeat and average the results over 104 independent runs. Figure 2(a) depicts one
realization of the generated data according to the model above.
Results. The results are presented in Figures 2(b)-2(c). Again the MAE for the AR-based method seems
to be higher than those for the rest of the algorithms when estimating the trend and standard deviation of
the time series. Regarding the estimation of the standard deviation the best results are provided by the
kernel methods which use the M2 (the MAE is particularly small with α = 10). Thus, it is remarkable
that, even in this heteroscedastic scenario, the proposed methods provide similar and, in same cases, better
results than GARCH models.

5.1.3. Experiment 3

In this third example, we consider a standard deviation that varies periodically, and a second order poly-
nomial as a trend function, i.e.,

y(t) = 0.5t2 + 5 sin(0.3t) ε(t), ε(t) ∼ N (0, 1),

where f(t) = 0.5t2 and s(x) = 5 sin(0.3t). Again, we have heterostodastic scenario. As previously,
we generate N = 104 data with t ∈ [−10, 10]. We compute the mean absolute error (MAE), and again
we repeat and average the results over 104 independent runs. Figure 3(a) depicts one realization of the
generated data according to the described model.
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(a) Realization of the data in the example
5.1.2.

(b) MAE in trend estimation. (c) MAE in trend standard deviation estima-
tion.

Fig. 2: (a) A realization of the data (red dots) generated by the model in Section 5.1.2; the function f(t)
is shown dashed black line and the two continue blue lines depict f(t) ± 2s(t) (containing approx. 95%
of the probability mass). (b)-(c) Box-plots of the MAEs of the different algorithms of the experiment in
Section 5.1.2.

Results. Figures 3(b)-3(c) depict the box-plots of the MAE in estimating the trend and the standard
deviation. As with the rest of the examples, the AR-based gives the worst results when calculating the
trend of the time series, meanwhile the rest of the algorithms have very similar error values (recall that
the GARCH models employ the KS-2 method for the trend estimation). However, the AR-based method
provides good performance in the approximation of the standard deviation. The AR-based technique uses
M2 for the variance. Moreover, for the standard deviation estimation, the methods KS-1-1-1, KS-2-1,
KS-10-1 gives the smaller errors. Hence, it seems that in this case M1 works better even than GARCH
models.
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(a) Realization of the data in the example
5.1.3.

(b) MAE in trend estimation. (c) MAE in standard deviation estimation.

Fig. 3: (a) A realization of the data (red dots) generated by the model in Section 5.1.3; the function f(t)
is shown dashed black line and the two continue blue lines depict f(t) ± 2s(t) (containing approx. 95%
of the probability mass). (b)-(c) Box-plots of the MAEs of the different algorithms of the experiment in
Section 5.1.3.



5.1.4. Experiment 4

Let us consider

y(t) = s(t) ε(t), ε(t) ∼ N (0, 1),

yt = stεt = zt,

i.e., f(t) = ft = 0, and we have denoted zt = stεt. The process for the standard deviation st =
√
vt will

be a GARCH(P,Q), i.e.,

vt =κ+ γ1vt−1 + . . .+ γPvt−P+

+ α1z
2
t−1 + . . .+ αQz

2
t−Q.

In this example, we generate the variance from a GARCH(2, 3)

vt =2 + 0.2 · vt−1 + 0.1 · vt−2 + 0.2 · z2t−1+

+ 0.2 · z2t−2 + 0.2 · z2t−3

(13)

Clearly, Again, it is a heterostodastic scenario. we generate N = 104 data and apply the different tech-
niques. We compute the mean absolute error (MAE), and we repeat and average the results over 104

independent runs. One realization of the generated data is given in Figure 4(a). Note that the trend is
linear but the volatility presents very fast changes since it generated by a GARCH(2,3) model (see blue
line in Figure 4(a)).
Results. The results for this example are presented in Figures 4(b)-4(c). The best performance in the
estimation of s(t) are obtained by KS-1-2 and all the GARCH models (as expected in this case). The AR-
based and KS-2-2 also provided close values of MAE. In this example, clearly M2 outperforms M1. We
remark that, even in this scenario that is particularly favorable for the GARCH models, all the proposed
methods provide competitive results. The highest (hence worst) MAEs values are given by the KS with
α = 10 which is a quite extreme tuning/choice of this parameter, specially when the volatility follows
an autoregressive rule. Indeed, a Laplacian kernel with α = 1 is more adequate in this framework. For
further considerations see [23, Section 10].

5.1.5. Final comments about the applications to time series

All the proposed methods based on kernel smoothers (KS) and M1, M2 always provide competitive results
(with closer or smaller MAE values) with respect to the benchemark algorithms such as GARCH methods,
which have been specifically designed for the estimation of the standard deviation in time series.
These numerical experiments show that The proposed M1 and M2 can even outperform GARCH models
the estimation of the standard deviation in time series. The GARCH models seems to provide more robust
results when the signal has been generated truly by a GARCH model in Section 5.1.4 and, surprisingly, in
the homoscedasticscenario in Section 5.1.1. The methods based on kernel smoothers virtually outperform
the AR-based due to the fact that they incorporate the “future samples” in their estimators. A rectangular
window, including both past and future samples, should improve the performance of the AR-based method.

5.2. Application in higher input dimension: real data on soundscape emotions

GARCH models have been specifically designed for estimating the volatility in time series, hence x = t ∈
R. However, the methods proposed in this work can be applied to problems with multidimensional inputs
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(a) Realization of the data in the example
5.1.4.

(b) MAE in trend estimation. (c) MAE in standard deviation estimation.

Fig. 4: (a) A realization of the data (red dots) generated by the model in Section 5.1.4. The linear trend
f(t) = t is shown dashed black line. Whereare the two continue blue lines depict f(t) ± 2s(t) where
s(t) is generated by a GARCH model. (b)-(c) Box-plots of the MAEs of the different algorithms of the
experiment in Section 5.1.4.

x ∈ RD with D ≥ 1.
More specifically, here we focus on analyzing a soundscape emotion database. In the last decade, sound-
scapes have become one of the most active topics in acoustics. In fact, the number of related research
projects and scientific articles grows exponentially [1,19,20]. In urban planning and environmental acous-
tics, the procedure consists of (a) soundscapes recording, (b) calculation of acoustic and psychoacoustic
indicators of the signals, (c) collecting other context indicators (e.g. visual information [2]), and (d) rank-
ing of soundscapes audio signals employing emotional descriptors. Finally, the model can be developed
[25].
Here, we consider the emo-soundscapes database (EMO) [12, 13], where N = 1200 and D = 122, i.e.,
x ∈ R122. that might be considered as the largest publicly available soundscape database with annota-
tions of emotion labels, and the most bench-marked up to now [12]. EMO contains 1213 audio clips
which are released under creative commons license from the freesound collaborative audio platform [13].
Among the 122 audio features that form the inputs x, we can distingush three main groups of features
of the audio signals: psychoacoustic features, time-domain features and frequency-domain features. The
output y that we consider is called arousal. For further information, the complete database can be found
at https://metacreation.net/emo-soundscapes/.
We employ again a kernel function of type

h(x, z) = h(x, z|λ) = exp

(
−||x− z||α

λ

)
,

with α = 2. Therefore, considering the EMO database {xi, yi}1200i=1 We apply M1 and M2 and CV-LOO
for tuning λ.The relative mean square error in estimating the trend is 0.0388 obtained with an optimal
parameter λ∗ = 0.12. Moreover, in both cases, we find a sensible increase of the volatility of the output
in the last half of the samples, for i from 621 to 1213. This could be an interesting result, that should be
discussed with experts on the field and in the EMO database.

https://metacreation.net/emo-soundscapes/


6. CONCLUSIONS

In this work, we have proposed two methods for estimating the instant/local variance in regression prob-
lems based on kernel smoothers. From another point of view, this work can be also seen as a way to
perform quantile regression (at least, a second order quantile regression) using kernel smoothers.
With respect to other procedures given in the literature, the proposed methods have a much wider applica-
bility than other techniques, since they can be employed only for time series, as the well-known GARCH
models (where the time index is a scalar number, x = t ∈ R). Indeed, the proposed schemes can be
applied with multidimensional input variables xn ∈ RD. Moreover, the proposed techniques can be also
applied to time series (D = 1) and also can obtain a prediction between two consecutive time instants
(i.e., with an higher resolution that the received data). More generally, estimation of the local variance can
given at any the training data xi but also in any generic test input x.
Furthermore, analyzing time series, the numerical simulations have shown that the proposed schemes pro-
vides competitive results even with respect to GARCH models (which are specifically design for analyzing
time series). An application to real data and multidimensional inputs (with dimension 122) have been also
provided. As a future research line, we plan to design kernel smoother functions with local parameters
λ, or more generally with λ = λ(x), to better handle the heteroscedasticity. Moreover, the application to
multioutput scenarios can be designed and considered.
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