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The Unruh effect tells us that what we call particles is really
just a matter of perspective.

Lee Smolin

Abstract

We consider the field theoretic picture where Unruh radiation was initially uncovered. We demonstrate how
thrust serves as a more accurate and direct explanation of the Unruh effect and hence Hawing radiation.

1 Introduction

Much of this note including notation and conventions are drawn directly from the overview [3], from the original
source [4], and from lectures [1]. As in these references, we only consider the scalar free field which is enough
for the Unruh effect to become manifest. We consider a field theoretic version of thrust, driving sources. From
this, we will derive the Unruh vacuum expectation.

2 Rindler and Minkowski Modes Review

Let ℏ = c = 1.
Consider a (1, 1)-dimensional spacetime1 (t, z) with coordinates u = −t+ z and v = −t− z. Any function of

purely u, f(u), is made up of Minkowski modes that are constant on v. That is they are given by a 1-dimensional
Fourier expansion

f(u) =
1

2π

∫
eipuuf̂(pu)dpu.

supported on pv = 0. The same is true for v, g(v), pv, and ĝ(v). The full 2-dimensional transform of combinations
of f and g is a linear combination of f̂(pu)δ(pv) and ĝ(pv)δ(pu). These are supported on the massless shell —
“the momentum light cone”.

Let W be the z > |t| Rindler wedge with coordinates

t =
1

a
eaξ sinh (aη)

z =
1

a
eaξ cosh (aη)

where a > 0 is an acceleration parameter (see Figure 1). We call u and v “event horizon” coordinates since they
are defined along the event-horizons of an accelerating observer in W .

For wave number k and positive frequency ωk consider the functions

h
(u)
k =

e
πωk
2a (au)

iωk
a√

2 sinh
(
πωk
a

)
h
(v)
k =

e
πωk
2a (av)

iωk
a√

2 sinh
(
πωk
a

)
∗kplayer@andrew.cmu.edu
1The full (1, 3)-dimensional case does not add anything to the argument, so we stick to the dimensions where the linear acceleration

boosts are taking place (t and z).
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Figure 1: Rindler wedge W on the right.

The scalar field in Rindler curved space has modes

rk =
1√
4πωk

e−i(ωkη−kξ)

which can be written as combinations of the “event horizon” modes

e
πωk
2a h

(u)
k − e−

πωk
2a h

(v)
k =

√
2 sinh

(πωk

a

)
rk

Unlike the Rindler mode, the event horizon modes extend analytically from W to all of spacetime.
When we switch between hk and the usual Minkowski bases we find that the Minkowski vacuum has exci-

tations visible in the Rindler frame. More specifically, there is a positive particle number vacuum expectation
of

1

e
2πωk

a − 1
(1)

which is usually interpreted as (Unruh) radiation [4].

3 Fourier Transform of the Sources

We will take several Fourier transforms to elucidate the various modes and set up for some integrals. Let ϕ be
a scalar free field in the flat (1, 1)-dimensional Minkowski spacetime. We will consider h

(u)
k and h

(v)
k as driving

W -event horizon sources
ρ = αh

(u)
k + βh

(v)
k . (2)

with positive real convex combination (α + β) = 1. The drivers h
(u)
k and h

(v)
k are functions f(u) of the past

W -horizon and g(v) of the future W -horizon respectively. Both generate excitations, which we identify with
absorption and emission thrusts respectively.

The source can originate from a coupling term, ρϕ, added to the Lagrangian.

Ldriven = Loriginal + ρϕ

This leads to an inhomogeneous Klein-Gordon equation

(□+m2)ϕ = ρ

as presented in [1]2

2In [1] it is assumed that the source is only active for a finite amount of time. We let ρ be active for all time. The argument in [1]
seem to be adaptable to ρ.
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Figure 2: Massless shell is when pu = pv = 0

We want to integrate ρ on shell in momentum space, which for a massless source is the positive energy part
of the massless shell. The two positive energy “horizons” border pu <= 0 and pv <= 0, see Figure 2. Proceeding
to take the Fourier transform of the function f(u)3, we drop pu to just p for the time being to increase legibility.
We will continue to assume that ωk and a are positive. Define the kernel

A = e−ipu(au)
iωk
a du

and then we have

f̂( u) =
e

πωk
2a√

2 sinh
(
πωk
a

) ∫ ∞

−∞
A (3)

where L =
∫ 0

−∞ A and R =
∫∞
0

A are the left and right sides of the total integral L+R.
We rewrite the integrals using a complex changes of variables, s = ipu, and contour integrals.
The L integral for real p < 0 is

L(p) = −
∫ i∞

0

(
ias

−p

) iωk
a

(
i

−p

)
ds

=
−i

a

(
a

−p

) iωk
a

+1 ∫ ∞

0

(is)
iωk
a e−sds

=
−i

a

(
a

−p

) iωk
a

+1

Γ

(
iωk

a
+ 1

)
e−

πωk
2a

=
1

2
Γ

(
iωk

a
+ 1

)
e−

πωk
2a B(p)

where

B(p) =
−2i

a

(
a

−p

) iωk
a

+1

is as shown. This is using a large radius contour which rotates the endpoint 90 degrees clockwise.
The same calculation for R is done using a counter-clockwise contour this time.

R(p) =
1

2
Γ

(
iωk

a
+ 1

)
e−

πωk
2a B(p)

3WLOG since g(v) is of the same form.
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Figure 3: Using contours with large radius we convert the L integral that goes to i∞, and the R integral that goes
to −i∞, to integrals with s going to real ∞.

We get back to h
(u)
k and apply the normalization from equation (3)

ĥk
(u)

(pu) =
e

πωk
2a√

2 sinh
(
πωk
a

) (L(pu) +R(pu))

So

ĥk
(u)

(pu) =
Γ
(
iωk
a

+ 1
)√

2 sinh
(
πωk
a

)B(pu)

ĥk
(v)

(pv) =
Γ
(
iωk
a

+ 1
)√

2 sinh
(
πωk
a

)B(pu)

(4)

4 Interpretation

The driving source ρ, with mixed absorption and emission thrusts α + β = 1, contribute excitations to the scalar
field ϕ. Equations (2) and (4) let us write down the expected change of energy

E[∆E] =
1

4π

∫
|ρ(p)|2dp

=
α

4π

∫ ∣∣∣ĥk
(u)

(pu)
∣∣∣2 dpu +

β

4π

∫ ∣∣∣ĥk
(v)

(pv)
∣∣∣2 dpv

=

∣∣Γ (
iωk
a

+ 1
)∣∣2

2 sinh
(
πωk
a

) 1

4π

∫
|B(p)|2dp

=

∣∣Γ (
iωk
a

+ 1
)∣∣2

2πa sinh
(
πωk
a

) ∫
a/|p|2dp

= I(ωk)P

(5)

where the integrals are on the positive energy massless shell with contributions from pu on the left piece and pv
on the right piece. We factored out P =

∫
a/|p|2 with a remaining p independent positive real coefficient I(ωk).

Without being more careful we end up with inferred problems — The integrals do not converge at zero,
where P explodes. But this infinity cancels when we compare the spectral radiances I(ωk) to each other.

The magnitude of our Gamma function has known asymptotics [2, Eq. 5.11.9]∣∣∣∣Γ(
iωk

a
+ 1

)∣∣∣∣2 ∼
(
2πωk

a

)
e−

πωk
a
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Plugging this into equation (5) we find the average energy of the mode, the (1,1) dimensional Planck distribution
function, and thus recover the Unruh’s radiation spectrum4 from a thrust driven field.

1

P
E[∆E] = I(ωk) ∼

ωk

e
2πωk

a − 1

5 Conclusion

If we do not account for the thrust required to accelerate a detector, then we recover it instead as a thermal
unknown in the vacuum, Unruh radiation. But, it would seem that we can explain Unruh radiation directly
using field theoretic thrust instead. Using the equivalence principle, this result also explains Hawking radiation
as the thrust required to maintain distance from a black hole.

References

[1] N. Beisert. Quantum field theory i, chapter 3. https://edu.itp.phys.ethz.ch/hs12/qft1/Chapter03.pdf,
2012.

[2] NIST Digital Library of Mathematical Functions. https://dlmf.nist.gov/, Release 1.1.12 of 2023-12-15.
F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller,
B. V. Saunders, H. S. Cohl, and M. A. McClain, eds.

[3] Ernesto Frodden and Nicolás Valdés. Unruh effect: Introductory notes to quantum effects for accelerated
observers. International Journal of Modern Physics A, 33(27):1830026, September 2018.

[4] W. G. Unruh. Notes on black-hole evaporation. Phys. Rev. D, 14:870–892, Aug 1976.

4Compare to equation (1) and references [4] and [3].

5


