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1. Introduction

This paper1 is about the Dual Quaternion Geometric Algebra (DQGA) in
the even-grades subalgebra G+

3,0,1 of 3D PGA G3,0,1 [14][7][8][9][10][3][5]. We

assume the reader is familiar with Geometric Algebra (GA) [12], dual num-
bers, quaternions, and dual quaternions. We review dual numbers, quater-
nions, and dual quaternions as we introduce our notations. Familiarity with
Conformal Geometric Algebra (CGA) G4,1,0 [4][13] is also recommended.

In this paper, we provide new details on using dual quaternions (§3)
for representing points (§3.5.1), lines (§3.5.2), and planes (§3.5.3) as homo-
geneous geometric entities with many operations on them, including reflec-
tion (§3.6), translation (§3.7), rotation (§3.8), intersection (§3.9), projection
(§3.10), and rejection (§3.11). This paper contributes many new details and
some new operations on dual quaternions that may not be found in prior lit-
erature. Another contribution of this paper is that, all entities and operations
are defined or derived such that entities maintain the correct orientation (±
signs) through all operations. However, we disclaim any responsibility for any
errors or other problems that may appear in any application of the algebra.
The paper is organized as follows.

Section 2 provides a detailed review and introduction to 3D PGA G3,0,1

to provide the foundation for Section 3 on the Dual Quaternion Geometric
Algebra. Section 2.1 introduces and gives an overview of 3D PGA G3,0,1 for
points, lines, and planes in both the point-based and plane-based algebras of
PGA. Section 2.2 is about the outer product null space (OPNS) entities in
the point-based algebra of PGA, which we call OPNS PGA. Section 2.3 is
about the commutator product null space (CPNS) entities in the plane-based
algebra of PGA, which we call CPNS PGA. Section 2.4 is about the PGA
operations, including the new PGA geometric entity dualization operation Je
(§2.4.1), translation operator T (§2.4.2), rotation operatorR (§2.4.3), join and
meet operations (§2.4.4 and §2.4.5), reflection operations (§2.4.6), projection
operations (§2.4.7), and rejection operations (§2.4.8).

Section 3, the main contribution of this paper, explores the details of the
Dual Quaternion Geometric Algebra (DQGA) in the even-grades subalgebra
G+
3,0,1 of PGA. In DQGA, we rediscover many results that may be known in

prior published literature on dual quaternions, while we also contribute new
details and results on representing lines and planes and various operations on
them, derived through identities to the plane-based entities and operations
in CPNS PGA. Section 3.1 gives an overview and introduction to DQGA.
Section 3.2 reviews Dual Number Algebra (DNA) and gives the details on its
representation in G+

3,0,1 as Dual Number Geometric Algebra (DNGA). Sec-

tion 3.3 reviews Quaternion Algebra (QA) and its representation in G+
3,0,1 as

Quaternion Geometric Algebra (QGA). Section 3.4 reviews Dual Quaternion
Algebra (DQA) and its representation in G+

3,0,1 as Dual Quaternion Geometric

Algebra (DQGA). In Section 3.5, we derive the DQGA geometric entities for

1This paper expands on part of [5].
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points (§3.5.1), lines (§3.5.2), and planes (§3.5.3). Important new identities
are derived that also allow many operations to be correctly converted from
the plane-based PGA to DQGA forms. Our line and plane entities are dif-
ferent than in the prior literature by having the correct form and orientation
derived through new identities to the plane-based entities of PGA. In Sec-
tions 3.6 (reflections), 3.7 (translations), 3.8 (rotations), 3.9 (intersections),
3.10 (projections), and 3.11 (rejections), we derive the DQGA forms of opera-
tions by exactly converting them from their plane-based PGA forms by using
identities to DQGA. All of these operations maintain correct orientation. In
Section 3.12, we conclude the discussion on DQGA.

In Section 4, we conclude the paper with final remarks.

2. The Geometric Algebra PGA G(3,0,1)

In this section, we review and provide an introduction to the geometric al-
gebra known as 3D PGA G3,0,1 for points, lines, and planes in 3D space,
which we will simply call PGA. It is named PGA after the Point-based Geo-
metric Algebra and the Plane-based Geometric Algebra within G3,0,1. PGA
also stands for Projective Geometric Algebra, which is another name for the
algebra G3,0,1.

2.1. Introduction to 3D PGA

In PGA G3,0,1, the unit 1-blade (vector) basis is {e0, e1, e2, e3} with metric
[gij ] = [ei ·ej ] = diag(0, 1, 1, 1). Homogenenous coordinates [w, x, y, z] are put
onto the vector basis as we0+xe1+ye2+ze3 = we0+t, embedding 3D vector
t into the hyperplane w = 1. The unit pseudoscalar of G3,0,0 is I3 = e1e2e3,
and the unit pseudoscalar of G3,0,1 is I4 = e0I3. In the subalgebra G3,0,0, we
define the dual of any element A ∈ G3,0,0 as A∗ = A/I3. In G3,0,1, the dual of
A ∈ G3,0,1 is A⋆ = Je(A) as discussed in Section 2.4.1.

In PGA, there is a Point-based Geometric Algebra and a Plane-based
Geometric Algebra, both having point, line, and plane geometric entities.
The two PGA algebras are related to each other through the geometric entity
dualization operation Je.

The point-based algebra is similar to the “Algebra in Projective Space”
(§7.4 in [1]) that uses G1,3,0. In the point-based geometric algebra, the point
entity Pt = e0+t embeds the vector (1-blade) point t = xe1+ye2+ze3, the
line entity L = P2 ∧P1 is the join of two points as a bivector (2-blade), and
the plane entity Π = P3 ∧P2 ∧P1 is the join of three points as a trivector
(3-blade). The algebra is called point-based since the entities can be formed
as the join of points using the outer (wedge) product ∧. The join of points
represents their geometrical span. The span of two points {P1,P2} represents
the line through the two points and includes all points P = (1− t)P1 + tP2

with real parameter t such that P∧L = 0. A point P is on line L if and only
if P ∧ L = 0, and we call L an outer product null space (OPNS) line entity.
The span of three points {P1,P2,P3} represents the plane through the three
points and includes all points P = (1− s)((1− t)P1 + tP2) + sP3 with real
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parameters s and t such that P∧Π = 0. A point P is on plane Π if and only
if P∧Π = 0, and we call Π an OPNS plane entity. Two homogeneous point
entities {P1,P2} represent the same 3D point if and only if P1 ∧ P2 = 0,
and so we also call the points OPNS points. Since the point entity P is
homogeneous, then the line L and plane Π entities are also homogeneous,
which means that the entities can be multiplied by any non-zero scalar a ̸= 0
without affecting the geometry that is represented by an entity. If point Pt

has been scaled as aPt = ae0 + at, then we must divide by a to recover t.
The 3D space is embedded in the hyperplane e0 (w = 1). Since the metric
of G3,0,1 is degenerate and e20 = 0, we cannot extract the scalar a from ae0
by contraction or inner product. The scalar a and vector t can be obtained
from aPt by methods using Je(A) = A⋆.

The plane-based algebra is similar to CGA. In the plane-based geometric
algebra, which is dual to the point-based algebra through the entity dualiza-
tion operation Je, the homogeneous plane entity πp,n = n+ (p · n)e0 = Π⋆

is a vector (1-blade), the homogeneous line entity l = π2 ∧ π1 = L⋆ is the
meet of two planes as a bivector (2-blade), and the homogeneous point entity
p = π1 ∧ π2 ∧ π3 = P⋆ is the meet of three planes as a trivector (3-blade).
The algebra is called plane-based since the entities can be formed as the meet
(intersection) of planes using the outer (wedge) product ∧. Each unit plane
π̂d,n = n̂ + de0 can be seen as fixing one coordinate at dn̂ and leaving a
plane in the other two free coordinates perpendicular to and through dn̂, or
through point p with normal n̂. The line l fixes two coordinates, leaving one
free. The point p fixes all three coordinates. For example, using πx = e1+xe0,
πy = e2 + ye0, and πz = e3 + ze0, then the point [1, x, y, z]=̂(pt = e0 + t)
is represented as pt = πx ∧ πy ∧ πz. As it turns out, point p is a point of
the line l or plane π if and only if p× l = 0 or p× π = 0, respectively. Two
points p1 and p2 represent the same point if and only if p1 × p2 = 0. The
product × is the commutator product, defined as A × B = (AB − BA)/2
for any multivectors A and B. Therefore, we call the plane-based entities
commutator product null space (CPNS) entities.

Although there are homogeneous coordinates [w, x, y, z] embedded
within the PGA algebra, the geometric entities of PGA allow to work with
the geometry more abstractly as geometrical objects (entities) in what is
called the coordinate-free geometry of geometric entities and operators. In the
point-based algebra, there is the join operation on points. In the plane-based
algebra, there is the meet operation on planes. The join of points and the
meet of planes are coordinate-free geometrical concepts. The line l is usually
seen not as fixing two coordinates but as the meet (intersection) of two planes
in a line. The point p is usually seen not as fixing all three coordinates but
as the meet of three planes in a point. For both algebras, there is a common
rotation operator R = exp

(
θ
2 (n̂/I3)

)
= exp(θn̂∗/2) = cos(θ/2) + sin(θ/2)n̂∗

for rotating any entity A around axis n̂ by angle θ as the versor operation
A′ = RAR−1. Only for entities in the plane-based algebra, there is also the
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translation operator T = exp(e0d/2) = 1 + e0d/2 for translating any plane-
based entity a by displacement d as the versor operation a′ = TaT−1. As will
be discussed further, the translation operator T represents a homogeneous
point entity in the dual quaternion geometric algebra (DQGA). Since the
plane-based geometric algebra of PGA includes the translation operator T
and also supports many more other operations than the point-based algebra,
the plane-based algebra has been defined in most prior literature as being the
PGA algebra, and the point-based algebra has not been used as much.

Part of the difficulty with trying to use both the plane-based and point-
based algebras, often having to choose one or the other (the plane-based
being the usual choice), is that the dualization operation, denoted J in the
prior literature, was only abstractly described or not implemented correctly
in the prior literature, leading to problems with sign changes and changes in
orientation when attempting to use the tables of duals or other dualization
methods as given in the prior literature or in prior software implementations.
The new entity dualization operation Je resolves these problems, and now we
may freely dualize entities between the two algebras without concern about
sign or orientation changes. The point-based and plane-based algebras are
related to each other as duals through the new geometric entity dualization
operation Je. Using Je, any point, line, or plane entity can now be transformed
(dualized) between the two different point-based or plane-based forms as
duals that represent the same geometric entity with the same orientation.

In the following sections, we briefly give the entities and operations of
the point-based and plane-based algebras of PGA. More details about how
these entities are derived are in [5].

2.2. OPNS PGA Geometric Entities in Point-based Algebra

We refer to the entities of the point-based algebra as the OPNS PGA geomet-
ric entities. In this section, we briefly give the three OPNS PGA homogeneous
geometric entities: OPNS PGA 1-blade point P, OPNS PGA 2-blade line L,
and OPNS PGA 3-blade plane Π.

2.2.1. OPNS PGA 1-blade Point Entity. The OPNS PGA 1-blade point en-
tity Pt, embedding vector point t = xe1 + ye2 + ze3, is defined in standard
form and orientation as

Pt = e0 + t = De(pt) = p−⋆
t . (1)

The point Pt represents the homogeneous coordinates [1, x, y, z]. The dual is
Je(Pt) = P⋆

t = p−⋆⋆
t = pt, which is the plane-based point pt representing the

same point with the same orientation. A directed point at infinity is defined
as

P∞t̂ = lim
∥t∥→∞

Pt

∥t∥
= t̂. (2)

More generally, P∞t = t, since points are homogeneous and can be scaled by
any non-zero scalar ∥t∥ ≠ 0. For finite point Pt, vector t can be projected as

t = I3(Pt ∧ e0)
⋆/(I3 ∧Pt)

⋆. (3)
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2.2.2. OPNS PGA 2-blade Line Entity. The OPNS PGA 2-blade line L span-
ning {P1,P2}, or through P = P1 with direction d = P2 −P1, is

L = Lp,d = d ∧P = P2 ∧P1 = De(lp,d) = l−⋆
p,d. (4)

Lp,d and Je(Lp,d) = L⋆
p,d = lp,d represent the same line with same orien-

tation. If d = d̂, then Je(Lp,d̂) = l̂p,d = l̂ is a plane-based unit line, where

l̂
2
= −1.

2.2.3. OPNS PGA 3-blade Plane Entity. The OPNS PGA 3-blade plane en-
tity Π through point P = e0 + p with normal n is

Π = Πp,n = P ∧ n∗ = De(πp,n) = π−⋆
p,n. (5)

Πp,n and Je(Πp,n) = Π⋆
p,n = πp,n represent the same plane with same

orientation. If n = n̂, then Je(Πp,n̂) = π̂p,n = π̂ is a plane-based unit plane,

where π̂2 = 1.

The plane spanning three points {P1,P2,P3} arranged clockwise on the
plane is

Π⟳ = P1 ∧P2 ∧P3. (6)

If the points are arranged counterclockwise on the plane, then the plane is

Π⟲ = P3 ∧P2 ∧P1. (7)

The plane with normal n̂ through p, or distance d = p · n̂ from origin, is

Πd,n̂ = e0 ∧ n̂∗ + p ∧ n̂∗ = e0 ∧ n̂∗ − (p · n̂)I3 = De(π̂d,n) = π̂−⋆
d,n. (8)

2.3. CPNS PGA Geometric Entities in Plane-based Algebra

We refer to the entities of the plane-based algebra as the CPNS PGA geomet-
ric entities. In this section, we briefly give the three CPNS PGA homogeneous
geometric entities: CPNS PGA 1-blade plane π, CPNS PGA 2-blade line l,
and CPNS PGA 3-blade point p.

2.3.1. CPNS PGA 1-blade Plane Entity. The CPNS PGA 1-blade plane en-
tity π = πp,n with normal n through p is

π = πp,n = n+ (p · n)e0 = Je(Πp,n) = Π⋆
p,n. (9)

If n = n̂, then d = p · n is the distance from the origin and π = π̂ = π̂d,n is

a unit plane, where π̂2 = 1 and De(π̂) = De(π̂d,n) = π̂−⋆
d,n = Πd,n̂.

The join of three points is π = (p−⋆
3 ∧ p−⋆

2 ∧ p−⋆
1 )⋆ = p3 ∨ p2 ∨ p1.
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2.3.2. CPNS PGA 2-blade Line Entity. The CPNS PGA 2-blade line entity
l is the meet of two planes as

l = π2 ∧ π1. (10)

The line through p in direction d is

l = lp,d = d∗ − (p · d∗)e0 = Je(Lp,d) = L⋆
p,d. (11)

If d = d̂, then l = l̂ is a unit line, where l̂
2
= −1 and De(̂l) = l̂

−⋆
= Lp,d̂.

The join of two points is l = (p−⋆
2 ∧ p−⋆

1 )⋆ = p2 ∨ p1.

2.3.3. CPNS PGA 3-blade Point Entity. The CPNS PGA 3-blade point en-
tity pt, embedding t = xe1 + ye2 + ze3, is

pt = (1 + e0t)I3 = I3 + I4t = I3 − e0t
∗ = Je(Pt) = P⋆

t . (12)

In dual quaternions, 1 + e0t = 1 + t∗I4 = pt is a homogeneous point (75).
The product of two points papb = −papb = −pa−b = −(1 + e0(a − b))
represents their difference. Points of form p∞t = I4t = Je(t) = Je(P∞t)
represent directed infinite points at infinity.

The meet of three planes is the point

p = π3 ∧ π2 ∧ π1 = π ∧ l. (13)

For finite point pt, vector t can be projected as

t = I3(p
−⋆
t ∧ e0)

⋆/(I3 ∧ p−⋆
t )⋆. (14)

2.4. PGA Operations

In this section, we give the PGA operations for dualization, translation, ro-
tation, join, meet, reflections, projections, and rejections.

2.4.1. Geometric Entity Dualization Operation. Table 12 defines the geomet-
ric entity dualization operation Je(A) and gives the dual Je(A) for each basis
blade A in G3,0,1. The operation Je(A) is defined to dualize any OPNS PGA
grade k entity A, in the point-based algebra, to its dual CPNS PGA grade
4− k entity Je(A) = A⋆ = a, in the plane-based algebra.

A e0 e1 e2 e3 e0e1e2 e0e1e3 e0e2e3 I3 = e1e2e3
Je(A) I3 = e1e2e3 e0e2e3 −e0e1e3 e0e1e2 −e3 e2 −e1 −e0

A 1 e0e1 e0e2 e0e3 e1e2 e1e3 e2e3 I4 = e0e1e2e3
Je(A) I4 = e0e1e2e3 e2e3 −e1e3 e1e2 −e0e3 e0e2 −e0e1 −1

Table 1. Geometric Entity Dualization Operation Je(A) =
A⋆ on OPNS PGA grade k basis blade A (in the point-based
algebra) to its dual CPNS PGA grade 4 − k basis blade
Je(A) = A⋆ (in the plane-based algebra).

Since Je is an anti-involution, the inverse (undual) is J−1
e (A⋆) =−Je(A

⋆)
= De(A

⋆) = A−⋆⋆ = A, dualizing any CPNS PGA grade 4 − k element

2Table 1 was found empirically in [5] to give dual entities with the same orientation.
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A⋆ = a, in the plane-based algebra, to its dual OPNS PGA grade k element
A, in the point-based algebra.

We use a form of Hodge star ⋆ notation3 as superscripts since Je can be
realized or implemented according to the following geometric algebra defini-
tion of the Hodge star ⋆ dual in non-degenerate metric algebras that corre-
spond to PGA G3,0,1, which is a degenerate-metric algebra.

The Hodge star ⋆ dualization operation is defined in a non-degenerate
geometric algebra Gp,q,0, n = p+q, by the relationA∧B⋆ = B∧A⋆ = (A·B)⋆

with A⋆ = ±AIn, or A⋆ ∧B = B⋆ ∧A = (A ·B)⋆ with A⋆ = ±InA, for
k-vectors {A,B} ∈ Gk

p,q,0, where In is the non-degenerate unit pseudoscalar.
The dualization A⋆ takes A of grade k to A⋆ of grade n− k. Using the unit
pseudoscalar Is of any subalgebra of Gp,q,0, we may apply sandwiching outer-

morphism as IsA
⋆(±Is)= A⋆′ and Is(A∧B⋆)(±Is) = Is(B ∧A⋆)(±Is) =

Is(A ·B)⋆(±Is) without breaking the defining relation. The modified dual

A⋆′ may also be found as just A⋆ in a different algebra Gp,q,0. We can use A⋆

or A⋆′ (then renaming A⋆′ as A⋆) as the dual, whichever fits the application.
In our application, we want to find A⋆ to match Table 1. The operation A⋆

may be an involution A⋆⋆ = A, or it may be an anti-involution A⋆⋆ = −A
with undual (inverse) A−⋆ = −A⋆ and A−⋆⋆ = A, depending on how A⋆ is
formed.

Gp,q,0 G4,0,0 G3,1,0 G1,3,0

Je(A) I3I4AI3 = e0AI3 I4A AI4

Table 2. Entity dualization Je(A) in non-degenerate geo-
metric algebras Gp,q,0.

Table 2 gives the dualization operations Je(A) = A⋆ ∈ Gp,q,0 that have
been found to implement Je(A) = A⋆ ∈ G3,0,1 in non-degenerate algebras
Gp,q,0 that correspond to G3,0,1. The coefficients on the basis blades in the
dual A⋆ ∈ Gp,q,0 are transferred onto corresponding basis blades in A⋆ ∈
G3,0,1. The complete geometric entity dualization operation is Je(A) = A⋆ =
G3,0,1(Je(Gp,q,0(A))), where Gp,q,0(A) = A ∈ Gp,q,0 and G3,0,1(A

⋆) = A⋆ ∈
G3,0,1 are the operations that transfer coordinates between algebras.

The following three Python functions using GAlgebra [2] for SymPy each
implement Je(A) of Table 1 in one of the non-degenerate algebras Gp,q,0 ∈
{G4,0,0,G3,1,0,G1,3,0} of Table 2. Only one function is needed, and all three
produce Table 1 as required.

# Create the algebras.

g301 = Ga(’e*0|1|2|3’,g=[ 0, 1, 1, 1])

g400 = Ga(’e*0|1|2|3’,g=[ 1, 1, 1, 1])

g310 = Ga(’e*0|1|2|3’,g=[-1, 1, 1, 1])

g130 = Ga(’e*0|1|2|3’,g=[ 1,-1,-1,-1])

3In other literature, the notation is ⋆A as the dual of A. In this paper, the notation is A⋆.



Dual Quaternion Geometric Algebra in PGA G(3,0,1) 9

# Get the basis for PGA G(3,0,1).

(e0 ,e1,e2,e3) = g301.mv()

# Create the unit pseudoscalars .

I3 = e1^e2^e3; I4 = e0^I3

# Entity Dualization Operation Je in G(4,0,0)

def Je_g400(A):

EA = g400.mv(A); EI3 = g400.mv(I3); EI4 = g400.mv(I4)

return g301.mv(EI3*EI4*EA*EI3)

# Entity Dualization Operation Je in G(3,1,0)

def Je_g310(A):

EA = g310.mv(A); EI4 = g310.mv(I4)

return g301.mv(EI4*EA)

# Entity Dualization Operation Je in G(1,3,0)

def Je_g130(A):

EA = g130.mv(A); EI4 = g130.mv(I4)

return g301.mv(EA*EI4)

2.4.2. Plane-based PGA 2-versor Translation Operator. The plane-based PGA
2-versor translation operator, called a translator, is defined as

T = Td = exp(e0d/2) = 1 + e0d/2, (15)

for translation of any plane-based geometric entity a by displacement d as
a′ = TaT−1, where T−1 = T∼ (the reverse). The translator is the same as
a dual quaternion point (75) T = pd/2, where T−1 = T = T † = p−d/2.

The translation operator can also be formed as successive reflections in
two parallel planes, in π1 and then in π2, that are separated by d/2 so that

π1 = d̂+ d1e0 and π2 = d̂+ (d1 + ∥d∥/2)e0. The translator Td is then

Td = π2π1 = π2 · π1 + π2 ∧ π1 = 1 + e0d/2 = exp(e0d/2). (16)

The translator T cannot be used on any of the point-based entities. To trans-
late a point-based entity A, we must dualize it using Je(A) = A⋆ into a
plane-based entity A⋆, translate it as a plane-based entity A⋆′ = TA⋆T−1,
and then dualize it back to a point-based entity using −Je

(
A⋆′) = De

(
A⋆′)

= A′, which is done as A′ = De(TJe(A)T−1).

2.4.3. PGA 2-versor Rotation Operator. The 2-versor rotation operator, called
a rotor, is defined as

R = exp(θn̂∗/2), (17)

for rotation centered on the origin, around axis n̂, by angle θ counterclockwise
by right-hand rule, where n̂∗ = n̂/I3 = −n̂I3. Any PGA entity A can be
rotated using R as a versor as A′ = RAR−1, where R−1 = R∼ (the reverse).

Using the unit line l̂ = l̂p,d = L⋆
p,d̂

, we form the rotor Rl = exp(θl̂/2) for

rotation of any plane-based PGA entity a around the line l̂ = d̂∗− (p · d̂∗)e0
by angle θ as a′ = RlaR

−1
l , where R−1

l = R∼
l (the reverse). The rotation is
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around the direction d̂ of the line by right-hand rule. The rotor Rl cannot be
used on any of the point-based PGA entities since the point-based entities
cannot be translated using T . The rotor Rl is the same as the translated

rotor Rl = Tp exp(θd̂∗/2)T−1
p .

The rotor Rl can also be formed as successive reflections in two non-
parallel CPNS PGA unit planes π1 and π2 that meet in line l = π2∧π1 with
angle θ/2 between the planes from π1 toward π2 such that Rl = π2π1 =

π2 · π1 + π2 ∧ π1 = cos(θ/2) + sin(θ/2)̂l.

2.4.4. Join Operation in the Point-based Algebra. In the point-based alge-
bra, points can be spanned by wedge product, which is called join product.

A line is L = P2∧P1, with orientation from P1 toward P2, or Lp,d̂ = d̂∧P,

where d = P2−P1. The dual l̂p,d = Je(Lp,d̂) is a unit line with axis direction

d̂. A plane is Π = P3 ∧ P2 ∧ P1, where {P1,P2,P3} are arranged geomet-
rically counterclockwise on the plane. Using {d2 = P3 −P1, d1 = P2 −P1,

P = P1} then Π = d2∧d1∧P. Using D = d2∧d1 and D̂ = D/
√
|D2| = n̂∗,

then Π = n̂∗ ∧P = P ∧ n̂∗ = De(π̂) is the dual of π̂.

In the plane-based algebra, we can form join products using dualization.
A line is l = (p−⋆

2 ∧p−⋆
1 )⋆ = p2∨p1 using the join product notation ∨, where

p−⋆ = De(p) = −Je(p). A plane is π = (p−⋆
3 ∧ p−⋆

2 ∧ p−⋆
1 )⋆ = p3 ∨ p2 ∨ p1.

2.4.5. Meet Operation in the Plane-based Algebra. In the plane-based alge-
bra, planes can be intersected by wedge product, which is called meet product.
A line is l = π2 ∧ π1, and a point is p = π3 ∧ π2 ∧ π1.

In the point-based algebra, we can form meet products using dualiza-
tion. A line is L = (Π⋆

2 ∧Π⋆
1)

−⋆, and a point is P = (Π⋆
3 ∧Π⋆

2 ∧Π⋆
1)

−⋆.

2.4.6. Reflections in Planes. The reflection of π1 in π2 is

π′
1 = −π2π1π

−1
2 . (18)

The reflection of line l = π2 ∧ π1 in plane π3 is

l′ = (−π3π2π
−1
3 ) ∧ (−π3π1π

−1
3 ) = (−1)2π3lπ

−1
3 = π3lπ

−1
3 . (19)

The reflection of an oriented point p = π3 ∧ π2 ∧ π1 in plane π4 is

p′ = (−1)3π4pπ
−1
4 = −π4pπ

−1
4 (oriented point reflection). (20)

To keep the reflected point p′ in standard form and orientation as a non-
oriented point, then reflect as

p′ = π4pπ
−1
4 (non-oriented point reflection). (21)

We do not actually reflect in lines, but we can in general rotate any plane-

based entity a around line l by 180◦ as a′ = lal−1, since l̂ = exp(πl̂/2).
Orientation is preserved by the rotation.
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2.4.7. Projections onto Planes and Lines. A point p is projected onto plane
π as

p′ = (p · π)π−1. (22)

A line l is projected onto plane π as

l′ = (l · π)π−1. (23)

A point p is projected onto line l as

p′ = (p · l)l−1. (24)

2.4.8. Rejections from Planes and Lines. The rejection of line l from plane
π is

l′ = (l ∧ π)π−1. (25)

The rejection of plane π from line l is

π′ = (π ∧ l)l−1. (26)

2.5. Conclusion to 3D PGA

In the previous sections, we have introduced or reviewed enough about 3D
PGA for our needs. In the next section, we begin to discuss the main con-
tribution of this paper, about the details of the dual quaternion geometric
algebra in PGA.

Using a complete set of identities that we newly derive that relate the
plane-based PGA to the dual quaternions, we will be able to convert nearly
all PGA plane-based entities and operations into dual quaternion forms. We
can also take advantage of the PGA entity dualization operation Je and
other algebraic abilities of PGA to implement every operation needed to
work effectively with dual quaternions as a complete geometric algebra for
points, lines, and planes.

3. Dual Quaternion Geometric Algebra in PGA

This section is about the Dual Quaternion Geometric Algebra (DQGA),
which is the even-grades subalgebra G+

3,0,1 in PGA G3,0,1. In the prior sec-
tions, we reviewed and introduced PGA G3,0,1 enough that we can now use
it to further examine the even-grades subalgebra G+

3,0,1 that represents, or

emulates faithfully, the Dual Quaternion Algebra (DQA).
As this paper’s main contribution, expanding on [5], we introduce DQGA

as an algebra for points, lines, and planes with many useful and new oper-
ations that we could not find in any prior literature4 during the time in
which we performed the research [5]. All of our results in dual quaternions
can be implemented purely in DQA without PGA. Using the larger PGA
algebra, we have the PGA entity dualization operation Je for dualizing nilpo-
tent elements, and we implement a complete set of special operations that

4The recent book [6], only noticed by the authors after completing the research in [5], does
not have all of the same results as contributed in this paper.
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any DQA implementation would also need, such as conjugates and oper-
ations for taking various parts from a dual quaternion. DQGA is itself a
complete implementation of DQA that is also extended further by its seem-
less orientation-preserving integration with PGA and its entities, allowing all
PGA and DQGA entities and operations to be used together through identi-
ties and dualizations between the entity forms in DQGA {p, l, π}, plane-based
PGA {p, l,π}, and point-based PGA {P,L,Π}.

3.1. Introduction to Dual Quaternion Geometric Algebra

In DQA, the dual quaternion basis elements are {1, ε, i, j,k}. The element ε
is the nilpotent scalar, where ε2 = 0. The elements {i, j,k} are quaternion
unit vectors with the quaternion product rule ijk = i2 = j2 = k2 = −1 and
the vector calculus dot (bold dot ·) and cross (bold cross ×) products.

In DQA, a homogeneous point is pp = 1 + εp, embedding vector point
p. There is a rotation operator (rotor) R = exp(θn̂/2) and a translation
operator (translator) T = exp(εd/2), which act on a point as p′p = RppR

−1

and p′p = TppT = pp+d, respectively. The rotor R acts as a versor on point p,
just as it does on quaternions. The translator T is not acting as a versor, but
it acts as just another homogeneous point T = exp(εd/2) = 1+εd/2 = pd/2.
For points, we can compose translation and rotation to rotate relative to

center d as p′t = (TRT−1)pt(T
−1R−1T ) = RlptR

†
l , which we discuss further

in Section 3.8.2. For lines and planes, we will derive other formulas for them
and their translations.

In the following sections, we review dual numbers, quaternions, and dual
quaternions and then show how they are represented in DQGA, which is the
even-grades subalgebra G+

3,0,1 of PGA with basis elements {1, I4, e∗1 = e3e2,

e∗2 = e1e3, e
∗
3 = e2e1, e

∗
1I4 = e0e1, e

∗
2I4 = e0e2, e

∗
3I4 = e0e3}. Then, we

derive the dual quaternion point p, line l, and plane π and their rotation,
translation, and other operations.

3.2. Dual Numbers in PGA

In this section, we discuss Dual Number Algebra (DNA) and then its repre-
sentation in geometric algebra G+

3,0,1, which we call Dual Number Geometric

Algebra (DNGA).

3.2.1. Dual Number Algebra. In DNA, a dual number z is

z = x+ yε, (27)

where x and y are real numbers and ε is the nilpotent scalar, ε2 = 0. A dual
number z has a complex conjugate

z = x− yε, (28)

magnitude

|z| =
√
zz =

√
x2 = |x|, (29)

inverse

z−1 = z/zz = z/|z|2, (30)



Dual Quaternion Geometric Algebra in PGA G(3,0,1) 13

and exponential form

z = x exp(yε/x) = x(1 + yε/x). (31)

A unit dual number is ẑ = z/|z|, or exp(yε) = 1 + yε. The product of two
unit dual numbers is

(1+y1ε)(1+y2ε) = exp(y1ε) exp(y2ε) = 1+(y1+y2)ε = exp((y1+y2)ε). (32)

Addition is performed as multiplication, which is used for translation opera-
tions.

3.2.2. Dual Number Geometric Algebra. In G+
3,0,1, {1, ε}=̂{1, I4}. We refer

to dual numbers on the basis {1, ε} as dual number algebra (DNA), and dual
numbers on the basis {1, I4} as dual number geometric algebra (DNGA). In
DNGA, a dual number z = x+ yε is represented as

z = x+ yI4. (33)

The complex conjugate is implemented as

z = I3zI
−1
3 . (34)

The real part of z is

ℜ(z) = X(z) = x = (z + z)/2. (35)

The imaginary part of z is

ℑ(z) = yI4 = (z − z)/2. (36)

The real number y is taken as

Y(z) = y = −Je(ℑ(z)). (37)

3.3. Quaternions in PGA

In this section, we review the Quaternion Algebra (QA) in its original form
[11], and then we discuss its representation in the even-grades subalgebra G+

3 ,
which we will call Quaternion Geometric Algebra (QGA).

3.3.1. Quaternion Algebra. In QA, the basis elements {1, i, j,k} have the
defined product rule

ijk = i2 = j2 = k2 = −1. (38)

A quaternion q is a linear combination of the basis elements as

q = qw + qxi+ qyj+ qzk = qw + q. (39)

The units {i, j,k} are a vector basis for R3 and are the same as the unit
vectors used in Vector Calculus. Using the product rule, we can derive the
ratios {i = k/j, j = i/k, k = j/i} which are the same as the cross products
{i = j×k, j = k× i, k = i× j} that define the right-hand rule. The product
of two quaternions, p and q, is

pq = pwqw − p · q+ pwq+ qwp+ p× q, (40)

where the dot product is

p · q = −(pq+ qp)/2 = pxqx + pyqy + pzqz (41)
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and the cross product is

p×q = (pq−qp)/2 = (pyqz−pzqy)i+(pzqx−pxqz)j+(pxqy−pyqx)k. (42)

The product of two vectors is

pq = −p · q+ p× q. (43)

The conjugate of q is
K(q) = q† = qw − q, (44)

where K(q1q2 . . .) = . . . q†2q
†
1 in the reverse order. The scalar part of q is

S(q) = qw = (q + q†)/2. (45)

The vector part is
V(q) = q = (q − q†)/2. (46)

The tensor (or magnitude) of q is

T(q) = |q| =
√
qq† =

√
q2w + q2x + q2y + q2z . (47)

A unit quaterion q̂, also called a versor, is

q̂ = U(q) = q/T(q) = cos(θ/2) + sin(θ/2)q̂ = exp(θq̂/2) = R (48)

and represents a rotation operator R for rotation by angle θ around unit
vector axis q̂, where

q̂ = q/T(q) = q/
√
q · q = q/∥q∥. (49)

The square of any unit vector is q̂2 = −1. Any quaternion q can be written
as the product of its unit U(q) and tensor T(q) as

q = T(q)U(q). (50)

The inverse of q is

q−1 = q†/qq† = q†/T(q)2 = U(q)†T(q)−1, (51)

where U(q)† = U(q)−1. Quaternion rotation of a vector p is

p′ = RpR†, (52)

rotating p around axis q̂ by angle θ centered on the origin.

3.3.2. Quaternion Geometric Algebra. In QGA, {1, i, j, k} =̂ {1, e∗1, e∗2,
e∗3}. QGA is the subalgebra G+

3 . Any vector v ∈ G1
3 is transformed into its

quaternion vector form v∗ in QGA by the dualization

v∗ = v/I3 ∈ G2
3 . (53)

For example, in QA we have k = j/i, and in QGA we have the corresponding
ratio k=̂e∗2/e

∗
1 = e2/e1 = e2e1. This is simpler to express as the dual k=̂e∗3 =

e3/I3 = e3e3e2e1 = e2e1, and similarly for i and j. In QGA, a quaternion q
is

q = qw + qxe
∗
1 + qye

∗
2 + qze

∗
3 = qw + q∗. (54)

The quaternion conjugate is implemented as

K(q) = q† = q∼ = qw − q∗, (55)
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where q∼ is the geometric algebra reverse operation on q. The notation q† is
also a geometric algebra notation for reverse [12], so there is no conflict with
notation.

The dot product · (bold dot) is implemented as

p∗ · q∗ = −p∗ · q∗ = −(p∗q∗ + q∗p∗)/2. (56)

The cross product × (bold cross) is implemented as

p∗ × q∗ = p∗ × q∗ = (p∗q∗ − q∗p∗)/2. (57)

The scalar part S(q), vector part V(q), tensor T(q), unit U(q), and inverse
q−1 are all implemented the same as in QA by using the conjugate q†. The
QGA quaternion vector units still obey the quaternion product rule:

e∗1e
∗
2e

∗
3= e∗1

2= e∗2
2= e∗3

2 = −1. (58)

It should be understood that, in QA we have vector v on the basis {i, j,k}, in
PGA we have v on the basis {e1, e2, e3}, and in QGA we have v on the basis
{e∗1, e∗2, e∗3} as v∗. Each represents the same vector v on a different basis in a
different algebra. We will refer to a dualized vector v∗ = v/I3 as just being
the quaternion vector v∗.

3.4. Dual Quaternions in PGA

In the prior sections, we reviewed dual number algebra (DNA) and quaternion
algebra (QA) in their original forms, and then how they are represented or
emulated in the geometric algebra G+

3,0,1 as subalgebras that we have called

dual number geometric algebra (DNGA) and quaternion geometric algebra
(QGA). In this section, we discuss dual quaternion algebra (DQA) and its
representation in G+

3,0,1 as dual quaternion geometric algebra (DQGA).

3.4.1. Dual Quaternion Algebra. In DQA, dual quaternions are very similar
to quaternions, but instead of using only the real numbers, we extend the
real numbers to dual numbers. The DQA basis elements are {1, ε, i, j,k}. A
dual quaternion d has the general form d = q1 + q2ε, where q1 = q1w + q1 =
q1w + q1xi + q1yj + q1zk and q2 = q2w + q2 are quaternions and ε is the
nilpotent scalar, where ε2 = 0.

3.4.2. Dual Quaternion Geometric Algebra. In DQGA, {1, ε, i, j, k} =̂ {1,
I4, e

∗
1, e

∗
2, e

∗
3}, and a dual quaternion is

d = q1 + q2I4 = q1w + q∗
1 + q2wI4 + q∗

2I4. (59)

The complex conjugate d = q1 − q2I4 is implemented as

d = I3dI
−1
3 , (60)

which is the same as in DNGA, where (d1d2 . . .)
− = d1d2 . . . in the same

order.
The quaternion conjugate K(d) = q1w−q∗

1+q2wI4−q∗
2I4 is implemented

as

K(d) = d† = d∼, (61)
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which is the same as in QGA, where (d1d2 . . .)
† = · · · d†2d

†
1 in the reverse

order.

We can compose d and d† as the “dual conjugate”

d
†
= q†1 − q†2I4 = q1w − q∗

1 − q2wI4 + q∗
2I4. (62)

The real part is

ℜ(d) = X(d) = (d+ d)/2 = q1. (63)

The imaginary part is

ℑ(d) = (d− d)/2 = q2I4. (64)

The real component of the imaginary part is

Y(d) = −Je(ℑ(d)) = q2. (65)

The dual number-valued scalar part is

S(d) = (d+ d†)/2 = q1w + q2wI4. (66)

The vector part is

V(d) = (d− d†)/2 = q∗
1 + q∗

2I4. (67)

The dual number-valued tensor (or magnitude) is

T(d) =
√
dd† =

√
|q1|2 exp(2(q1wq2w + q∗

1 · q∗
2)I4/|q1|2) (68)

= |d|D = |q1|(1 + ((q1wq2w + q∗
1 · q∗

2)/|q1|2)I4), (69)

for |q1| ̸= 0. For q1 = 0, dd† = 0 and T(d) = 0. The notation T(d) = |d|D
indicates that the tensor is dual number-valued and T(z) = |x| exp(yI4/x) =
±z. The inverse tensor is

T(d)−1 = |q1|−1(1− ((q1wq2w + q∗
1 · q∗

2)/|q1|2)I4) = T(d)/|T(d)|2. (70)

Using T(d)−1, a unit dual quaternion is

d̂ = U(d) = dT(d)−1, (71)

which is also called normalizing the dual quaternion d. We define the following
three new part operators. The point part is [for pp (75) with p∗ = q∗

2/q1w]

P(d) = (d+ d
†
)/2 = q1w + q∗

2I4. (72)

The plane part is [for π̂d,n (81) with −n̂∗ = q∗
1/∥q∗

1∥ and −d = q2w/∥q∗
1∥]

Π(d) = (d− d
†
)/2 = q∗

1 + q2wI4. (73)

The line part is [for lp,d (78) when q∗
1 · q∗

2 = 0 with d∗ = q∗
1 and m∗ =

p∗ × d∗ = −q∗
2]

L(d) = V(q) = q∗
1 + q∗

2I4. (74)
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3.5. DQGA Geometric Entities

In this section, we derive the DQGA point entity p = pt (embedding t∗),
DQGA plane entity π = πp,n = πd,n (through p∗ with normal n∗), and the
DQGA line entity l = lp,d (through p∗ in direction d∗).

Each entity A ∈ {p, l, π} represents a null space set of points, NA =
{pt : NA(ptA) = 0}. The product ptA is the test of point pt for coincidence
with the surface represented by A. Points in the null space set NA are on
the surface represented by A. The null space entity part NA(ptA) for the
product ptA is the part that represents the null space of entity A. For a
point, A = p and Np(ptpa) = V(ℑ(ptpa)) with set Np = {pt : Y(Np(ptpa)) =
t + a = 0} = {p−a}. For a line, A = l and Nl(ptl) = V(ℑ(ptl)) with set
Nl = {pt : Y(Nl(ptl)) = t∗ × d∗ − p∗ × d∗ = 0}. For a plane, A = π and
Nπ(ptπ) = S(ℑ(ptπ)) with set Nπ = {pt : Y(Nπ(ptπ)) = t∗ ·n∗−p∗ ·n∗ = 0}.

In CPNS PGA, the commutator product × always gives the null space
entity part. In DQGA, there is not a single product that always gives the
null space entity part. In DQGA, we have to compute the dual quaternion
product ptA and then take part NA(ptA). Point pt is a point of A if and only
if NA(ptA) = 0.

For each kind of entity A, there are also entity-specific formulas for
their reflections in planes, translations, and other operations. Rotation is
performed the same on all entities using the rotor R in a versor sandwich
product of the entity.

3.5.1. DQGA Point Entity. In DQA, a quaternion vector t is embedded as
a homogeneous point pt = 1 + tε. In DQGA, a quaternion vector t∗ =
(xe1 + ye2 + ze3)/I3 is embedded as the homogeneous DQGA point

pt = 1 + t∗I4 = exp(t∗I4) = 1 + e0t = 1 + xe0e1 + ye0e2 + ze0e3. (75)

Two points pt and pp represent the same point if and only if Np(ptpb) =
V(ℑ(ptpb)) = 0 or Y(V(ℑ(ptpb))) = 0. The identity between pt and pt (12)
is

pt = ptI
−1
3 or pt = ptI3. (76)

Using (76) and d = I3dI
−1
3 (60), two points pt and pp represent the same

point if and only if pt × pp = (ptpp − pppt)/2 = 0, or

(−ptpp + pppt)/2 = 0. (77)

We can save computation by using Np(ptpp) = 0.

3.5.2. DQGA Line Entity. In CPNS PGA, pt × l = 0 is the test of pt (12)
with l (11), which is a grade 3 test. We switch to geometric product ptl and
use (76) to obtain ptI3l, which we rewrite as ptI3lI

−1
3 I3 and abridge the RHS

I3 to take the DQGA line entity as

l = I3lI
−1
3 = l = d∗ + (p · d∗)e0 = d∗ − (p∗ × d∗)I4, (78)
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where we have used the identity p ·d∗ = (p∗×d∗)I3. For d
∗ = d̂∗, then l = l̂

is a unit line. The identity between l and l (11) using d = I3dI
−1
3 (60) is

l = l or l = l. (79)

Point pt is on l if and only if Nl(ptl) = Y(V(ℑ(ptl))) = t∗ × d∗ − p∗ ×
d∗ = 0, which is the Plücker coordinates (d∗ : m∗) condition for the line
with m∗ = p∗ × d∗. Using (79), (76), and (60), pt is on l if and only if
pt × l = (ptl− lpt)/2 = 0, (ptl − lpt)I3/2 = 0, or

(ptl − lpt)/2 = 0. (80)

We may save computation by using Nl(ptl) = 0.

3.5.3. DQGA Plane Entity. In CPNS PGA, pt × π = pt ∧ π = 0 is the test
of pt (12) with π (9). We switch to geometric product ptπ and use (76) to
obtain ptπ = ptI3π. We take the DQGA plane entity as

π = I3π = πp,n = I3(n+ (p · n)e0) = −(n∗ + (p∗ · n∗)I4). (81)

The identity between π and π is

π = I3π or π = I−1
3 π. (82)

For n∗ = n̂∗, then d = p∗ · n∗ is the distance from origin and π = π̂d,n is
a unit plane. Point pt is on π if and only if Nπ(ptπ) = S(ℑ(ptπ)) = 0 or
Y(Nπ(ptπ̂)) = xn̂x + yn̂y + zn̂z − d = 0. Using (82), (76), and d (60), pt is
on π if and only if pt × π = (ptπ − πpt)/2 = 0, or

(ptπ − πpt)/2 = 0. (83)

We may save computation by using Nπ(ptπ) = 0.

3.6. DQGA Reflection Operations

3.6.1. Reflection of a plane in another plane. DQGA plane π1 (81) reflected
in unit plane π2 = π̂2 is

π′
1 = π2π1π2. (84)

Proof. In CPNS PGA, the reflection is π′
1 = −π2π1π2 (18). Using identities

π = I−1
3 π (82) and d = I3dI

−1
3 (60), then π′

1 = I−1
3 π′

1 = −I−1
3 π2I

−1
3 π1I

−1
3 π2

= I−1
3 π2π1π2. □

3.6.2. Reflection of a line in a plane. DQGA line l (78) is reflected in unit
plane π = π̂ as

l′ = −(πlπ)− = −πlπ. (85)

Proof. In CPNS PGA, the reflection is l′ = πlπ (19). Using identities π =

I−1
3 π (82), l = l (79), and d (60), then l′ = l

′
= I−1

3 πlI−1
3 π = −πlπ and

l′ = −(πlπ)− = −πlπ. □
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3.6.3. Reflection of a point in a plane. Using π = I−1
3 π (82), p = pI3 (76),

d = I3dI
−1
3 (60), and p′ = −πpπ (20) for oriented point reflection, p reflected

in unit plane π = π̂ is

p′ = πpπ = (πpπ)−. (86)

This reflection changes the orientation of p′. By this method, reflecting three
points and then joining them in the same order will produce the correctly
reflected plane.

Using p′ = πpπ (21) for non-oriented point reflection, p reflected in
π = π̂ is

p′ = −πpπ = −(πpπ)−. (87)

This reflection maintains point p′ in standard form orientation. By this
method, reflecting three points and then joining them in the reverse order
will produce the correctly reflected plane. We can compose two reflections to
generate rotation or translation.

3.7. DQGA Translation Operations

3.7.1. Translation of a point. DQGA point pp is translated by d∗ using T =
pd/2 (15) as

pp′ = pp+d = TppT. (88)

Proof. In CPNS PGA, point pp is translated as pp′ = pp+d = TppT
−1

(15). Using identities pp = ppI3 (76), d = I3dI
−1
3 (60), and T−1 = T , then

pp′ = pp′I3 = TppT I3. Since points have commutative multiplication, pp′ =

T 2pp = pdpp = pp+d. □

3.7.2. Translation of a plane. DQGA plane π is translated by d∗ using T =
pd/2 (15) as

π′ = TπT . (89)

Proof. In CPNS PGA, plane π is translated as π′ = TπT−1. Using identities
π = I−1

3 π (82), d = I3dI
−1
3 (60), T−1 = T , and T I−1

3 = I−1
3 T , then π′ =

I−1
3 π′ = T I−1

3 πT−1 = I−1
3 TπT . □

3.7.3. Translation of a line. DQGA line l is translated by d∗ using T = pd/2
(15) as

l′ = T lT. (90)

Proof. In CPNS PGA, line l is translated as l′ = T lT−1. Using identities

l = l (79), d = I3dI
−1
3 (60), and T−1 = T , then l′ = l

′
= T lT−1 and

l′ = (T lT )− = T lT . □
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3.8. DQGA Rotation Operations

3.8.1. Rotation centered around the origin. In DQA, we can rotate all dual
quaternions and dual quaternion geometric entities using the quaternion al-
gebra rotor R = exp(θn̂/2). In DQGA, the DQA rotor R = exp(θn̂/2) cor-
responds to the DQGA rotor

R = exp(θn̂∗/2), (91)

where n̂∗ = n̂/I3. By outermorphism, R rotates any quaternion vector v∗

within DQGA expressions, thereby rotating them as a whole rigid body. The
rotation is centered on the origin, around the axis n̂∗, by angle θ using R as
a versor sandwich product on any DQGA element A as A′ = RAR−1.

This versor operation is valid on all DQGA entities for rotation cen-
tered on the origin, but most of the other DQGA operations, for translation
and rotation around lines, are not versor sandwich products, but are instead
entity-specific special sandwich products that are derived for each entity.

We can take the plane-based PGA rotor Rl = exp(θl̂/2) and convert it

to the DQGA rotor Rl = Rl = Rl = exp(θl̂/2) for rotation around the line
l by angle θ, but we cannot apply Rl to all DQGA entities using a single
form of versor sandwich product. However, the rotation of a point p, line l,
or plane π can each use Rl in a specific formula for each entity type as we
derive in the following sections.

3.8.2. Rotation of a point around a line. In CPNS PGA, a point p is rotated

around the unit line l = d̂∗ − (p · d̂∗)e0 using the rotor Rl = exp(θl/2) =
cos(θ/2) + sin(θ/2)l as p′ = RlpR

−1
l . This rotor can also be formed as a

composition of rotation and translation as a translated rotor Rl = TRT−1 or
as reflection in two non-parallel planes Rl = π2π1. We will just use exp(θl/2),
which is the easier and more intuitive form.

We use identities p = pI3, l = l, I3l = lI3. Then, p′ = p′I3 =
exp(θl/2)pI3 exp(−θl/2). Therefore, the rotation of point p around line l by
angle θ is

p′ = exp(θl/2)p exp(−θl/2) = RlpR
†
l . (92)

It is important that l = l̂ = U(l) be a unit line, or else the angle θ will be
scaled incorrectly by any magnitude T(l) on l. The sense of rotation is by

right-hand rule around the line through axis of rotation direction d̂∗. This
is not a versor operation; it is a special dual quaternion sandwich product
that is entity-specific, for rotating a DQGA point around a DQGA line. Each
DQGA entity has a different formula for this operation in DQGA.

3.8.3. Rotation of a plane around a line. In CPNS PGA, the plane π is ro-
tated around the unit line l using the rotor Rl = exp(θl/2) as π′ = RlπR

−1
l .

We use identities π = I−1
3 π, l = l, lI−1

3 = I−1
3 l. Then, π′ = I−1

3 π′ =

exp(θl/2)I−1
3 π exp(−θl/2). Therefore, the rotation of plane π around line l

by angle θ is

π′ = exp(θl/2)π exp(−θl/2) = RlπR
†
l . (93)
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3.8.4. Rotation of a line around another line. In CPNS PGA, the line l1 is
rotated around the unit line l2 using the rotor Rl2 = exp(θl2/2) as l′1 =

Rl2l1R
−1
l2

. We use identities l = l, lI−1
3 = I−1

3 l. Then, l′1 = l
′
1 = exp(θl2/2)

l1 exp(−θl2/2). Therefore, the rotation of line l1 around line l2 by angle θ is

l′1 = exp(θl2/2)l1 exp(−θl2/2) = Rl2 l1R
†
l2
. (94)

3.9. DQGA Intersection Operations

In this section, we discuss the intersection operations in DQGA. The inter-
section of two geometrical entities, where they have common points, is also
called their meet. Intersection operations are also called meet operations. We
give the operations for testing the meet of a point with a plane, line, or an-
other point. We then give operations for forming entities that represent the
meet of lines and planes.

3.9.1. Testing a point for intersection with a plane, line, or other point. We
have defined the DQGA surface entities A ∈ {pp, πp,n, lp,d} with respect to
testing a DQGA point pt against them, to determine if pt is in the null space
set {pt : NA(ptA) = 0} of the null space entity part NA(ptA) of the test
product ptA. The null space entity part NA(ptA) depends on type of surface
A.

For a point surface p = pp, A = p, and

Np(ptpb) = V(ℑ(ptpb)) = 0 (95)

for the null space set of a single point {pt : Np(ptpb) = (t∗ − b∗)I4 = 0} =
{pt = pb}.

For a plane surface π = πp,n, A = π, and

Nπ(ptπp,n) = S(ℑ(ptπp,n)) = 0 (96)

for the null space set of the entire plain of points {pt : Nπ(ptπp,n) = (t∗ ·
n∗ − p∗ · n∗)I4 = 0}.

For a line surface l = lp,d, A = l, and

Nl(ptlp,d) = V(ℑ(ptlp,d)) = 0 (97)

for the null space set of the entire line of points {pt : Nl(ptlp,d) = (t∗ ×
d∗ − p∗ × d∗)I4 = 0}, where p∗ × d∗ = m∗ is called the moment in Plücker
coordinates (d∗ : m∗) for the line.

If we do not want to use the null space entity part operators NA, then we
can reformulate the point-surface intersection tests as full geometric products
and make substitutions with identities to derive the full point-surface tests.

For the point-point test, in CPNS PGA we test pt × pp = (ptpp −
pppt)/2 = 0. Using identities p = pI3 and d = I3dI

−1
3 , the test becomes

(ptI3ppI3 − ppI3ptI3)/2 = 0. Therefore, two points pt and pp represent the
same point if and only if

−(ptpp − pppt)/2 = 0. (98)

We may save computation by using (95).
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For the point-plane test, in CPNS PGA we test pt × π = (ptπ −
πpt)/2 = 0. Using identities {p = pI3, π = I−1

3 π, d = I3dI
−1
3 }, the test

becomes (ptI3I
−1
3 π − I−1

3 πptI3)/2 = 0. Therefore, point pt is on plane π if
and only if

(ptπ − πpt)/2 = 0. (99)

We may save computation by using (96).
For the point-line test, in CPNS PGA we test pt×l = (ptl−lpt)/2 = 0.

Using identities {p = pI3, l = l, d = I3dI
−1
3 , I3l = lI3}, the test becomes

(ptI3l − lptI3)/2 = 0. Therefore, abridging I3 factored to the RHS, point pt
is on line l if and only if

(ptl − lpt)/2 = 0. (100)

We may save computation by using (97).

3.9.2. Intersection of two planes as a line. In CPNS PGA, plane π1 and
plane π2 intersect as the line l = π1 ∧ π2. We use the identities {l = l,
π = I−1

3 π, d = I3dI
−1
3 } and switch to geometric products. Then, the line

is l = l = L(I3I
−1
3 π1I

−1
3 π2I

−1
3 ). Therefore, the intersection of plane π1 and

plane π2 is the line
l = L(−π1π2). (101)

Notice that, we have to take the line part using the L(d) = V(d) operator,
which replaces the wedge product (a geometric product part operator) used
in the corresponding CPNS PGA.

If we do not want to use L(d), then we can fully reformulate into geo-
metric products as l = π1 ∧ π2 = (π1π2 − π2π1)/2 for two vectors. Then,
l = l = I3(I

−1
3 π1I

−1
3 π2 − I−1

3 π2I
−1
3 π1)I

−1
3 /2. Therefore, the intersection of

plane π1 and plane π2 is the line

l = −(π1π2 − π2π1)/2. (102)

Using L(d) may save computation. Orientation is reversed as −l.
When forming a line l as intersection of two planes, we cannot be sure

of its scale, so it may need to be normalized as l̂ = U(l), but it will have the
same scale and orientation as the corresponding CPNS PGA line l = l.

3.9.3. Intersection of a line and plane as a point. In CPNS PGA, non-parallel
line l and plane π intersect as the point p = l∧π. We use the identities {l = l,
π = I−1

3 π, d = I3dI
−1
3 , p = pI3} and switch to geometric products. Then,

the point is p = pI−1
3 = P(lI−1

3 πI−1
3 ). Therefore, the intersection of line l and

plane π is the point
p = P(−lπ). (103)

The point part P(d) operator replaces the wedge product (a geometric prod-
uct part operator) used in the corresponding CPNS PGA.

If we do not want to use P(d), then we can fully reformulate into geo-
metric products as p = l ∧ π = (lπ + πl)/2. Then, p = pI−1

3 = (lI−1
3 π +

I−1
3 πl)I−1

3 /2. Therefore, the intersection of line l and plane π is the point

p = −(lπ + πl)/2. (104)
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Using P(d) may save computation.
When forming a point p as intersection of line and plane, we cannot be

sure of its scale, so it may need to be normalized as p̂ = U(p), but it will
have the same scale and orientation as the corresponding CPNS PGA point
p = pI3.

3.9.4. Intersection of three planes as a point. In CPNS PGA, three non-
parallel planes {π1, π2, π3} intersect as the point p = π1 ∧ π2 ∧ π3. We
use the identities {π = I−1

3 π, p = pI3, d = I3dI
−1
3 } and switch to geometric

products. Then, the point is p = pI−1
3 = P(I−1

3 π1I
−1
3 π2I

−1
3 π3I

−1
3 ). Therefore,

the intersection of three planes, π1, π2, and π3, is the point

p = P(π1π2π3) = P(−l12π3) = P(−π1l23). (105)

The point part P(d) operator replaces the wedge products (a geometric prod-
uct part operator) used in the corresponding CPNS PGA.

If we do not want to use P(d), then we can fully reformulate into geo-
metric products as p = pI−1

3 = (π1 ∧ π2 ∧ π3)I
−1
3 = ((π1π2 − π2π1)π3 +

π3(π1π2 − π2π1))I
−1
3 /4. Then, we make the substitutions and get p =

((−π1π2+π2π1)(−π3)+(−π3)(−π1π2+π2π1))/4. Therefore, the intersection
of three planes, π1, π2, and π3, is the point

p = (π1π2π3 − π2π1π3 + π3π1π2 − π3π2π1)/4. (106)

Using P(d) may save computation, but both ways give the same point entity.
When forming a point p as the intersection of three planes, we cannot

be sure of its scale, so it may need to be normalized as p̂ = U(p), but it will
have the same scale and orientation as the corresponding CPNS PGA point
p = pI3.

3.10. DQGA Projection Operations

In CPNS PGA, we only make projections of a smaller-dimensional geometric
entity a ∈ {p, l,π} onto a subspace of a larger-dimensional geometric entity
A ∈ {p, l,π}. A point is 0-dimensional, a line is 1-dimensional, and a plane is
2-dimensional in terms of geometric degrees of freedom. The general projec-
tion operation in CPNS PGA is a′ = (a·A)A−1 (same as in CGA) and results
in orthographic projection of a onto A. Therefore, we have three projections:
(p · π)π−1, (l · π)π−1, (p · l)l−1. In this section, we use identities to convert
these projections into DQGA forms.

3.10.1. Projection of a point onto a plane. In CPGA PGA, the projection
p′ (22) of point p onto unit plane π is p

′
= (p · π)π. We use the identities

{p = pI3, π = I−1
3 π, d = I3dI

−1
3 , ππ = −1, p ·π = (pπ+πp)/2} and switch

to geometric products. Then, p′ = p′I−1
3 = ((pI3I

−1
3 π+ I−1

3 πpI3)I
−1
3 π/2)I−1

3 .
Therefore, the projection of point p onto plane π is the point

p′ = −(pπ + πp)π/2. (107)

The projected point p′ is the point on the plane π that is closest to the point
p.
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For unit plane π, we have ππ = −1 and p′ = (p − πpπ)/2. We notice
that, −πpπ (87) is p reflected in the plane π as a non-oriented point, and that
(p− πpπ)/2 is the average point between p and −πpπ, which is the point p′

on the plane between them.

3.10.2. Projection of a line onto a plane. In CPNS PGA, the projection l′

(23) of line l onto unit plane π is l′ = (l · π)π. We use the identities {l = l,
π = I−1

3 π, d = I3dI
−1
3 , ππ = −1, l · π = (lπ − πl)/2} and switch to

geometric products. Then, l′ = l
′
= I3((lI

−1
3 π−I−1

3 πl)I−1
3 π/2)I−1

3 . Therefore,
the projection of line l onto plane π is the line

l′ = (−lπ + πl)π/2. (108)

For unit plane π, we have ππ = −1 and then l′ = (l + πlπ)/2. We notice
that, −πlπ (85) is l reflected in the plane π. Reflection in a plane causes an
orientation reversal in the reflected entity (except for the non-oriented point
reflection). Then, πlπ restores orientation to that of l, and then they are
averaged as l′. The average line l′ is on the plane between them.

3.10.3. Projection of a point onto a line. In CPNS PGA, the projection p′

(24) of point p onto the unit line l is p′ = (p · l)l−1 = −(p · l)l. We use the
identities {p = pI3, l = l, d = I3dI

−1
3 , I3l = lI3, p · l = (pl + lp)/2} and

switch to geometric products. Then, p′ = p′I3 = −(pI3l+lpI3)l/2. Therefore,
the projection of point p onto line l is the point

p′ = −(pl + lp)l/2. (109)

For unit line l, we have ll = l2 = −1 and p′ = (p−lpl)/2. We notice that, −lpl
(92) is p “reflected” in l, which is actually an orientation-preserving rotation
around l by 180◦. Then, p′ is the average point between p and −lpl, which is
the projected point on the line.

3.11. DQGA Rejection Operations

3.11.1. Rejection of a line from a plane. In CPNS PGA, the rejection l′

(25) of line l from unit plane π is l′ = (l ∧π)π. We use the identities {l = l,
π = I−1

3 π, l∧π = (lπ+πl)/2, d = I3dI
−1
3 } and switch to geometric products.

Then, l′ = l
′
= (lI−1

3 π+ I−1
3 πl)I−1

3 π/2. Therefore, the rejection of line l from
plane π is the line

l′ = −(lπ + πl)π/2. (110)

3.11.2. Rejection of a plane from a line. In CPNS PGA, the rejection π′

(26) of plane π from unit line l is π′ = (π ∧ l)l−1 = −(π ∧ l)l. We use the
identities {l = l, π = I−1

3 π, π ∧ l = (πl + lπ)/2, d = I3dI
−1
3 } and switch to

geometric products. Then, π′ = I−1
3 π′ = −(I−1

3 πl+ lI−1
3 π)l/2. Therefore, the

rejection of plane π from line l is the plane

π′ = −(πl + lπ)l/2. (111)
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3.12. Conclusion to Dual Quaternion Geometric Algebra

We reviewed dual number algebra (DNA), quaternion algebra (QA), and dual
quaternion algebra (DQA) in their original notations, and then provided the
details on how each algebra is represented in the even-grades subalgebra G+

3,0,1

of PGA. The representations in geometric algebra are called the dual number
geometric algebra (DNGA), quaternion geometric algebra (QGA), and dual
quaternion geometric algebra (DQGA) to distinguish the different notations
and implementations of certain special operations by taking advantage of the
larger G3,0,1 and PGA. We have discussed the Dual Quaternion Geometric
Algebra G+

3,0,1 in PGA G3,0,1 (DQGA/PGA) in much detail that seemed to be
missing in the prior literature that we are aware of, though we acknowledge
that dual quaternions are an old subject and some results may be found
somewhere in the published literature.

We arrive at our view of dual quaternions by a method that may be new
in the literature, by using PGA. We derived identities that convert the CPNS
PGA entities {p, l,π} between their corresponding DQGA entities {p, l, π}
without change of orientation. By using the identities, we also converted
CPNS PGA operations on entities into their corresponding operations on the
DQGA entities, including reflections, translations, rotations, intersections,
projections, and rejections. Nearly anything that can be done in CPNS PGA
can also be done in DQGA (dual quaternions). All of the DQGA entities and
operations could be implemented in a pure DQA implementation that may
be more efficient than the full PGA algebra.

We borrow from PGA the entity dualization operation Je, pseudoscalar
I3, and certain geometric algebra operators (reverse † or ˜, inner product ·,
commutator product ×) to implement a complete set of special dual quater-
nion operations including conjugates (dual number conjugate z, quaternion

conjugate K(q) = q†, dual conjugate d
†
), dual quaternion part extraction

operators (real ℜ, imaginary ℑ, scalar S, vector V, point P, plane Π, and line
L parts), the dual number-valued tensor T (magnitude) of a dual quaternion,

a normalization operation d̂ = U(d) of a dual quaternion d to a unit dual

quaternion d̂, the vector calculus dot product a∗ · b∗ = −a∗ · b∗ and cross
product a∗ × b∗ = a∗ × b∗, and an operation Y (using Je and ℑ) to extract
the quaternion q2 = Y(d) from d = q1+q2I4 (ε=̂I4). Using the point P, plane
Π, and line L parts operations, we improve the computational efficiency of in-
tersection operations. DQGA is a complete implementation of DQA, and it is
also extended in PGA to other algebraic forms of the entities and operations
in CPNS PGA and OPNS PGA.

It is possible to convert between the DQGA entities {p, l, π} and the
CPNS PGA entities {p, l,π} by using simple identities between them. Using
the PGA entity dualization operation Je, we can convert between CPNS PGA
entities {p, l,π} and OPNS PGA entities {P,L,Π}. Therefore, we can freely
convert a point, line, or plane entity into three different forms within PGA
G3,0,1 without orientation change, and take advantage of each form of entity
and operations in the three different algebras in PGA.
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4. Conclusion

In Section 1, we introduced the subject of this paper, which is about the geo-
metric algebra PGA G3,0,1 for points, lines and planes, and its Dual Quater-
nion Geometric Algebra within its even-grades subalgebra G+

3,0,1. The main
contribution of this paper is the detailed development of the Dual Quaternion
Geometric Algebra (DQGA), providing more geometric entities and opera-
tions in dual quaternions than we were able to find in any prior literature,
including recent literature such as [6].

In Section 2 and its subsections, we provided a detailed review and
introduction to 3D PGA G3,0,1 to provide the foundation for Section 3 on the
Dual Quaternion Geometric Algebra.

In Section 3, as the main contribution of this paper, we explored the
details of the Dual Quaternion Geometric Algebra (DQGA) within the even-
grades subalgebra G+

3,0,1 of PGA. In DQGA, we rediscovered many results
that may be known in older published literature, while we may have con-
tributed some new results on representing lines and planes and various oper-
ations on them that are derived through identities to the CPNS PGA entities
and operations.

The details of the Dual Quaternion Geometric Algebra may contribute
to the literature on Dual Quaternions, showing that much more can be done
with dual quaternions than seems to be commonly known. Some old literature
could turn up with many of the results, but we are not aware of it. The dual
quaternions could eventually be superseded by the Plane-based algebra of
PGA that has a nicer and simpler form. There is also the point-based algebra
of PGA through the dualization Je that offers the ability to join points, which
we did not find in dual quaternions.

In comparing CGA G4,1 to PGA G3,0,1, PGA has some advantages.
In CGA, the embedding of a vector point t is the conformal embedding
P = Pt = t+ t2e∞/2+eo, where P

2 = 0. The square t2 increases numerical
error, and then the condition P2 = 0 can fail, leading to P2 ̸= 0 and further
instability or errors. In PGA, the embedding of a vector t is the homoge-
neous embedding P = Pt = e0 + t (or its dual pt), where there is no t2

or condition on the square P2. The homogeneous embedding is more stable
and less sensitive to numerical error. PGA is a smaller algebra than CGA
and is likely to be faster. Compared to CGA for points, lines, and planes,
DQGA (and DQA) also has the same advantages as PGA. A further advan-
tage of dual quaternions may be existing software implementations of DQA,
where dual quaternions are already used for some algorithms. The DQA en-
tities and operations introduced in this paper may enable new applications of
dual quaternions using existing software. For those who are wanting to try to
get the most out of an efficient dual quaternion implementation, the DQGA
entities and operations for points, lines, and planes may be of interest.
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