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This started as a joke derivation for force coupling constants but it is the
simplest derivation of alpha, the fine structure constant, using Coulomb’s law
and the Planck-Einstein relations. The derivation shows that coupling con-
stants are wavenumbers. Another derivation using Newton’s law of gravity
also provides the coupling constant for the gravitational force. I argue that
alpha and the coupling constants represents the minimum uncertainty be-
tween wavenumber and radial distance. This is like the uncertainty between
momentum (wavelength) and position. Wavenumber is defined as the inverse
of the wavelength per unit distance. This is equivalent to saying that alpha
is about 137 wavelengths per unit distance of radius. I go on to show this
provides the correct ionization wavelengths of light for the hydrogen atom.
Using whole integers, n number of energy levels, allowed me to derive the
Rydberg formula. Alpha is nearly an integer number because we are using
a wavenumber. This derivation is equivalent to that of the Bohr model but
without needing to use classical ideas of electrons in orbit around the nucleus
like planets in orbit around the sun.
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1 Deriving Coulomb’s Law

The intensity a distance r away from a spherically symmetric point source is
defined as

I =
P

A
(1)

I is the intensity, P is the power and A is the area the power is spread over.
Many physical phenomena can be described as spherically symmetric radiating
point sources. Newton’s law of gravity, Coulomb’s law and the power emitted
from a light source all follow the same inverse square law. Substituting in the
surface area of a sphere of radius r for the area in the intensity equation gives

I =
P

4πr2
(2)

The power distributed over an area is analogous to the probability density cre-
ated by the wavefunction of two charges, ψ1, ψ2, which is equal to the coupling
constant squared, the Born rule, spread over the surface area of a sphere or
radius r

P =< ψ1|ψ2 >= e2 (3)

Coulomb’s law is beginning to take shape

I =
e2

4πr2
(4)

In electromagnetism the permittivity is defined as the ability of the electric field
to penetrate a substance. The greater the permittivity the more difficult it is
for the E-field to penetrate the material. The permittivity of the vacuum has
been measured experimentally and is denoted by εo. We find Coulomb’s law for
two point charges by taking I/εo

F =
e2

4πεor2
(5)

Coulomb’s law replaces point charges with the total sum of the point charges
in each object.
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2 Deriving α

The force carrying particle of the electromagnetic force is the photon. The
intensity of the probability density for the location of the particles relative
to each other will move the particles closer together or farther away as the
charged particles interact with the photon. The closer the charges are the higher
the probability density is for them to be located closer or farther apart. The
momentum and energy of a photon is defined by the Planck-Einstein relations
in terms of the wavelength λ and frequency ν

P =
h

λ
(6)

E = hν (7)

The angular form with k = 2π
λ , ω = 2πν, and h̄ = h

2π is

P = h̄k (8)

E = h̄ω (9)

The speed a photon travels at is a constant, c, which is the wavelength of the
photon multiplied by the frequency

λν = c (10)

We can rewrite the energy using the wavenumber as

E = h̄ck (11)
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The integral of the force provides us the potential energy between two charges
separated by a distance r

U = −
∫
Fdr (12)

This provides us with an equation expressing the wavelength of the photon in
terms of the distance between the source and destination as

U = −
∫

e2

4πεor2
dr (13)

U =
e2

4πεor
(14)

The energy of the photon that bounds an electron to an orbit is defined by
the Einstein-Planck relations. When an electron drops an orbital it emits a
photon and when the potential energy increases the electron absorbs a photon.
Energy is conserved and if the potential energy is zero then the kinetic energy
is E = h̄ck

h̄ck =
e2

4πεor
(15)

Solving for k

k =
e2

4πεoh̄cr
(16)

α is defined as

α =
e2

4πεoh̄c
≈ 1

137
(17)

Therefore the wavenumber of the photon between two charges is

k =
α

r
(18)
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Setting α = 1 gives us the Planck charge

e =
√

4πεoh̄c (19)

Since α = 1 we should rename the Planck charge from the electric charge, e, to
Pc

Pc =
√

4πεoh̄c (20)

3 Newton’s Law of Gravity

The same derivation for Coulomb’s law leads to an interesting conclusion if we
use the same method for deriving Newton’s law of gravity. We use the concept
to explain the force of gravity by using a force carrying particle, the graviton,
exchanged between two equal masses. As before we find

P =< ψ1|ψ2 >= m2 (21)

Again we substitute this into equation the intensity equation for a spherically
symmetric radiating point source. Plugging in the experimentally determined
constant that dampens the probability amplitude of the graviton, G, and divid-
ing by the surface area of the sphere gives us Newton’s law of gravity.

F =
Gm2

r2
(22)

The energy of a force carrying particle is defined as E = h̄ck and we plug it into
the equation above after integrating it to find the force

h̄ck =
Gm2

r
(23)

Solving for k

k =
Gm2

h̄cr
(24)
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The gravitational coupling constant is defined as

αG =
Gm2

h̄c
(25)

This simplifies the wave number of force carrying graviton as

k =
αG
r

(26)

Setting αG to 1 gives us the planck-mass

m =

√
h̄c

G
(27)

4 Deriving the Hydrogen IonizationWavelength
Using the Generalized Uncertainty Principle

The equation 2πr = αλ is telling us that there may be an orbital with the
circumference equivalent to the coupling constant, α, multiplied by a photon
with wavelength λ. Our assumption of a spherically symmetric radiating point
source with an energy that varies as the inverse of the radius is nearly universal.

2πr = αλ (28)

For instance, the classical electron radius is defined as

2πre = αλe (29)

where λe as the Compton wavelength λc = h
mec

This is identical to our derived k = α
r . The ground state energy of the electron

in the hydrogen atom is −13.6eV . The Bohr radius, the distance from the
nucleus to the ground state orbital is 5.29110−11m. Setting r to the Bohr radius
and solving for lambda gives us a wavelength of 4.55513610−8m.

The ionization energy of hydrogen, the energy to remove the electron from
the atom requires a photon with a wavelength of 9.1110−8m. Multiplying our
λ = 4.55510−11 by 2 gives the correct ionization wavelength for the photon that
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can ionize hydrogen. The factor of two is not an accident and that is due to the
uncertainty principle. The uncertainty principle tells us that the relationship
between position and momentum is

∆X∆P ≥ h̄

2
(30)

The generalized uncertainty principle for two observables is

σaσb ≥
[A,B]

2
(31)

We apply the same idea using our wavenumber k for the momentum and r as
the distance which is equal to a constant α

kr = α (32)

We set ∆k = ∆P and ∆r = ∆X

∆k∆r ≥ α

2
(33)

The generalized uncertainty principle provides the missing factor of 2 and hints
that the distance r and wavenumber k provide us with α when we find,

[r, k] = rk − kr = α (34)

If this is true then alpha may be due to the uncertainty between two observables
the momentum and radius. It also hints there may be a connection to Fourier
series which also have an uncertainty principle.

This leads to

λ =
4πr

α
(35)

Using the Bohr radius ao = 5.291772 x 10−11m we find the correct wavelength
of a photon that ionizes hydrogen with an electron in the ground state

λ =
4πao

1
137

= 9.1103 x 108 m
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5 Deriving Rydberg’s Formula

From the generalized uncertainty principle between the wave number and radius
we found ∆k∆r ≥ α

2 . We quantize by using discrete steps in the change of
wavelength and radius. By increasing ∆k by n the radius must also increase by
n. Our change in radius and wavelength can only occur in whole integers.

(nr)(nk) ≥ α

2
(36)

Setting k to 2π
λ leads to our previous result but is also quantized for the energy

levels.

n2r
2π

λ
≥ α

2
(37)

4πn2r ≥ αλ (38)

The ground state, the lowest possible state, is the Bohr radius, ao. Every
additional increase in size is an integer factor of that radius.

4πn2ao ≥ αλ (39)

If we are finding the difference between an initial orbital and a final orbital then
we do this by

4πn2fao − 4πn2i ao = 4πao(n
2
f − n2i ) (40)

We can now find Rydberg’s formula

4πao(n
2
f − n2i ) ≥ αλ (41)

1

λ
≥ α

4πao

1

n2f − n2i
(42)

Using Rydberg’s constant R = α
4πao

completes the Rydberg formula derivation

1

λ
≥ R 1

n2f − n2i
(43)
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