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ABSTRACT: This research work establishes a theory for concluding
an affirmative answer to the famous, long-standing unresolved problem “The
Collatz Conjecture”.

1 Introduction

The well-known Collatz problem [1] i.e., 3n + 1 problem is the following :
If f(n) = n

2
, when n is even and

.......... =3n + 1, when n is odd,
do the sequential values of f(n) eventually reach to 1, for every natural num-
ber n ?.
This problem was pursued by many researchers along different directions.
Following are, among others[2, 7, 9], some of the important methods avail-
able in the literature:
1. Experimental evidence [8],
2. A probabilistic heuristic argument [3],
3. Use of encoding matrix [5],
4. Generalization of the problem [6, 4].

Obviously, experimental evidences cannot provide a satisfactory solution
to the problem.

In probabilistic heuristic approach [3] the following idea is explained:

If we choose n at random in the sense that it is odd with probability 1
2

and even with probability 1
2

then the Collatz function f1 : N → N increases
n by a factor roughly 3

2
half the time and decreases it by a factor of 1

2
the time.

Furthermore, if n is uniformly distributed modulo 4, one easily verifies
that f1 is uniformly distributed modulo 2 and so f 2

1 should be roughly 3
2

as
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large as f1(n) half the time and roughly 1
2

times as large as f1(n) the other
half of the time. Continuing this at a heuristic level, we expect generally
that
fk+1
1 (n) ≈ 3

2
fk
1 (n) half the time, and

fk+1
1 (n) ≈ 1

2
fk
1 (n) the other half of the time.

The logarithm logfk
1 (n) of this orbit can be modelled heuristically by a ran-

dom walk with steps log3
2

and log1
2

occuring with equal probability. The
expectation 1

2
log3

2
+ 1

2
log1

2
= 1

2
log3

4
< 0 and so (by the classic gambler’s

ruin) we expect the orbit to decrease over the long term. This can be viewed
as the heuristic justification of the Collatz Conjecture.
But this probabilistic approach cannot ensure a clear solution to the problem.

The generalized form [5] of the problem is

Tn(x) = x
pi1pi2 ......pik

where pi’s are primes less or equal to pn dividing

the numerator and

= pn+1x + 1, if no prime pi ≤ pn divides x.

Using this generalized form, the author used the concept of encoding ma-
trix and generalized some results in the paper of Terras [9]. But the author
upheld a heuristic argument against the existence of divergent conjectures,
which also cannot give a satisfactory answer to the main problem.

In 1985 J.C. Lagarias pursued the problem by using Weakly connected
graph of the Collatz Graph. Lagarias had the following comment in his ar-
ticle ‘The 3x + 1 problem and its generalizations’ :

“Of course there remains the possibility that someone will find some hid-
den regularity in the 3n + 1 problem that allows some of the conjectures
about it to be settled.
The existing general methods in number theory do not seem to touch the
3n + 1 problem. In this sense it seems intractable at present.
Study of this problem has uncovered a number of interesting phenomena. It
also serves as a benchmark to measure the progress of general mathematical
theories. For example, future developments in solving exponential diphan-
tine equations may lead to the resolution of the finite cycles conjecture.”
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A new approach is established in this research work which concludes an
affirmative answer to the problem. This approach invents the ‘Principle of
Net Induction Rate and Net Reduction Rate’.

Five main sections are there in this article to achieve the required goal.
Second section contains preliminaries and some basic results.
Third section introduces concepts of Immediate odd predecessors and Imme-
diate odd successor and studies some vital observations.
Fourth section deals with the study of dependence of C-convergence of nat-
urals of the form 4n+ 3 on C-convergence of the naturals of the form 3w− 1
and 3u− 2.
Fifth section introduces the concepts of Collatz Decisive Subset, Net Induc-
tion Rate, Net Reduction Rate and finally draws a definite conclusion to the
problem.

2 Preliminaries

For any natural number n, if the Collatz sequence of n eventually reaches to
1, we write the fact as n → 1. For example, 7 → 22 → 11 → 34 → 17 →
52 → 26 → 13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1. This will
be written simply as 7→ 11→ 17→ 13→ 5→ 1, ignoring the even terms.
This will be called Collatz sequence of 7, as we have started with 7 itself.
Since 7 eventually reaches to 1, we write 7→ 1 and say that ‘7 C-converges
to 1’.
Observation 1. (i) Any odd natural number x(> 4) can be one of the
following forms:
x = 4n + 1 for some n ∈ N ,
x = 4n + 3 for some n ∈ N .
(ii) for any n ∈ N we have the following observation on Collatz sequences :
4n + 1→ 12n + 4→ 6n + 2→ 3n + 1.
This will be written in short as 4n + 1→ 3n + 1.
(iii) let n be odd. Then
4n + 1→ 1 iff n→ 1.
This follows immediately because
4n + 1→ 3n + 1 and since n is odd, we have n→ 3n + 1.

By a reduction of an odd natural x, we shall mean that in the Collatz
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sequence of x, x eventually reaches to some y, where y < x.

For example, 9→ 28→ 14→ 7. So 9 has a reduction.
Note that every even 2t has a reduction and for any 4t+1, since 4t+1→ 3t+1,
4t + 1 has a reduction.

The following result holds :

Theorem 2. The following statements are equivalent :
(i) n→ 1 for all n ∈ N .
(ii) 4n + 3 has a reduction for each n ∈ N .

Clearly (i) ⇒ (ii). Now let (ii) hold. Since any natural n(> 4) is of the
form 2t or 4t + 1 or 4t + 3 and in all cases it has a reduction, after a finite
number of steps it follows that n→ 1. Thus (i) follows.

3 Immediate odd predecessors and immedi-

ate Odd Successor

For a natural x, we shall say that

(i) y is the immediate smaller odd predecessor(in short, i.s.o.p) if 3y =
2x− 1.
For example, 7 is the i.s.o.p. of 11. Note that 7→ 22→ 11, i.e., 7→ 11.

(ii) y is the immediate larger odd predecessor(in short, i.l.o.p) if 3y =
4x− 1.
For example, 9 is the i.l.o.p. of 7. Note that 9→ 28→ 7, i.e., 9→ 7.

(iii) y is the immediate odd successor of x (in short, i.o.s.of x) if x → y
where y is the first odd obtained after Collatz operations on x and x < y.
For example, 11 is the i.o.s of 7. Note that 7→ 22→ 11, i.e., 7→ 11.

The following observations are important for the subsequent sections:

Observations 3.
(a): There are three types of naturals:
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(i) Type-A: 3u− 1, for u ∈ N ,
(ii) Type-B: 3u− 2, for u ∈ N ,
(iii) Type-C: 3u, for u ∈ N .

(b): (i) Type-A naturals have the i.s.o.p. 2u− 1, since 2u− 1→ 6u− 2→
3u− 1, i.e, 2u− 1→ 3u− 1.
Type-A naturals do not have the i.l.o.p. because, 4x− 1 = 4(3u− 1)− 1 =
12u− 5 6= 3y for any y ∈ N .

(ii) Type-B naturals have the i.l.o.p. 4u− 3, since 4u− 3→ 12u− 8→
3u− 2, i.e.,4u− 3→ 3u− 2.
Type-B naturals do not have the i.s.o.p. because, 2x− 1 = 2(3u− 2)− 1 =
6u− 5 6= 3y for any y ∈ N .

(iii) Type-C naturals neither have the i.s.o.p. nor have the i.l.o.p., since,
for x = 3u, neither 2x− 1 = 3y nor 4x− 1 = 3y for any y ∈ N .

(c): In the Collatz sequence of any odd natural, at most one term may
be of the Type-C and this term must be the initial term (if it is of that
type). This is obvious from the observation (b)(iii) above.

In the next section we shall first establish one intimate connection among
C-convergence of naturals of the type 4n + 3, Type-A, and Type-B.

4 Dependence of C-convergence of the natu-

rals 4n+3 on C-convergence of the naturals

of Type-A and Type-B, i.e. 3w−1 and 3u−2
Theorem 4. For any n, 4n+3 = A.2t−1, for some odd A and some natural
t ≥ 2.

Proof. First, let n be even. Then n = 2j.H for some j and some odd H.
So, 4n + 3 = 4H.2j + 3 = 4(H.2j + 1)− 1 = 22A− 1, say, where A is odd.
Now let n be odd. Then 4n + 3 = 4(n + 1)− 1 = 4.2jA− 1, for some j and
some odd A, because, n + 1 is even. Hence 4n + 3 = A.2t − 1, as required.
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Theorem 5. In the Collatz sequence of 4n + 3 for any n(however large
n may be), 4n + 3 eventually reaches to naturals of Type-A and Type-B i.e.,
3w − 1 and 3u− 2, for some w and u.

Proof. Let 4n + 3 = A.2t − 1, for some odd A and some natural t ≥ 2.

Then 4n + 3→ 3A.2t−1 − 1

→ 32A.2t−2 − 1

→ 33A.2t−3 − 1

→ .......................

.................................

→ 3t−2A.22 − 1

→ 2.A.3t−1 − 1 (only odd terms are written).

Clearly, 3A.2t−1 − 1 = 3w − 1, for w = A.2t−1.
We now claim that 2A.3t−1 − 1 is of the form 4v + 1 for some v.
Note that 2A.3t−1−1 is odd. Now if it is of the form 4w+3 then 2A.3t−1−1 =
4w + 3 ⇒ 2A.3t−1 = 4(w + 1), a contradiction, since 4 is not a factor of
2A.3t−1. Hence 2A.3t−1 − 1 = 4v + 1 for some v. This justifies our claim.

Now note that 2A.3t−1−1 = 4v+1→ 3v+1 where 3v+1 = 3(v+1)−2 =
3u− 2, (here u = v + 1).
This shows that 4n + 3 eventually reaches to 3w− 1 and 3u− 2, for some w
and u.

Example 6. (i) Consider 4n + 3 = 15. Then 15 → 23 → 35 → 53 →
160→ 80→ 40, where 23 is of the form 3w− 1 and 40 is of the form 3u− 2
(as argued in above theorem).

(ii) Consider 4n+3 = 63. Then 63→ 95→ 143→ 215→ 323→ 485→ 364
where 95 is of the Type-A, and 364 is of the Type-B.
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Remark 7. From above theorem it follows that reduction of 4n + 3 com-
pletely depends upon reduction of naturals of Type-A and Type-B.

Theorem 8. The following statements are equivalent :

(i) 3u− 1→ 1 and 3u− 2→ 1 for all u.

(ii) 4n + 3 has a reduction for all n.

Proof. Let (i) hold. Consider any 4n + 3. By Theorem 4.2 above, there
exist 3w − 1 and 3u − 2 for which 4n + 3 eventually reaches to 3w − 1 and
3u− 2. Hence by (i), 4n + 3→ 1. So (ii) holds.

Conversely, let (ii) hold. Consider any 3u − 1. Then 3u − 2 is either
even or of the form 4t + 1 or of the form 4w + 3. In all cases 3u − 2 has a
reduction say V . Now if V > 3 then V is either even or 4t + 1 or 4w + 3.
So, this process continues and finally after a finite number of steps we must
have 3u− 2→ 1. Similar argument can be given for 3u− 1. Hence (i) holds.

Theorem 9. The following statements are equivalent :

(i) n→ 1 for all n,

(ii) 3u− 1→ 1 and 3u− 2→ 1 for all u ∈ N .

Proof. Clearly, (i) ⇒ (ii). Now let (ii) hold. Then by Theorem 4.5 and
Theorem 2.2, (i) holds.

Theorem 10. The following statements are equivalent :

(i) 3u− 1→ 1 and 3u− 2→ 1 for all u ∈ N .

(ii) Both 3u− 1 and 3u− 2 have reductions for all u ∈ N .

Proof. Clearly (i) ⇒ (ii). Now let (ii) hold. Consider any 3v − 1. Then
by (ii), 3v−1 has a reduction, say y1. Then y1 < 3v−1. Now by observation
3.1(c) above, y1 is of the type 3t − 1 or 3t − 2 for some t. Then by (ii), y1
has a reduction say y2. Then y2 < y1. Again y2 is of the type 3t− 1 or 3t− 2

7



for some t. Then by (ii), y2 has a reduction say y3. Continuing this process,
after a finite number of steps we must have some yn for which yn = 1. This
shows that 3v − 1→ 1 .
Considering 3v − 2, by the similar argument we can prove that 3v − 2→ 1 .
Thus if (ii) holds then (i) must hold.

Theorem 11. The following statements are equivalent :

(i) n→ 1 for all n.

(ii) Both 3u− 1 and 3u− 2 have reductions for all u ∈ N .

Proof is evident from Theorem 9 and Theorem 10.

5 Collatz Decisive Subset of N ×N ,

Concept of Net Induction Rate and Net

Reduction Rate and Final Conclusion

It is clear that the sets of Type-A, Type-B and Type-C naturals have the
same cardinality. Now a Type-A natural may be even or of the form 4t + 1
or of the form 4t + 3, and a Type-B natural may be even or of the form
4t + 1 or of the form 4t + 3.

Also note that

(i) if 3u− 2 = 2t, where t is odd then 3u− 1 = 4v + 3 for some v.

(ii) if 3u− 2 = 2t, where t is even then 3u− 1 = 4v + 1 for some v.

(iii) if 3u− 2 = 4t + 1 then 3u− 1 = 2v for some odd v.

(iv) if 3u− 2 = 4t + 3 then 3u− 1 = 2v for some even v.

The reverse cases of the above results (i), (ii), (iii), (iv) are also true.

Now let C(S) denote the decisive subset of N ×N where
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C(S) = {(3u− 2, 3u− 1),u ∈ N}.
Let Ω1 ⊂ C(S) where the components are of the form 2t and 4v + 3 in any
order and Ω2 ⊂ C(S) where the components are of the form 2t and 4v + 1
in any order.

Consequently, C(S) = Ω1 ∪ Ω2 and cardinality of Ω1 = cardinality of Ω2.

Definition 12. (i) Net Induction Rate of elements of Ω1.

Consider any ordered pair in Ω1. Since 2t → t is a reduction and
4v + 3→ 6v + 5 is an induction,

Net Induction Rate (N-I-R) of elements of Ω1 = (6v+5)−(4v+3)
4v+3

−2t−t
2t

= 1
8v+6

.

Note that as v becomes larger and larger, N-I-R approaches 0.

(ii) Net Reduction Rate of elements of Ω2.

Consider any ordered pair in Ω2. Since 2t → t is a reduction and
4v + 1→ 3v + 1 is a reduction,

Net Reduction Rate (N-R-R) of elements of Ω2 = (4v+1)−(3v+1)
4v+1

+ 2t−t
2t

= 6v+1
8v+2

.

Note that as v becomes larger and larger, N-R-R approaches 3
4
.

Final Conclusion : Since N-R-R > N-I-R, we conclude that Collatz Con-
jecture is true.
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