[On the Distinct Aspect of Eleven]

Dwight Boddorf

Abstract

A distinct aspect of eleven is defined. Aspect is utilized to index one hundred thirtyseven. Index is used to generate a plausible value for the fine structure constant.

Eleven is the only prime equal to a prime plus the square of a greater prime.

$$
11=2+3^{2}
$$

$$
P_{S}=P_{<}+P_{>}^{2}
$$

$$
P_{<}<P_{>}
$$

$\left(P_{S}\right)$ Prime sum
$\left(P_{<}\right)$Prime lesser
$\left(P_{>}\right)$Prime greater
Odd $+(o d d)^{2}=$ even
Odd $+(\text { even })^{2}=$ odd
Even $+(\text { odd })^{2}=$ odd
2 is the only even prime.
2 is the least of primes.
Must be
$2+P_{>}^{2}=P_{S}$
If; $n>3$ (n)atural number
$\frac{2+n^{2}}{3}=(\mathrm{w})$ hole number, except when n is a multiple of 3
$\frac{2+n^{2}}{3}=w$, if $\frac{n}{3} \neq w$
$\frac{2+n^{2}}{3} \neq w$, if $\frac{n}{3}=w$

$$
\begin{array}{lll}
\frac{2+4^{2}}{3} & =6 & \frac{2+5^{2}}{3}=9 \\
\frac{2+7^{2}}{3} & =17 & \frac{2+8^{2}}{3}=22
\end{array}
$$

If; $n>3$
and; n is prime, $\frac{n}{3} \neq w$
then; $2+n^{2}$ is not prime, $\frac{2+n^{2}}{3}=w$
If, $n>3$
and; $2+n^{2}$ is prime, $\frac{2+n^{2}}{3} \neq w$
then; n is not prime, $\frac{n}{3}=w$
Eleven is the only prime equal to a prime plus the square of a greater prime.

If; $\quad P_{s}=P_{<}+P_{>}^{2}$
and; $P_{s}^{i}+P_{<}^{v}=P_{i_{v}}=11^{i}+2^{v}$
positive (i)nteger
positi(v)e integer
(P) rime $_{i_{v}}$
then;

$$
\begin{array}{lll}
P_{1_{1}}=13 & P_{2_{4}}=137 & P_{3_{7}}=1459 \\
P_{1_{4}}=19 & P_{2_{12}}=4217 & \\
P_{1_{5}}=43 & & \\
P_{1_{7}}=139 & &
\end{array}
$$

The least prime were (i) and (v) are both even is 137.
If; $P_{s}=P_{<}+P_{>}^{2}$

$$
\begin{aligned}
& {\left[\sqrt{P_{s}^{2}+P_{<}^{4}}+\frac{1}{\left(P_{<}+P_{>}\right)^{2}+\left(P_{<}+P_{>}\right)^{4}+\frac{1}{\sqrt[4]{\left(P_{>}+P_{>}\right)^{2}+P_{<}^{4}}}}\right]^{2}=x} \\
& {\left[\sqrt{11^{2}+2^{4}}+\frac{1}{(2+3)^{2}+(2+3)^{4}+\frac{1}{\sqrt[4]{(3(3))^{2}+2^{4}}}}\right]^{2}=x} \\
& {\left[\sqrt{11^{2}+2^{4}}+\frac{1}{5^{2}+5^{4}+\frac{1}{\sqrt[4]{3^{4}+2^{4}}}}\right]^{2}=x}
\end{aligned}
$$

