A Geometric Algebra solution to a "Divided Triangle" Problem

March 5, 2024

James Smith

Abstract

We show how to use properties of Geometric Algebra bivectors to solve the following problem: "A triangle is divided into three smaller triangles and a quadrilateral by two lines drawn from vertices to the opposite sides. Given only the areas of the three triangles, find the area of the quadrilateral."

Given the areas A_{1}, A_{2}, and A_{3}, find A_{4}.

Figure 1: Given areas A_{1}, A_{2}, and A_{3}, find A_{4}.

1 Statement of the Problem

Given areas A_{1}, A_{2}, and A_{3}, find A_{4} (Fig. 11).

2 Ideas that We Will Use

1. The relationship between the outer product of two vectors and the oriented area of the triangle that is formed by them.

$\mathbf{a} \wedge \mathbf{b}=2 A \mathbf{i} ; \quad \mathbf{b} \wedge \mathbf{a}=-2 A \mathbf{i}$
2. How to find the intersection of two lines \mathcal{L}_{1} and \mathcal{L}_{2} that are parameterized as $\mathcal{L}_{1}=\mathbf{a}+\lambda_{u} \mathbf{u}$ and $\mathcal{L}_{2}=\mathbf{b}+\lambda_{v} \mathbf{v}$, in which λ_{u} and λ_{v} are scalars (Fig. 22. We will see that in the present problem, we will not need to carry out the full procedure.

$$
\begin{aligned}
& \text { At the intersection point, } \\
& \mathbf{a}+\lambda_{u} \mathbf{u}=\mathbf{b}+\lambda_{v} \mathbf{v} \\
& \therefore\left(\mathbf{a}+\lambda_{u} \mathbf{u}\right) \wedge \mathbf{v}=\left(\mathbf{b}+\lambda_{u} \mathbf{v}\right) \wedge \mathbf{v} \\
& \lambda_{u} \mathbf{u} \wedge \mathbf{v}=(\mathbf{b}-\mathbf{a}) \wedge \mathbf{v} \\
& \text { and } \lambda_{u}=[(\mathbf{b}-\mathbf{a}) \wedge \mathbf{v}](\mathbf{u} \wedge \mathbf{v})^{-1} .
\end{aligned}
$$

Figure 2: Method for finding the intersection point of two lines that are parameterized as $\mathcal{L}_{1}=\mathbf{a}+\lambda_{u} \mathbf{u}$ and $\mathcal{L}_{2}=\mathbf{b}+\lambda_{v} \mathbf{v}$, in which λ_{u} and λ_{v} are scalars. Shown is the detailed procedure for finding the value of λ_{u} of the intersection point: the value of λ_{v} for that point can be found by taking the outer product of both sides of $\mathcal{L}_{1}=\mathbf{a}+\lambda_{u} \mathbf{u}=\mathcal{L}_{2}=\mathbf{b}+\lambda_{v} \mathbf{v}$ with \mathbf{u}.

Figure 3: Formulation of the problem in terms of vectors.

3 Solution Strategy

We will express each of the three given areas, and the total area of $\triangle A B C$, in terms of outer products, then find A_{4} as Total $-A_{1}-A_{2}-A_{3}$.

4 Formulation in Terms of Vectors

We formulate the problem as shown in Fig. 3.

5 Solution

To identify the area of the triangle $\triangle A B C$, we will need to express the vector c from A to C in terms of the given areas (Fig. 4). To do so, we begin by expressing point C as the intersection of lines:

$$
\begin{aligned}
\mathbf{c} & =\lambda_{u} \mathbf{u} \text { and } \\
\mathbf{c} & =\mathbf{v}+\lambda_{w v}(\mathbf{w}-\mathbf{v}) ; \\
\therefore \lambda_{u} \mathbf{u} & =\mathbf{v}+\lambda_{w v}(\mathbf{w}-\mathbf{v}) .
\end{aligned}
$$

Figure 4: Showing the vector \mathbf{c} that we will use to express the area of $\triangle A B C$, via $\mathbf{v} \wedge \mathbf{c}=2[$ Area of $\triangle A B C] \mathbf{i}$.

We find λ_{u} as follows:

$$
\begin{align*}
\lambda_{u} \mathbf{u} \wedge(\mathbf{w}-\mathbf{v}) & =\mathbf{v} \wedge(\mathbf{w}-\mathbf{v})+\lambda_{w v}(\mathbf{w}-\mathbf{v}) \wedge(\mathbf{w}-\mathbf{v}) \\
\lambda_{u} \mathbf{u} \wedge \mathbf{w}-\lambda_{u} \mathbf{u} \wedge \mathbf{v} & =\mathbf{v} \wedge \mathbf{w} \tag{5.1}
\end{align*}
$$

Now, we note that

$$
\begin{aligned}
\mathbf{u} \wedge \mathbf{v} & =-2\left(A_{1}+A_{1}\right) \mathbf{i}, \text { and } \\
\mathbf{v} \wedge \mathbf{w} & =2\left(A_{2}+A_{3}\right) \mathbf{i}
\end{aligned}
$$

As explained in Fig. 5, $\mathbf{u} \wedge \mathbf{w}=-2\left[A_{1}\left(A_{2}+A_{3}\right) / A_{2}\right]$ i. Thus, Eq. (5.1) becomes

$$
\lambda_{u}\left\{-2\left[\frac{A_{2}+A_{3}}{A_{2}}\right] A_{1}\right\} \mathbf{i}-\lambda_{u}\left[-2\left(A_{1}+A_{2}\right)\right] \mathbf{i}=2\left(A_{2}+A_{3}\right) \mathbf{i}
$$

from which

$$
\lambda_{u}=\frac{A_{2}\left(A_{2}+A_{3}\right)}{A_{2}^{2}-A_{1} A_{3}}
$$

Thus,

$$
\begin{aligned}
\mathbf{v} \wedge \mathbf{c} & =\mathbf{v} \wedge\left\{\left[\frac{A_{2}\left(A_{2}+A_{3}\right)}{A_{2}^{2}-A_{1} A_{3}}\right] \mathbf{u}\right\} \\
2\left(A_{1}+A_{2}+A_{3}+A_{4}\right) \mathbf{i} & =\left[\frac{A_{2}\left(A_{2}+A_{3}\right)}{A_{2}^{2}-A_{1} A_{3}}\right] \mathbf{v} \wedge \mathbf{u} \\
& =\left[\frac{A_{2}\left(A_{2}+A_{3}\right)}{A_{2}^{2}-A_{1} A_{3}}\right]\left[2\left(A_{1}+A_{2}\right)\right] \mathbf{i} .
\end{aligned}
$$

Note that we have been able to identify λ_{u} without having to use the full procedure that is shown in Fig. 2.

Figure 5: Obtaining an expression for $\mathbf{u} \wedge \mathbf{w}$. Vector \mathbf{w} is $\frac{h_{3}}{h_{2}} \mathbf{z}$. Because $\triangle A B F$ and $\triangle A B E$ have the same base $(\overline{A B}), \frac{h_{3}}{h_{2}}=\frac{A_{3}+A_{2}}{A_{2}}$. In addition, $\mathbf{z} \wedge \mathbf{u}=2 A_{1} \mathbf{i}$. Therefore, $\mathbf{u} \wedge \mathbf{w}=-2\left[\frac{A_{2}+A_{3}}{A_{2}}\right] A_{1}$.

Solving for A_{4},

$$
\begin{equation*}
A_{4}=\frac{A_{1} A_{3}\left(A_{1}+2 A_{2}+A_{3}\right)}{A_{2}^{2}-A_{1} A_{3}} \tag{5.2}
\end{equation*}
$$

