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The time-neutral metric is introduced and the time-neutral exterior Schwarzschild metric is con-
verted to polynomial form in r and total mass M . The polynomials are found to be cubic with
no constant term, which allows the two non-zero roots of each to be extracted from the reduced
quadratic form.
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THE TIME-NEUTRAL METRIC

A time-neutral metric is an exact solution to the Einstein field equations[1] multiplied by the inverse length scalar
1/c2dt2, and set equal to one. The time-neutral metric with signature (+,−,−,−) is given by:

ds2

c2dt2
=

dτ2

dt2
= 1. (1)

Multiplying the line element by this scalar is a special coordinate transformation that also converts coordinate in-
finitessimals to dimensionless ratios1

Setting the transformed metric to one represents neutral time dilation (∆t′ = ∆t), as opposed to maximal time
dilation of the zero-time metric dτ2/dt2 = 0. That finite, real, solutions to time-neutral metrics exist with M ̸= 0
may be surprising. It is especially counter-intuitive for the Schwarzschild metric[2], which does not have the opposite
sign r2Q or a2 factors that give additional degrees of freedom[3, 4] to higher order metrics. However, these solutions
do exist mathematically.

Further transforming the time-neutral metric into polynomial form has the effect of replacing the divergence at
r = 0 in the standard form of the metric, with the constraint v2r/c

2 ̸= 0 in the polynomial form. Even if this is not
physical it might be a useful tool for quantum gravity research.

The open-source software tool knsolver[5] can be used to generate plots of solutions to the time-neutral and zero-
time metrics. It uses numerical methods on the standard form of the Kerr-Newman[6] metric which is flexible but
slow, especially for precision results. Converting a time-neutral metric to polynomial form may allow for fast exact
solutions, depending on the degree of the polynomial.

The time-neutral metric should not be confused with metrics of neutral signature[7–11] (+,+,−,−), which are
often referred to as “neutral metrics” in mathematical literature.

POLYNOMIAL FORM

As shown in the proof below, the time-neutral exterior Schwarzschild metric in spherical coordinates (t, r, θ, φ),
with test particle velocities converted to v2/c2, as a polynomial in r and total mass M are given by:(

v2r
c2

+
v2Ω
c2

)
rsr

3 +

(
1− v2Ω

c2

)
r2s r

2 − r3s r = 0, (2)

8G3r

c6
M3 −

(
1− v2Ω

c2

)
4G2r2

c4
M2 −

(
v2r
c2

+
v2Ω
c2

)
2Gr3

c2
M = 0, (3)

rs =
2GM

c2
, (r ≥ R) ,

(
v2r/c

2 ̸= 0
)
. (4)
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1 In metrics where angular momentum J ̸= 0, an arbitrary finite non-zero value can be assigned to the remaining linear dt factors without

affecting the neutral metric. knsolver sets this to tP , but other values such as 1, or even −1 also work. The remaining linear dφ factors
must then be derived from dφ = vφdt/r.
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As both are cubic with no constant term, the two non-zero roots of each can be recovered from the reduced quadratic
equations: (

v2r
c2

+
v2Ω
c2

)
rsr

2 +

(
1− v2Ω

c2

)
r2s r − r3s = 0, (5)

8G3r

c6
M2 −

(
1− v2Ω

c2

)
4G2r2

c4
M −

(
v2r
c2

+
v2Ω
c2

)
2Gr3

c2
= 0, (6)

rs =
2GM

c2
, (r ≥ R) ,

(
v2r/c

2 ̸= 0
)
. (7)

This agrees with the two non-zero roots for each implied by plots generated from knsolver[5] when electric charge Q
and angular momentum J are set to zero.

PROOF

Deriving the polynomials involves basic algebraic manipulation but special care must be taken to not lose the
degrees of freedom represented by the inverse sum

(
1− rs

r

)−1 in the dr2 term. This proof also uses some substitutions
that are not strictly necessary here but can be used to help manage the proliferation of length factors in the higher
order metrics[6, 12, 13].

We begin with the exterior (r ≥ R) Schwarzschild metric[2] in spherical coordinates (t, r, θ, φ) and metric signature
(+,−,−,−):

ds2 = c2dτ2 =
(
1− rs

r

)
c2dt2 −

(
1− rs

r

)−1

dr2 − r2dΩ2, (r ≥ R) , (8)

rs =
2GM

c2
, dΩ2 = dθ2 + sin θdφ2. (9)

Divide the metric by c2dt2 and set equal to one to obtain the time-neutral metric, also convert test particle velocities
to v2/c2. This is the equation we will convert to polynomial form:

dτ2

dt2
=

(
1− rs

r

)
− v2r

c2

(
1− rs

r

)−1

− v2Ω
c2

= 1, (r ≥ R) , (10)

v2r
c2

=
dr2

c2dt2
,

v2Ω
c2

=
r2dΩ2

c2dt2
. (11)

Multiply the dt2 and dΩ2 terms by
(
1− rs

r

)
/
(
1− rs

r

)
, then simplify the denominator by dividing both sides by r.

At this point we must add the constraint v2r/c
2dt2 ̸= 0 as we are combining the dr2 term inverse length factor with

the other terms in the denominator.

(r ≥ R) ,
(
v2r/c

2 ̸= 0
)
, (12)

(
1− rs

r

) (
1− rs

r

)
− v2

r

c2 − v2
Ω

c2

(
1− rs

r

)
1− rs

r

= 1, (13)

(14)(
1− rs

r

) (
1− rs

r

)
− v2

r

c2 − v2
Ω

c2

(
1− rs

r

)
r − rs

=
1

r
. (15)

Multiply out the dt2 term product, then simplify the numerator by multiplying both sides by r2, then group by terms
of r being especially careful with signs of combined factors:

1− 2rs
r +

r2s
r2 − v2

r

c2 − v2
Ω

c2

(
1− rs

r

)
r − rs

=
1

r
, (16)



3

r2 − 2rsr + r2s −
v2
r

c2 r
2 − v2

Ω

c2

(
r2 − rsr

)
r − rs

= r, (17)

(
1− v2

r

c2 − v2
Ω

c2

)
r2 −

(
2− v2

Ω

c2

)
rsr + r2s

r − rs
= r. (18)

At this point we introduce temporary variables X, Y , to help capture the extra degrees of freedom in the inverse sum.
Let X be the numerator on the left side of equation 18:

X

r − rs
= r, (19)

X =

(
1− v2r

c2
− v2Ω

c2

)
r2 −

(
2− v2Ω

c2

)
rsr + r2s . (20)

The denominator sum is now split between numerators X and Y :

X

r − rs
=

X

r
+

Y

rs
, (21)

X

r − rs
=

Xrs + Y r

rsr
. (22)

It is now safe to multiply both sides by (r − rs) rsr, then we group by terms of X and Y :

Xrsr = (Xrs + Y r) (r − rs) , (23)

Xrsr = Xrsr −Xr2s + Y r2 − Y rsr, (24)

Xr2s = Y
(
r2 − rsr

)
. (25)

Substitute symbols Xf , Yf , for length factors associated with X and Y , then solve for Y :

XXf = Y Yf , (26)

Xf = r2s , Yf = r2 − rsr, (27)

Y =
XXf

Yf
. (28)

With equations 19 and 22, multiply by rsr and substitute for Y using equation 28:

Xrs + Y r

rsr
= r, (29)

Xrs +
XXfr

Yf
= rsr

2. (30)

Multiply by Yf , then group by terms of X:

XYfrs +XXfr = Yfrsr
2, (31)

X (Yfrs +Xfr)− Yfrsr
2 = 0. (32)
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Substitute symbols F1, F2,, F3, for the combined length factors:

X (F1 + F2)− F3 = 0, (33)

F1 = Yfrs, F2 = Xfr, F3 = Yfrsr
2. (34)

With equations 27, and 34, solve F1 + F2, and with equation 20, X (F1 + F2):

F1 = rsr
2 − r2s r, F2 = r2s r, (35)

F1 + F2 = rsr
2, (36)

X (F1 + F2) =

[(
1− v2r

c2
− v2Ω

c2

)
r2 −

(
2− v2Ω

c2

)
rsr + r2s

]
rsr

2, (37)

X (F1 + F2) =

(
1− v2r

c2
− v2Ω

c2

)
rsr

4 −
(
2− v2Ω

c2

)
r2s r

3 + r3s r
2. (38)

Solve F3 and X (F1 + F2)− F3:

F3 = rsr
4 − r2s r

3, (39)

X (F1 + F2)− F3 =

(
1− v2r

c2
− v2Ω

c2

)
rsr

4 −
(
2− v2Ω

c2

)
r2s r

3 + r3s r
2 − rsr

4 + r2s r
3. (40)

With equations 33 and 40, divide by r as the smallest degree of r is 2:(
1− v2r

c2
− v2Ω

c2

)
rsr

4 −
(
2− v2Ω

c2

)
r2s r

3 + r3s r
2 − rsr

4 + r2s r
3 = 0, (41)

(
1− v2r

c2
− v2Ω

c2

)
rsr

3 −
(
2− v2Ω

c2

)
r2s r

2 + r3s r − rsr
3 + r2s r

2 = 0. (42)

Convert to standard polynomial form in r by grouping terms by r, then inverting the sign of each term, and applying
the constraints from equation 12: (

−v2r
c2

− v2Ω
c2

)
rsr

3 −
(
1− v2Ω

c2

)
r2s r

2 + r3s r = 0, (43)

(
v2r
c2

+
v2Ω
c2

)
rsr

3 +

(
1− v2Ω

c2

)
r2s r

2 − r3s r = 0,
(
r ≥ R, v2r/c

2 ̸= 0
)

(44)

Convert to standard polynomial form in M by substituting rs =
2GM
c2 , then grouping terms by M and inverting signs

again: (
v2r
c2

+
v2Ω
c2

)
2GM

c2
r3 +

(
1− v2Ω

c2

)
4G2M2

c4
r2 − 8G3M3

c6
r = 0, (45)

8G3r

c6
M3 −

(
1− v2Ω

c2

)
4G2r2

c4
M2 −

(
v2r
c2

+
v2Ω
c2

)
2Gr3

c2
M = 0,

(
r ≥ R, v2r/c

2 ̸= 0
)

(46)
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