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abstract:

The implications of recent astronomical observations made by the

James Webb Space Telescope (JWST) and compares them with those

from the Hubble Space Telescope. Speci�cally, it discusses the discov-

ery of galaxies such as GN-z11 and JADES-GS-z13-0, which appear

to have formed at very early stages of the universe, challenging previ-

ous assumptions about galaxy formation and the age of the universe.

The author uses a thought experiment involving relativistic speeds and

redshift calculations to question the current estimates of the universe's

age, suggesting that the universe might be older than widely accepted.

The piece critically examines the methodologies used in determining

the age of distant galaxies and the universe, proposing that new data

from JWST could necessitate a revision of cosmological models.

In 2016, the Hubble Space Telescope discovered the galaxy GN-z11,

for which the redshift is 11.1[1], indicating that it is visible from a time

when the Universe was about 400 million years old. (It seems like a very

short time for a galaxy to form.) However, the Webb Space Telescope has

discovered even more distant galaxies. One of them is the galaxy JADES-

GS-z13-0, which has a redshift of 13.2[2]. It is estimated to be visible

from a time when the Universe was about 300 million years old. Both of

these galaxies are relatively well-formed, suggesting that their formation

began even earlier. It's hard to imagine how such large galaxies could

have formed in such a young Universe, so let's try to verify the above-

1



mentioned estimates of the age of the Universe at the moments when these

galaxies are visible. To do this, let's conduct a thought experiment.

To begin with, we will conduct this experiment on a very small scale.

(In our immediate surroundings, we have well-understood laws of physics,

so there will be no problem in drawing accurate conclusions.) Let's assume

that we have a ri�e from which we can �re a spherical bullet at relativistic

speeds ranging from, for example, 0.1c to 0.999c (speed can be varied by

using explosive charges of di�erent masses). We also have a high-speed

camera capable of taking rapid, high-speed, and sharply focused images

to capture the bullet in �ight. The camera has a clock that measures

time with great precision (e.g., 0.01[ns]). The clock's time is displayed

on each captured image. The clock starts measuring time from zero the

moment the bullet exits the ri�e's barrel. The camera lens is positioned

near the muzzle of the barrel. We estimate the distance traveled by the

bullet based on its angular diameter visible in the captured photographs.

We assume that the bullets emit light at a speci�c frequency, allowing

us to determine their velocity based on the redshift of this frequency.

We assume that the experiment is conducted in a vacuum (e.g., in outer

space), and the �red bullets move at a constant velocity.

Let's analyze this experiment in a �at, Cartesian, two-dimensional

coordinate system related to a stationary camera, where the horizontal

axis (denoted as T ) represents time. Meanwhile, on the ordinate axis

(denoted as R), we will depict the distance r traveled by the bullet. To

ensure clarity in the graphs we will plot on this coordinate system, we

assume that the speed of light is equal to 1. Therefore, the velocity of

massive objects v is dimensionless and con�ned to the right-open interval

〈0 , 1). In that case, if we scale the T axis in nanoseconds [ns], we

must scale the R axis in light-nanoseconds, where one light-nanosecond

is approximately equal to 0.33564[m]. In such a coordinate system, the

ray of light is inclined at a 45° angle relative to the T axis, and time and

space share the same measurement.[3]

After these initial clari�cations, let's proceed with the previously

designed thought experiment. We are, therefore, �ring a bullet from
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our ri�e that is moving at a relativistic speed. First, we determine the

redshift z of the light emitted by this bullet to calculate its velocity based

on the Doppler e�ect for light. For a velocity directed along the line of

observation, the following relationship applies:

z + 1 =

√
1 + v

1− v
(1)

where the velocity of separation is positive and the velocity of approach

is negative.

From equation (1), we will obtain the velocity v as a function of the

redshift z:

v =
(z + 1)2 − 1

(z + 1)2 + 1
(2)

In Figure 1 below, we have presented a schematic representation of

our thought experiment in a two-dimensional Cartesian coordinate system

with axes T and R. The blue line represents the worldline of the �red

bullet, while the T axis is the worldline of the camera (the observer's

worldline). We assume that after a time t2 from �ring the bullet, we take

its photograph. The photograph of the bullet depicts its position when

it was at point A1. Now, based on the measured redshift displacement

z and the time t2, we determine the position r1 and the proper time tp

of the bullet. We calculate the velocity v of the bullet using equation

(2).

Based on Figure 1, we have:

r1 = t2− t1 ; t1 =
r1

v

r1 = t2−
r1

v
; r1v + r1 = t2v

r1 = t2
v

1 + v
(3)
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Figure 1

From equation (3), we can also express the relationship between ve-

locity v and distance r1:

v =
r1

t2 − r1
(4)

When we substitute the expression from equation (2) for v into equa-

tion (3), we obtain:

r1 =
t2

2

[
1−

1

(z + 1)2

]
(5)

To calculate the proper time tp of the bullet at point A1, we will use

the Lorentz transformation formula for time:

tp =
t1 − vr1√
1− v2

(6)

We substitute t1 with t2−r1 and r1 with the expression from equa-

tion (3):

tp =
t2 − r1 − vr1√

1− v2
=

t2 − r1(1 + v)
√
1− v2
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tp =
t2 − t2

v
1+v

(1 + v)
√
1− v2

tp = t2
1− v
√
1− v2

= t2
1− v√

(1− v)(1 + v)

tp = t2

√
1− v

1 + v
(7)

On Figure 1, there is also depicted a hyperbola given by the equa-

tion:

t2− r2 = t2p (8)

This hyperbola represents the locus of points where bullets �red at

di�erent velocities have the same proper time tp counted from the moment

the bullet leaves the end of the barrel.

To derive equation (8), we will substitute v in equation (6) with the

expression r1
t1
:

tp =
t1 − r21

t1√
1−

(
r1
t1

)2
Then we multiply both the numerator and denominator by t1:

tp =
t21 − r2

1√
t21 − r2

1

=
√

t21 − r2
1

t2p = t21− r2
1 (9)

Therefore, equation (8) is correct.

Now, we will express the proper time of the bullet tp in terms of

the redshift. For this purpose, in equation (7), we will substitute the

expression from equation (2) for v:

tp = t2

√√√√√1− (z+1)2−1
(z+1)2+1

1 + (z+1)2−1
(z+1)2+1

= t2

√
2

2(z + 1)2
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tp = t2
1

z + 1
(10)

The coordinate system from Figure 1 is scaled in nanoseconds [ns].

However, there's nothing preventing us from scaling it in seconds, years,

or even billions of years. In that case, this thought experiment schematic

can be applied to analyze the Universe. Point O would represent the

location of the Big Bang, time t2 would be the age of the Universe, and

point B on the line of observation would be the edge of the observable

Universe. Currently, it is accepted that the distance to the edge of the

observable Universe is about 14 billion light-years. Therefore, the age

of the Universe t2, as indicated in Figure 1, would be approximately 28

billion years.

Now, using the model presented above and assuming that the Uni-

verse is 28 billion years old, let's determine, based on equation (10), how

old the Universe was when galaxies GN-z11 and JADES-GS-z13-0 were

observed by our telescopes. For these galaxies, proper time tw is equal

to the distance, measured in billion years, from point O in their own ref-

erence frames, which was their actual age of the Universe, just as time

t2 is the current age of the Universe for us. (Hyperbola (8) is the lo-

cus of points where objects that started from the origin O with di�erent

velocities at the same time have the same proper time tw).

For the GN-z11 galaxy (z = 11.1), the age of the Universe during the

period when it is observed by us, according to formula (10), was:

tp = 28
1

11.1 + 1
= 2.31 billion years

Meanwhile, for the JADES-GS-z13-0 galaxy (z = 13.2), the age of

the Universe was:

tp = 28
1

13.2 + 1
= 1.97 billion years

However, if we were to assume that the Universe is approximately 14

billion years old, then the calculated values above should be reduced by

half, which still results in values approximately three times larger than

what is currently accepted.
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Let's also pay attention to formula (4). If we apply this formula to

the Universe, t2 will have dimensions [billion years], r1 - [billion light-

years], and the velocity will be dimensionless in the range 〈0, 1). From

formula (4), as well as from formula (3), it is clear that there is no linear

relationship between velocity v and distance r1 as de�ned in Hubble's

law. Hence, cosmologists may face di�culties in determining

the Hubble constant because such a linear relationship exists in

the "now" space (see point A2 in Figure 1), while observations of

the Universe are made along the observation line where formulas

(3) and (4) apply.
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