ON THE EXACT GENERAL SOLUTION TO THE 3D
 NAVIER-STOKES EQUATIONS

Daniel Thomas Hayes
February 25, 2024
A new strategy is explored for finding the exact general solution to the 3D Navier-Stokes equations. This strategy is shown for the case of periodic boundary conditions. The general solution obtained shows that solutions to the 3D Navier-Stokes equations do not exhibit blowup in finite time.

Theorem 1

Let $\mathbf{U}=\mathbf{U}(\mathbf{x}, t) \in \mathbb{R}^{3}, F=F(\mathbf{x}, t) \in \mathbb{R}$, and $\mathbf{Q}=\mathbf{Q}(\mathbf{x}, t) \in \mathbb{R}^{3}$, each dependent on $\mathbf{x} \in \mathbb{R}^{3}$ and $t \geqslant 0$. We can find the general solution \mathbf{U}, F to

$$
\begin{align*}
& \frac{\partial \mathbf{U}}{\partial t}+\bigcirc\left(\mathbf{U}^{2}\right)= \epsilon \bigcirc^{2}(\mathbf{U})+\bigcirc(\nabla F+\mathbf{Q}) \tag{1}\\
& \nabla \cdot \mathbf{U}=0 \tag{2}
\end{align*}
$$

with periodic boundary conditions

$$
\begin{align*}
& \mathbf{U}\left(\mathbf{x}+e_{i}, t\right)=\mathbf{U}(\mathbf{x}, t) \tag{3}\\
& F\left(\mathbf{x}+e_{i}, t\right)=F(\mathbf{x}, t) \tag{4}\\
& \mathbf{Q}\left(\mathbf{x}+e_{i}, t\right)=\mathbf{Q}(\mathbf{x}, t) \tag{5}
\end{align*}
$$

for $1 \leqslant i \leqslant 3$ where e_{i} is the $i^{\text {th }}$ unit vector in \mathbb{R}^{3}. Here \bigcirc is an operator such that

$$
\begin{equation*}
\bigcirc(\log (\mathbf{a}))=\frac{\bigcirc(\mathbf{a})}{\mathbf{a}} \tag{6}
\end{equation*}
$$

for any vector a.

Proof

Let

$$
\begin{equation*}
\mathbf{U}=c \bigcirc(\log (\mathbf{A}))=c \frac{\bigcirc(\mathbf{A})}{\mathbf{A}} \tag{7}
\end{equation*}
$$

where c is a constant. Equation (1) implies

$$
\begin{equation*}
c \frac{\partial}{\partial t} \bigcirc(\log (\mathbf{A}))+c^{2} \bigcirc\left[\left(\frac{\bigcirc(\mathbf{A})}{\mathbf{A}}\right)^{2}\right]=c \epsilon \bigcirc\left[\frac{\bigcirc^{2}(\mathbf{A})}{\mathbf{A}}-\left(\frac{\bigcirc(\mathbf{A})}{\mathbf{A}}\right)^{2}\right]+\bigcirc(\nabla F+\mathbf{Q}) . \tag{8}
\end{equation*}
$$

Let $c=-\epsilon$. Equation (8) implies

$$
\begin{equation*}
-\epsilon \frac{\partial}{\partial t} \bigcirc(\log (\mathbf{A}))=-\epsilon^{2} \bigcirc\left[\frac{\bigcirc^{2}(\mathbf{A})}{\mathbf{A}}\right]+\bigcirc(\nabla F+\mathbf{Q}) \tag{9}
\end{equation*}
$$

which implies

$$
\begin{equation*}
-\nabla^{-2} \nabla \times \nabla \times \epsilon \frac{\partial}{\partial t} \bigcirc(\log (\mathbf{A}))=-\nabla^{-2} \nabla \times \nabla \times \epsilon^{2} \bigcirc\left[\frac{\bigcirc^{2}(\mathbf{A})}{\mathbf{A}}\right]+\nabla^{-2} \nabla \times \nabla \times \bigcirc \mathbf{Q} \tag{10}
\end{equation*}
$$

which implies

$$
\begin{equation*}
-\nabla^{-2} \nabla \times \nabla \times \epsilon \frac{\partial}{\partial t}(\log (\mathbf{A}))=-\nabla^{-2} \nabla \times \nabla \times \epsilon^{2}\left[\frac{\bigcirc^{2}(\mathbf{A})}{\mathbf{A}}\right]+\nabla^{-2} \nabla \times \nabla \times \mathbf{Q}+\mathbf{g} \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
\bigcirc(\mathbf{g})=\mathbf{0} \tag{12}
\end{equation*}
$$

Equation (11) implies

$$
\begin{equation*}
\epsilon \frac{\partial}{\partial t}(\log (\mathbf{A}))=\epsilon^{2} \frac{\bigcirc^{2}(\mathbf{A})}{\mathbf{A}}-\mathbf{Q}+\mathbf{G} \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
\nabla^{-2} \nabla \times \nabla \times \mathbf{G}=-\mathbf{g} . \tag{14}
\end{equation*}
$$

Equation (13) implies

$$
\begin{equation*}
\epsilon \frac{\partial \mathbf{A}}{\partial t}=\epsilon^{2} \bigcirc^{2}(\mathbf{A})+\mathbf{A H} \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{H}=-\mathbf{Q}+\mathbf{G} . \tag{16}
\end{equation*}
$$

Equation (15) is a linear PDE for \mathbf{A} and is solvable. $\therefore \mathbf{U}$ can be found.
Equation (2) implies

$$
\begin{equation*}
\nabla \cdot \bigcirc\left(\mathbf{U}^{2}\right)=\bigcirc\left(\nabla^{2} F+\nabla \cdot \mathbf{Q}\right) \tag{17}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\nabla \cdot\left(\mathbf{U}^{2}\right)=\nabla^{2} F+\nabla \cdot \mathbf{Q}+h \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
\bigcirc(h)=0 \tag{19}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\nabla^{2} F=\nabla \cdot\left(\mathbf{U}^{2}\right)-\nabla \cdot \mathbf{Q}-h \tag{20}
\end{equation*}
$$

which implies

$$
\begin{equation*}
F=\nabla^{-2}\left[\nabla \cdot\left(\mathbf{U}^{2}\right)--\nabla \cdot \mathbf{Q}-h\right] . \tag{21}
\end{equation*}
$$

$\therefore F$ can be found.
Theorem 1 implies we can solve

$$
\begin{equation*}
\frac{\partial \mathbf{U}}{\partial t}=\diamond\left(\mathbf{U}^{2}\right)+\epsilon \diamond^{2}(\mathbf{U})-\diamond(\mathbf{Q}) \tag{22}
\end{equation*}
$$

and (3),(5) for \mathbf{U} where

$$
\begin{equation*}
\diamond=\nabla^{-2} \nabla \times \nabla \times \bigcirc . \tag{23}
\end{equation*}
$$

Theorem 2

Let $\mathbf{u}=\mathbf{u}(\mathbf{x}, t) \in \mathbb{R}^{3}, p=p(\mathbf{x}, t) \in \mathbb{R}$, and $\mathbf{f}=\mathbf{f}(\mathbf{x}, t) \in \mathbb{R}^{3}$, each dependent on $\mathbf{x} \in \mathbb{R}^{3}$ and $t \geqslant 0$. We can find the general solution \mathbf{u}, p to the 3D Navier-Stokes equations

$$
\begin{gather*}
\frac{\partial \mathbf{u}}{\partial t}+(\mathbf{u} \cdot \nabla) \mathbf{u}=\nu \nabla^{2} \mathbf{u}-\nabla p+\mathbf{f} \tag{24}\\
\nabla \cdot \mathbf{u}=0 \tag{25}
\end{gather*}
$$

with periodic boundary conditions

$$
\begin{align*}
\mathbf{u}\left(\mathbf{x}+e_{i}, t\right) & =\mathbf{u}(\mathbf{x}, t), \tag{26}\\
p\left(\mathbf{x}+e_{i}, t\right) & =p(\mathbf{x}, t), \tag{27}\\
\mathbf{f}\left(\mathbf{x}+e_{i}, t\right) & =\mathbf{f}(\mathbf{x}, t) \tag{28}
\end{align*}
$$

for $1 \leqslant i \leqslant 3$ where e_{i} is the $i^{\text {th }}$ unit vector in \mathbb{R}^{3}. We find that the 3 D Navier-Stokes equations are regular, see [1-4]. Here the equation for \mathbf{u} is

$$
\begin{equation*}
\frac{\partial \mathbf{u}}{\partial t}=\nabla^{-2} \nabla \times \nabla \times[(\mathbf{u} \cdot \nabla) \mathbf{u}]+\nu \nabla^{2} \mathbf{u}-\nabla^{-2} \nabla \times \nabla \times \mathbf{f} . \tag{29}
\end{equation*}
$$

Proof

Theorem 1 implies we can solve

$$
\begin{align*}
\frac{\partial \mathbf{u}}{\partial t} & =\nabla^{-2} \nabla \times \nabla \times[(\mathbf{u} \cdot \nabla) \mathbf{u}]+\nu \nabla^{2} \mathbf{u}-\nabla^{-2} \nabla \times \nabla \times \mathbf{f} \\
& +\diamond\left(\mathbf{u}^{2}\right)+\epsilon \diamond^{2}(\mathbf{u})-\diamond(\mathbf{Q}) \\
& -\nabla^{-2} \nabla \times \nabla \times[(\mathbf{u} \cdot \nabla) \mathbf{u}]-\nu \nabla^{2} \mathbf{u}+\nabla^{-2} \nabla \times \nabla \times \mathbf{f} \tag{30}
\end{align*}
$$

and (26),(28),(5) for \mathbf{u}. We let

$$
\begin{equation*}
\diamond\left(\mathbf{u}^{2}\right)+\epsilon \diamond^{2}(\mathbf{u})-\diamond(\mathbf{Q})-\nabla^{-2} \nabla \times \nabla \times[(\mathbf{u} \cdot \nabla) \mathbf{u}]-\nu \nabla^{2} \mathbf{u}+\nabla^{-2} \nabla \times \nabla \times \mathbf{f}=\mathbf{0} \tag{31}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\bigcirc\left(\mathbf{u}^{2}\right)-\epsilon \bigcirc^{2}(\mathbf{u})-\bigcirc \mathbf{Q}-(\mathbf{u} \cdot \nabla) \mathbf{u}+\nu \nabla^{2} \mathbf{u}+\mathbf{f}=\mathbf{r} \tag{32}
\end{equation*}
$$

where

$$
\begin{equation*}
\nabla^{-2} \nabla \times \nabla \times \mathbf{r}=\mathbf{0} \tag{33}
\end{equation*}
$$

We choose

$$
\begin{equation*}
\mathbf{f}=\mathbf{r}-\bigcirc\left(\mathbf{u}^{2}\right)+\epsilon \bigcirc^{2}(\mathbf{u})+\bigcirc \mathbf{Q}+(\mathbf{u} \cdot \nabla) \mathbf{u}-\nu \nabla^{2} \mathbf{u} \tag{34}
\end{equation*}
$$

which is still arbitrary since \mathbf{Q} appears. $\therefore \mathbf{u}$ can be found. Equation (25) implies

$$
\begin{equation*}
\nabla^{2} p=-\nabla \cdot[(\mathbf{u} \cdot \nabla) \mathbf{u}]+\nabla \cdot \mathbf{f} \tag{35}
\end{equation*}
$$

which implies

$$
\begin{equation*}
p=\nabla^{-2}\{-\nabla \cdot[(\mathbf{u} \cdot \nabla) \mathbf{u}]+\nabla \cdot \mathbf{f}\} . \tag{36}
\end{equation*}
$$

$\therefore p$ can be found. Finally, in light of the general solution obtained we find that the 3D Navier-Stokes equations are regular because equations (1),(2),(3),(4),(5),(6) are regular.

References

[1] Doering C. 2009. The 3D Navier-Stokes problem. Annu. Rev. Fluid Mech. 41: 109-128.
[2] Fefferman C. 2000. Existence and smoothness of the Navier-Stokes equation. Clay Mathematics Institute. Official problem description.
[3] Ladyzhenskaya O. 1969. The mathematical theory of viscous incompressible flows. Gordon and Breach, New York.
[4] Tao T. Why global regularity for Navier-Stokes is hard. Wordpress.

