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The time-neutral metric is discussed, and the neutral exterior Schwarzschild metric is converted
to polynomial form in r and M . The resulting polynomials are both of degree three, which allows
exact solutions using standard cubic solving techniques.

THE TIME-NEUTRAL METRIC

The time-neutral metric (neutral metric) is a spacetime metric solution of General Relativity[1] reduced by c2dt2

and set equal to one:

dτ2

dt2
= 1 (1)

This represents zero time dialation, as opposed to the maximal time dialation of the zero metric: dτ2/dt2 = 0. That
finite, real, solutions with non-zero radius exist for neutral metrics when M ̸= 0 may be surprising. It is especially
counter-intuitive for the Schwarzschild metric[2] which does not have the opposite sign r2Q/r

2 or a2/r2 factors of higher
order metrics[3–5]. However, these solutions do exist mathematically.

The open-source software tool knsolver[6] can be used to generate plots of solutions to the neutral Kerr-Newman
metric[5]. It uses computational techniques on the standard form of the Kerr-Newman metric which is flexible but
slow, especially for precision results. Converting a neutral metric to polynomial form may allow for fast exact solutions,
depending on the degree of the polynomial.

POLYNOMIAL FORM

As shown in the proof below, the neutral exterior Schwarzschild metric, with test particle velocities converted to
v2/c2, as a polynomial in r is given by:(

v2r
c2

+
v2Ω
c2

)
rsr

3 +

(
1− v2Ω

c2

)
r2s r

2 − r3s r = 0, (r ≥ R) , (2)

and in M :

8G3r

c6
M3 −

(
1− v2Ω

c2

)
4G2r2

c4
M2 −

(
v2r
c2

+
v2Ω
c2

)
2Gr3

c2
M = 0, (r ≥ R) . (3)

As both polynomials are of degree three, standard cubic solving techniques can be used to efficiently find exact
solutions. This also agrees with the number of roots implied by plots generated from knsolver when electric charge
Q and angular momentum J are set to zero.

PROOF

Deriving the polynomials involves basic algebraic manipulation but special care must be taken to not lose the
degrees of freedom represented by the inverse sum in the dr2 term. This makes the process slightly more complicated,
but nowhere near as tedious as with the Reissner–Nordström metric[3]. This proof uses some substitutions that are
not strictly necessary here but can be used to help manage the explosive proliferation of length factors in higher order
metrics[3–5].
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We begin with the exterior (r ≥ R) Schwarzschild metric[2] in spherical coordinates (t, r, θ, φ) and metric signature
[+,−,−,−]:

ds2 = c2dτ2 =
(
1− rs

r

)
c2dt2 −

(
1− rs

r

)−1

dr2 − r2dΩ2, (r ≥ R) , (4)

rs =
2GM

c2
, dΩ2 = dθ2 + sin2θdφ2. (5)

Reduce the metric by c2dt2 and set equal to one to obtain the time-neutral metric, and also convert test particle
velocities to v2/c2 . This is the equation we will convert to polynomial form:

dτ2

dt2
=

(
1− rs

r

)
− v2r

c2

(
1− rs

r

)−1

− v2Ω
c2

= 1, (r ≥ R) , (6)

v2r
c2

=
dr2

c2dt2
,

v2Ω
c2

=
r2dΩ2

c2dt2
. (7)

Multiply the dt2 and dΩ2 terms by
(
1− rs

r

)
/
(
1− rs

r

)
, then simplify the denominator by dividing both sides by r:(

1− rs
r

) (
1− rs

r

)
− v2

r

c2 − v2
Ω

c2

(
1− rs

r

)
1− rs

r

= 1, (8)

(
1− rs

r

) (
1− rs

r

)
− v2

r

c2 − v2
Ω

c2

(
1− rs

r

)
r − rs

=
1

r
. (9)

Multiply out the dt2 term product, then simplify the numerator by multiplying both sides by r2, then group by terms
of r being especially careful with signs of combined factors:

1− 2rs
r +

r2s
r2 − v2

r

c2 − v2
Ω

c2

(
1− rs

r

)
r − rs

=
1

r
, (10)

r2 − 2rsr + r2s −
v2
r

c2 r
2 − v2

Ω

c2

(
r2 − rsr

)
r − rs

= r, (11)

(
1− v2

r

c2 − v2
Ω

c2

)
r2 −

(
2− v2

Ω

c2

)
rsr + r2s

r − rs
= r. (12)

At this point we introduce temporary variables X and Y , to help capture the extra degrees of freedom in the inverse
sum. Let X be the numerator on the left side of equation 12:

X

r − rs
= r, (13)

X =

(
1− v2r

c2
− v2Ω

c2

)
r2 −

(
2− v2Ω

c2

)
rsr + r2s . (14)

The denominator sum is now split between numerators X and Y :

X

r − rs
=

X

r
+

Y

rs
, (15)

X

r − rs
=

Xrs + Y r

rsr
. (16)
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Now it is safe to multiply both sides by (r − rs) rsr, then we group by terms of X and Y :

Xrsr = (Xrs + Y r) (r − rs) , (17)

Xrsr = Xrsr −Xr2s + Y r2 − Y rsr, (18)

Xr2s − Y
(
r2 − rsr

)
= 0. (19)

Substitute symbols Xf , Yf , for length factors associated with X and Y , then solve for Y :

XXf − Y Yf = 0, (20)

Xf = r2s , Yf = r2 − rsr, (21)

Y =
XXf

Yf
. (22)

With equations 13 and 16, multiply by rsr and substitute for Y using equation 22:

Xrs + Y r

rsr
= r, (23)

Xrs +
XXfr

Yf
= rsr

2. (24)

Multiply by Yf , then group by terms of X:

XYfrs +XXfr = Yfrsr
2, (25)

X (Yfrs +Xfr)− Yfrsr
2 = 0. (26)

Substitute symbols F1, F2,, F3, for the combined length factors:

X (F1 + F2)− F3 = 0, (27)

F1 = Yfrs, F2 = Xfr, F3 = Yfrsr
2. (28)

With equations 21, and 28, solve F1 + F2, and with equation 14, X (F1 + E2):

F1 = rsr
2 − r2s r, F2 = r2s r, (29)

F1 + F2 = rsr
2, (30)

X (F1 + F2) =

[(
1− v2r

c2
− v2Ω

c2

)
r2 −

(
2− v2Ω

c2

)
rsr + r2s

]
rsr

2, (31)

X (F1 + F2) =

(
1− v2r

c2
− v2Ω

c2

)
rsr

4 −
(
2− v2Ω

c2

)
r2s r

3 + r3s r
2. (32)

Solve F3 and X (F1 + F2)− F3:

F3 = rsr
4 − r2s r

3, (33)
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X (F1 + F2)− F3 =

(
1− v2r

c2
− v2Ω

c2

)
rsr

4 −
(
2− v2Ω

c2

)
r2s r

3 + r3s r
2 − rsr

4 + r2s r
3. (34)

With equations 27 and 34, divide by r since the smallest degree of r is 2:(
1− v2r

c2
− v2Ω

c2

)
rsr

4 −
(
2− v2Ω

c2

)
r2s r

3 + r3s r
2 − rsr

4 + r2s r
3 = 0, (35)

(
1− v2r

c2
− v2Ω

c2

)
rsr

3 −
(
2− v2Ω

c2

)
r2s r

2 + r3s r − rsr
3 + r2s r

2 = 0. (36)

Convert to standard polynomial form in r by consolidating terms by r, then inverting the sign of each term:(
−v2r
c2

− v2Ω
c2

)
rsr

3 −
(
1− v2Ω

c2

)
r2s r

2 + r3s r = 0, (37)

(
v2r
c2

+
v2Ω
c2

)
rsr

3 +

(
1− v2Ω

c2

)
r2s r

2 − r3s r = 0, (r ≥ R) (38)

Convert to standard polynomial form in M by substituting rs = 2GM
c2 , then rearranging terms by M and inverting

signs again: (
v2r
c2

+
v2Ω
c2

)
2GM

c2
r3 +

(
1− v2Ω

c2

)
4G2M2

c4
r2 − 8G3M3

c6
r = 0, (39)

8G3r

c6
M3 −

(
1− v2Ω

c2

)
4G2r2

c4
M2 −

(
v2r
c2

+
v2Ω
c2

)
2Gr3

c2
M = 0, (r ≥ R) (40)
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