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Abstract: This article is the fourth part of a scientific project under the general title “Geometrized vacuum 

physics based on the Algebra of Signatures". In the first three articles [1,2,3], the foundations of the Algebra 

of Stignatures were laid and the main aspects of the kinematics of vacuum layers were considered. This 

article continues the development of the mathematical apparatus of the proposed project, in particular, the 

dynamics of vacuum layers is developed based on the Algebra of Signatures. The development of this 

direction of research (with simplifications related to Riemann's differential geometry) led to the possibility 

of a geometrized representation of the electric field strength and magnetic field induction. This geometrized 

mathematical apparatus allows one to interpret the electromagnetic field as an interweaving of accelerated 

and rotational flows of the adjacent layers of vacuum. The proposed dynamic models of accelerated 

movements and rotations of vacuum layers can provide a theoretical basis for the development of “zero” (i.e. 

vacuum) technologies. 
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1. Background and Introduction 

This paper is the fourth in a series of articles under the general title “Geometrized vacuum 

physics”. In the previous three articles [1–3] the basics of the Algebra of Signatures and the 

kinematics of vacuum layers were outlined. 

Let’s recall that the subject of study of Algebra of Signatures (abbreviated as Alsigna) is the 

volume of the “vacuum”, i.e. local 3-dimensional area of the void [1–3]. 

Within Alsigna, the “vacuum” is stratified into an infinite number of nested m,n-vacuums, 

which are illuminated from the void by probing it with monochromatic rays of light with 

wavelengths m,n from different ranges Δ =10m  10n cm, where n = m + 1 (see §§2.1–2.2 in [1]). In 

this case, each m,n-vacuum is a 3Dm,n-landscape (or 3Dm,n-lattice), the geodesic lines of which are the 

corresponding rays of light (see Figure 1). 

    

Figure 1. m,n-vacuum is embedded in f,d -vacuum, where f,d  m,n (repetition of Figure 3 in [3]). 
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This article considers the geodesic lines of only one curved region of one of the m,n-vacuums. 

The geodesic lines of the remaining m,n-vacuum are studied similarly. 

Let’s recall that within the framework of the Algebra of Signature, the simplest level of 

research is a bilateral consideration of the uncurved local region of the 23-m,n-vacuum (see §2.4 in 

[3] and Figure 2), which is specified by a set of pseudo-Euclidean metrics (83) in [3] 

 

{
𝑑𝑠0

(+)2 =  𝑐2𝑑𝑡2 − 𝑑𝑥2 − 𝑑𝑦2 − 𝑑𝑧2 = 𝑑𝑠(+)𝑑𝑠(+) =  c𝑑𝑡c𝑑𝑡− 𝑑𝑥𝑑𝑥− 𝑑𝑦𝑑𝑦− 𝑑𝑧𝑑𝑧,   

𝑑𝑠0
(−)2 = – 𝑐2𝑑𝑡2 + 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 = 𝑑𝑠(−)𝑑𝑠(−) = −c𝑑𝑡c𝑑𝑡+ 𝑑𝑥𝑑𝑥 + 𝑑𝑦𝑑𝑦 + 𝑑𝑧𝑑𝑧.

 (1) 

 

 

Figure 2. Simplified illustration of a two-sided section of the 23-mn-vacuum, the outer side of which 

(subcont) is described by the averaged metric 〈𝑑𝑠(+−−−)2〉 with the signature (+ – – –), and its inner 

side (antisubcont) is described by the metric 〈𝑑𝑠(−+++)2〉 with the opposite signature (– + + +), as                   

ε → 0 (repetition of Figure 7 in [3]). 

The metric-dynamic state of the same, but curved section of the double-sided 23-m,n-vacuum 

is described by the averaged metric (61) in [3] 

ds(±)2 = 
2

1  (ds(+ – – –) 2+ ds(– + + +) 2) = 2
1 (ds(+)2+ ds(–)2) = ½( 𝑔ij(+) + 𝑔ij(–))dxidxj, (2) 

where 

ds(+ – – –)2 = ds(+)2 = 𝑔ij(+)dxidxj with signature (+ – – –), (3) 
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is metric tensor of the “outer” side of the 23-m,n-vacuum (i.e. subcont) (see Figure 2); 

 

ds(– + + +)2 = ds(–)2 = 𝑔ij(–)dxidxj  with signature (– + + +),  (5) 
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is metric tensor of the “inner” side of the 23-m,n-vacuum (i.e. antisubcont) (see Figure 2); 

Conditional concepts of "subcont" (short for "substantial continuum") and "antisubcont" (short 

for "antisubstantial continuum") were introduced in §2.7 in [2] to designate, respectively, the outer 

and inner sides of the 23-m,n-vacuum, as well as to facilitate the visualization of intertwined intra-

vacuum processes. It is conditionally assumed that the "subcont" is formed from streams (threads) 

of white color, and the antisubcont is formed from streams (threads) of black color (see Figure 3b 

and Figure 12 in [3]). 

In § 2.5.2 in [3] it was shown that adjacent segments of the “white” lines ds(+) of the subcont and 

the “black” lines ds(–) of the antisubcont are mutually perpendicular ds(+) ⊥ ds(–) (see Figure 3a).                        

This is possible only if they are everywhere intertwined with each other (Figure 3b), and form a      

3-dimensional affine fabric of 23-m,n-vacuum (Figure 3b,c). 

   
(a) (b) (c) 

Figure 3. a) Mutually perpendicular adjacent segments ( 2
1 )1/2ds(+) and ( 2

1 )1/2ds(–); b) If we project a 

double helix onto a plane, then at the intersection of its lines ds(+) and ds(–) are always mutually 

perpendicular (repetition of Figure 10 in [3]); c) Conventionally, the “white” lines of the ds(+) subcont 

and the “black” lines of the ds(–) antisubcont form a single intertwined affine fabric of the 23-m,n-

vacuum. 

Thus, the averaged metric (2) corresponds to a segment of a 2-braid consisting of two mutually 

intertwined spirals s(–) and s(+) (see the definition of a k-braid in § 2.5.2 in [3]), which can be described 

by a complex number 

ds (±) = 
1

√2
 (ds(–) + ids(+)),  (7) 

which we will call a 2-helix. The squared modulus of a complex number (7) (i.e., a 2-helix) is equal 

to the length of a segment of a 2-braid (2) or expression (61) in [3]. 

Based on the Algebra of Signature presented in [1–3] and partly repeated in this introduction, 

this article discusses the general dynamics of vacuum layers, from which, under certain conditions, 

“vacuum electrodynamics” and “vacuum electrostatics” are obtained. 

Like the three previous articles [1–3], this article is mainly of a theoretical nature and is aimed 

at further development of the mathematical apparatus of the Algebra of Signature (abbreviated as 

«Alsigna»).  

It is planned that in the following articles of this series, Alsigna’s mathematical apparatus will 

be used for applied problems, in particular, for the development of a vacuum model of the 

Universe, a vacuum model of elementary particles, to explain the nature of gravity and 

electromagnetism, as well as for development of the “zero” (vacuum) technologies. 
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2. Materials and Method 

2.1. Equation of the geodesic line of a two-sided 23-m,n-vacuum 

The shortest distance between two infinitely close points p1 and p2 in a curved area of a two-

sided 23-m,n-vacuum is defined as an extremal of the functional 

𝑆 = ∫ 𝑑𝑠(±)
𝑝2

𝑝1

,  (8) 

where 𝑑𝑠(±) is a 2-helix (7), integration is performed from point p1 to point p2. 

We find the equation of this extremal based on the condition that the first variation is equal to 

zero 

𝑆 = ∫ 𝑑𝑠(±)
𝑝2

𝑝1

= ∫
1

√2
(𝑑𝑠(+) + 𝑖𝑑𝑠(−)) = 0

𝑝2

𝑝1

.  (9) 

Let’s represent expression (9) in the form 

𝑆 =
1

√2
(∫ 𝑑𝑠(+) + 𝑖∫ 𝑑𝑠(−)

𝑝2

𝑝1

𝑝2

𝑝1

) = 0,  (10) 

or taking into account metrics (3) and (5) 

𝑆 =
1

√2
(√𝑔𝑖𝑗

(+)𝑑𝑥𝑖𝑑𝑥𝑗 + 𝑖 ∫ √𝑔𝑖𝑗
(−)𝑑𝑥𝑖𝑑𝑥𝑗

𝑝2

𝑝1
) = 0.  (11) 

Expression (11) is equal to zero provided that both terms are equal to zero 

∫ √𝑔𝑖𝑗
(+)𝑑𝑥𝑖𝑑𝑥𝑗 = 0

𝑝2

𝑝1
   and   ∫ √𝑔𝑖𝑗

(−)𝑑𝑥𝑖𝑑𝑥𝑗 = 0
𝑝2

𝑝1
.  (12) 

In §2.2 in [3], it was shown that in the most general case, the metric of a local area of a curved                   

4-dimensional space with any of the 16 possible signatures (22) in [3], can be represented as a scalar 

product of two vectors given in distorted affine spaces with corresponding stignatures (see 

Expressions (18) – (20) in [3])  

ds(q)2 = ds(a)ds(b)= 𝑔ij(q)dxidxj = βpm(a)em(a)αpi(a)βln(b)en(b)αlj(b)dxidxj,  (13) 

where  

ds(a)=βpm(a)em(а)αpi(a)dxi    and   ds(b) = βln(b)en(b)αlj(b)dxj  (14) 

is vectors defined respectively in the a-th and b-th curved affine space with the corresponding 

stignature (see §2.2 in [3]); 

αij(a) =dxi(a)/dxj(a)  (15) 

is components of the elongation tensor of the axes of the curved region of the a-th affine space with 

the corresponding stignature from matrix (2) in [2]); 

βpm(a) = (ep(a) em(a)) = cos (ep(a) ^em(a))  (16) 

is direction cosines between the axes of the curved section of the a-th affine space with the same 

stignatura; 

em(a) is basis vector specifying the direction of the m-th axis of the a-th affine space; 

dxj(a) is an infinitesimal segment of the j-th axis of the a-th affine space. 

When parallel translation, for example, a vector ds(a) (or a vector ds(b)) in a complexly curved, 

twisted and displaced affine (i.e., vector) space along a geodesic line from point p1 to a nearby point 

p2 (see Figure 4b), it should be taken into account that the magnitude and direction of this vector 
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may depend on changes in all four parameters αij(a), βpm(a), em(a), dxj(a). That is, when translating the 

vector ds(a from point p1 to p2, in the most complex case the following may change (see Figure 4b): 

1) The length of the basis vectors αij(a); 2) angles between the basis vectors βpm(a); 3) rotation of the 

entire 4-basis as a whole em(a); 4) Displacement of the 4-basis in general dxj(a). This is due to the fact 

that the geodesic line between two points p1 and p2 of a complexly distorted space can not only be 

curved, but also deformed, displaced and twisted. 

  
(a) (b) 

Figure 4. a) In Riemannian geometry, the parallel translation of the vector ds(a) from point p1 to the 

nearby point p2 is carried out strictly tangent to the geodesic line connecting these points. In this 

case, only the direction of this vector changes, and its magnitude remains unchanged. It means that 

the magnitude of the basis vectors em(а) and the angles between them do not change; b) In the most 

complexly curved, displaced and twisted space, when transferring (i.e. translation) the vector ds(a) 

from point p1 to the nearby point p2, its direction, magnitude and displacement may change. When 

transferring the vector ds(a) in such a complexly distorted space, the magnitude of the basis vectors 

em(a) and the angles between them can change, and the 4-basis itself as a whole can rotate and shift. 

In this case, all four parameters of the 4-basis αij(a), βpm(a), em(a), dxj(a) can change, which, according to 

expression (14), affects the change in the vector ds(a) when it is transferred. 

Depending on what distortions, displacements and rotations of the vectors ds(a) and ds(b) are 

taken into account when considering the metric-dynamic properties of curved space, various 

differential geometries are obtained: for example, Riemannian geometry (see Figure 4a), Weyl 

geometry, affine geometry of Eddington, geometry with torsion of Cartan-Schouten, geometry of 

absolute parallelism of Weizenbeck-Vitali-Shipov [4], etc. 

2.2. Equation of the geodesic line of a two-sided 23-m,n-vacuum in the case of Riemannian geometry 

First, let’s assume that the outer and inner 4-dimensional sides of the 23-m,n-vacuum (i.e. 

subcont and antisubcont) are only curved, i.e. are described by the simplest differential Riemannian 

geometry (see Figure 4a). In this case, the extremals of functionals (12) are defined identically, so 

we introduce a generalized metric 

𝑑𝑠2 = 𝑔𝑖𝑗𝑑𝑥
𝑖𝑑𝑥𝑗 ↔ {

𝑜𝑟 𝑑𝑠(+)2 =  𝑔𝑖𝑗
(+)
𝑑𝑥𝑖𝑑𝑥𝑗,

𝑜𝑟 𝑑𝑠(–)2 =  𝑔𝑖𝑗
(–)
𝑑𝑥𝑖𝑑𝑥𝑗 .

 

We consider the general case 
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∫ 𝑑𝑠 =
𝑝2

𝑝1

∫ √𝑔𝑖𝑗𝑑𝑥
𝑖𝑑𝑥𝑗 = 0,

𝑝2

𝑝1

  (17) 

provided that at the ends of the desired geodesic line ds (i.e. at points p1 and p2) the variations are 

zero 

𝛿𝑑𝑠(р1) = 𝛿𝑑𝑠(р2) = 𝛿𝑥(р1) = 𝛿𝑥(р2) = 0.  (18) 

Let's use the expression 

𝛿𝑑𝑠2 = 2𝑑𝑠𝛿𝑑𝑠,  (19) 

whence it follows [5] 

𝛿𝑑𝑠 =
1

2𝑑𝑠
𝛿𝑔𝑖𝑗𝑑𝑥

𝑖𝑑𝑥𝑗 =
1

2𝑑𝑠
[
𝜕𝑔𝑖𝑗

𝜕𝑥𝜇
𝛿𝑥𝜇𝑑𝑥𝑖𝑑𝑥𝑗 + 𝑔𝑖𝑗𝑑𝑥

𝑗𝑑𝛿𝑥𝑖 + 𝑔𝑖𝑗𝑑𝑥
𝑖𝑑𝛿𝑥𝑗],  (20) 

where the commutativity of the operations of variation and differentiation 𝛿(𝑑𝑥𝑖) = 𝑑(𝛿𝑥𝑖)  is 

used. 

Let’s substitute Ex. (20) under the integral (17), and divide and multiply this expression by ds, 

as a result we obtain [5] 

𝛿𝑆 =
1

2
∫ {

𝜕𝑔𝑖𝑗

𝜕𝑥𝜇

𝑑𝑥𝑖

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑠
𝛿𝑥𝜇 + (𝑔𝜇𝑗

𝑑𝑥𝑗

𝑑𝑠
+ 𝑔𝑖𝜇

𝑑𝑥𝑖

𝑑𝑠
)
𝑑(𝛿𝑥𝜇)

𝑑𝑠
} 𝑑𝑠

р2
р1

= 0.  (21) 

We integrate the expression in parentheses by parts [5]: 

         
1

2
∫ (𝑔𝜇𝑗

𝑑𝑥𝑗

𝑑𝑠
+ 𝑔𝑖𝜇

𝑑𝑥𝑖

𝑑𝑠
)
𝑑(𝛿𝑥𝜇)

𝑑𝑠
𝑑𝑠

р2
р1

=
1

2
(𝑔𝜇𝑘

𝑑𝑥𝑘

𝑑𝑠
+ 𝑔𝑖𝜇

𝑑𝑥𝑖

𝑑𝑠
) 𝛿𝑥𝜇|

р1

р2
−
1

2
∫ 𝛿𝑥𝜇

𝑑

𝑑𝑠
(𝑔𝜇𝑗

𝑑𝑥𝑗

𝑑𝑠
+ 𝑔𝑖𝜇

𝑑𝑥𝑖

𝑑𝑠
) 𝑑𝑠

р2
р1

.  (22) 

The first term in this expression, due to conditions (18), becomes zero. Let’s substitute the 

remaining part of expression (22) into equation (21) and perform differentiation, as a result we 

obtain [5]: 

𝛿𝑆 =
1

2
∫ {(

𝜕𝑔𝑖𝑗

𝜕𝑥𝜇
−
𝜕𝑔𝜇𝑗

𝜕𝑥𝑖
−
𝜕𝑔𝑖𝜇

𝜕𝑥𝑗
)
𝑑𝑥𝑖

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑠
+ 2𝑔𝜇𝑗

𝑑2𝑥𝑗

𝑑𝑠2
} 𝑑𝑠

р2
р1

𝛿𝑥𝜇 = 0.  (23) 

From the fact that integral (23) vanishes for any variations of хμ, it follows that the expression 

enclosed in curly brackets is equal to zero. From where, taking into account the relation 𝑔𝑖𝑗𝑔
𝑖𝑗 = 4, 

after simple calculations we obtain the equation of the geodesic line [5]: 

𝑑2𝑥𝑙

𝑑𝑠2
+ Г𝑖𝑗

𝑙 𝑑𝑥𝑖

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑠
= 0,  (24) 

where 

Г𝑖𝑗
𝑙 =

1

2
𝑔𝑙𝜇 (

𝜕𝑔𝜇𝑖

𝜕𝑥𝑗
+
𝜕𝑔𝜇𝑗

𝜕𝑥𝑖
−
𝜕𝑔𝑖𝑗

𝜕𝑥𝜇
) is Christoffel symbols; 

(25) 

𝑥𝑖(s) is coordinates of the curved line.  

Eq. (24) is intended to determine the extremal of functional (17) with simplifications related to 

Riemannian geometry (Figure 4a). This equation determines the most optimal (geodesic) line 

connecting two close points p1 and p2 in a curved 4-dimensional space. That is, this is a line that, 

under the above conditions, allows you to get from point p1 to the nearby point p2 in the shortest 

time and with the least energy costs. 

At the same time, Eq. (24) can be represented in the form 

   
𝑑2𝑥𝑙

𝑑𝑠2
= −Г𝑖𝑗

𝑙 𝑑𝑥𝑖

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑠
,  (26) 

this equation defines the 4-acceleration field 𝑑2𝑥𝑙 𝑑𝑠2⁄ , which can be interpreted as a massless force 

field 𝑓𝑙 

𝑑2𝑥𝑙

𝑑𝑠2
= 𝑓𝑙 𝑚𝑏,⁄  
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where 𝑚𝑏 is the mass of a body that is carried away by a continuous “medium”, which moving 

with acceleration 𝑑2𝑥𝑙 𝑑𝑠2⁄ . 

At this stage of research, it is difficult to explain what is meant by a force field in vacuum 

physics. However, it is possible to compare the acceleration of a local section of the vacuum layer 

with the accelerated movement of a small volume of liquid in the general flow of the river. Such an 

accelerated flow carries with it everything that comes in its way and makes it move with the same 

acceleration. From the point of view of post-Newtonian physics, if a body moves with acceleration, 

then a force acts on it. Therefore, the accelerated movement of the local volume of a 3-dimensional 

medium (in this case, subcont, or antisubcont) can be interpreted as a local force effect. 

Performing separately similar operations (17) – (24) for variations (12), we obtain two 

equations 

𝑑2𝑥𝑙

𝑑𝑠2
+ Г𝑖𝑗

𝑙(−) 𝑑𝑥𝑖

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑠
= 0,  (27) 

         
𝑑2𝑥𝑙

𝑑𝑠2
+ Г𝑖𝑗

𝑙(+) 𝑑𝑥𝑖

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑠
= 0,  (28) 

where respectively  

Г𝑖𝑗
𝑙(+)

=
1

2
𝑔𝑙𝜇(+) (

𝜕𝑔𝜇𝑖
(+)

𝜕𝑥𝑗
+
𝜕𝑔𝜇𝑗

(+)

𝜕𝑥𝑖
−
𝜕𝑔𝑖𝑗

(+)

𝜕𝑥𝜇
)  (29) 

is Christoffel symbols of a subcont; 

Г𝑖𝑗
𝑙(−)

=
1

2
𝑔𝑙𝜇(−) (

𝜕𝑔𝜇𝑖
(−)

𝜕𝑥𝑗
+
𝜕𝑔𝜇𝑗

(−)

𝜕𝑥𝑖
−
𝜕𝑔𝑖𝑗

(−)

𝜕𝑥𝜇
) (30) 

is Christoffel symbols of a antisubcont; 

When considering variation (11), taking into account the Christoffel symbols (29) and (30), we 

find that the sought-for extremal of the functional (8), with simplifications related to Riemannian 

geometry, is determined by the following equation of a geodesic line in a curved two-sided 23-m,n-

vacuum 

𝑑2𝑥𝑙

𝑑𝑠2
+

1

√2
(Г𝑖𝑗
𝑙(+)

+ 𝑖Г𝑖𝑗
𝑙(−)
)
𝑑𝑥𝑖

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑠
= 0,  (31) 

or 

       
𝑑2𝑥𝑙

𝑑𝑠2
= −

1

√2
(Г𝑖𝑗
𝑙(+) + 𝑖Г𝑖𝑗

𝑙(−))
𝑑𝑥𝑖

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑠
 . 

 

(32) 

Ex. (31) shows that the geodesic lines of the subcont and antisubcont, i.e. two mutually opposite 

sides of the local section of the two-sided 23-m,n-vacuum is twisted into a 2-spiral. This is similar to 

how rivulets twist in a freely falling jet of liquid (see Figure 5).  

  

Figure 5. Many streams in a freely falling stream of liquid twist into a spiral. 
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Continuing the analogy with liquid, it should be noted that within the framework of the 

Algebra of Signature, a two-sided 23-m,n-vacuum can be represented as an interweaving (mixing) 

of two liquids (subcont and antisubcomt), which can be conditionally “colored” in white and black 

colors (see Figure 6). These two conjugate “liquids” cannot separately move in a straight line; they 

are interconnected and can move in one direction only by twisting into a 2-helix. 

    

Figure 6. Illustrations of mixing of white and black "liquids". 

2.3. Equation of the geodesic line of a 16-sided 26-m,n-vacuum in the case of Riemannian geometry 

In the previous paragraph, we considered the most simplified model representation of the 

interweaving of geodesic lines of a two-sided 23-m,n-vacuum which can be interpreted as mixing 

and interweaving of flows of two liquids: conventionally “white” and “black”). With a more 

detailed examination of such conjugate “multi-colored” liquids there should be 16. With an even 

more detailed examination of these liquids there are already 256 and so on ad infinitum. 

More in-depth and accurate is the sixteen-sided consideration of the local area of the 26-m,n-

vacuum (see §3 and §5.3 in [3]). In this case, the curved state of the 26-m,n-vacuum is described by 

a superposition (averaging) not of two, as in the previous paragraph, but of sixteen 4-metrics (see               

Ex. (25) in [3]). 

𝑠(16)
2 =

1

16
∑ 𝑔𝑖𝑗

(𝑞)
𝑑𝑥𝑖𝑑𝑥𝑗 =

1

16
 [𝑔𝑖𝑗

(1)𝑑𝑥𝑖𝑑𝑥𝑗 + 𝑔𝑖𝑗
(2)𝑑𝑥𝑖𝑑𝑥𝑗  + 𝑔𝑖𝑗

(3)𝑑𝑥𝑖𝑑𝑥𝑗 + 𝑔𝑖𝑗
(4)𝑑𝑥𝑖𝑑𝑥𝑗16

𝑞=1  +      

                      + 𝑔𝑖𝑗
(5)
𝑑𝑥𝑖𝑑𝑥𝑗 + 𝑔𝑖𝑗

(6)
𝑑𝑥𝑖𝑑𝑥𝑗  + 𝑔𝑖𝑗

(7)
𝑑𝑥𝑖𝑑𝑥𝑗  +  𝑔𝑖𝑗

(8)
𝑑𝑥𝑖𝑑𝑥𝑗  + 

                      + 𝑔𝑖𝑗
(9)
𝑑𝑥𝑖𝑑𝑥𝑗 +  𝑔𝑖𝑗

(10)
𝑑𝑥𝑖𝑑𝑥𝑗 + 𝑔𝑖𝑗

(11)
𝑑𝑥𝑖𝑑𝑥𝑗 + 𝑔𝑖𝑗

(12)
𝑑𝑥𝑖𝑑𝑥𝑗 + 

                          + 𝑔𝑖𝑗
(13)
𝑑𝑥𝑖𝑑𝑥𝑗 + 𝑔𝑖𝑗

(14)
𝑑𝑥𝑖𝑑𝑥𝑗 + 𝑔𝑖𝑗

(15)
𝑑𝑥𝑖𝑑𝑥𝑗 + 𝑔𝑖𝑗

(16)
𝑑𝑥𝑖𝑑𝑥𝑗] = 0 ,

 

(33) 

where  

𝑔𝑖𝑗
(𝑞)
=

(

  
 

𝑔00
(𝑞)

𝑔10
(𝑞)

𝑔20
(𝑞)

𝑔30
(𝑞)

𝑔01
(𝑞)

𝑔11
(𝑞)

𝑔21
(𝑞)

𝑔31
(𝑞)

𝑔02
(𝑞)

𝑔12
(𝑞)

𝑔22
(𝑞)

𝑔32
(𝑞)

𝑔03
(𝑞)

𝑔13
(𝑞)

𝑔23
(р)

𝑔33
(𝑞)
)

  
 

  (34) 

is components of the metric tensor of the q-th metric space with a signature from the matrix (22) in 

[3]: 

𝑠𝑖𝑔𝑛(𝑔𝑖𝑗
(𝑞)
) =

(+ + ++)1 (+ + + −)5 (− + + −)9 (+ + − +)13

(− − −+)2 (− + + +)6 (− − + +)10 (− + − +)14

(+ − −+)3 (+ + − −)7 (+ − − −)11 (+ − + +)15

(− − +−)4 (+ − + −)8 (− + − −)12 (− − −−)16.

  (35) 

In the framework of the Algebra of Signature, Ex. (33) is called a 16-braid, which is formed by the 

additive superposition of sixteen 4-dimensional metric spaces (see §5.3 in [3]). In this case, a section 

of a 16-braid is formed from sixteen intertwined “colored” lines (spiral threads) ds(q), and is 

described by Ex. (69) in [3] 
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              ds(16) = 1/√16 (η1 ds(+– – –)  + η2 ds(+ + + +)  + η3 ds(– – – +)  + η4 ds(+ – – +) + 

                 + η5 ds(– – + –) + η6 ds(+ + – –)  + η7 ds(– + – –)  + η8 ds(+ – + –) + 

                 + η9 ds(– + + +) + η10 ds(– – – –) + η11 ds(+ + + –) + η12 ds (– + + –) + 

                 + η13 ds(+ + – +) + η14 ds(– – + +) + η15 ds(+ – + +) + η16 ds(– + – +)), 

(36) 

 

where ηm (m = 1,2,3,…,16) is an orthonormal basis of objects (similar to the imaginary unit i) 

satisfying the anticommutative Clifford algebra relation (68) in [3] 

ηmηn + ηnηm = 2δmn , (37) 

where δnm is the unit 1616 matrix. 

For example, let‘s imagine a segment of a 16-helix (36) as a sum of two complex conjugated  

8-helices (octonions) with signatures {+ – – –} and {– + + +}  

ds(16) = 1/√2 (ds(8)(+) + ids(8)(–)),  (38) 

where 

ds(8)(+) = 1/√8 (ζ1ds(+ + + +) + ζ2ds(+ – – –) + ζ3ds(– – – +) + ζ4ds(+ – – +) + ζ5ds(– – + –) + ζ6 ds(+ + – –) + ζ7ds (– + – –) + ζ8ds(+ – + –)),  (39) 

ds(8)(–) = 1/√8 (ζ1ds(– – – – ) + ζ2ds(– + + +) + ζ3ds(+ + + –) + ζ4ds(– + + –) + ζ5 ds(+ + – +) + ζ6 ds(– – + +) + ζ7 ds(+ – + +) + ζ8 ds(– + – +)), (40) 

where the objects ζr (where r = 1, 2, 3, … ,8), as well as the objects ηm, satisfy the anticommutative 

relations of the Clifford algebra: 

ζm ζk + ζk ζm = 2δkm ,  (41) 

where δkm is the Kronecker symbol (δkm = 0 for m  k and δkm = 1 for m = k). 

These requirements are satisfied, for example, by a set of 8×8 matrices of type (65) in [1]: 

 (42) 

𝜁2 =

(

 
 
 
 
 

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1)

 
 
 
 
 

       𝜁2 =

(

 
 
 
 
 

0 1 0 0 0 0 0 0
−1 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 −1 0)

 
 
 
 
 

    𝜁3 =

(

 
 
 
 
 

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 )

 
 
 
 
 

 

𝜁4 =

(

 
 
 
 
 

0 0 0 1 0 0 0 0
0 0 −1 0 0 0 0 0
0 1 0 0 0 0 0 0
−1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 1 0
0 0 0 0 0 −1 0 0
0 0 0 0 1 0 0 0 )

 
 
 
 
 

  𝜁5 =

(

 
 
 
 
 

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0)

 
 
 
 
 

   𝜁6 =

(

 
 
 
 
 

0 0 0 0 0 1 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 −1 0
0 1 0 0 0 0 0 0
−1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 −1 0 0 0 0 0)

 
 
 
 
 

 

              𝜁7 =

(

 
 
 
 
 

0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −1
0 0 0 0 −1 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 −1 0 0 0 0
−1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 )

 
 
 
 
 

     𝜁8 =

(

 
 
 
 
 

0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 −1 0 0
0 0 0 0 −1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 −1 0 0 0 0 0 0
−1 0 0 0 0 0 0 0)
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In this case, δkm is a unit 88-matrix: 

                           𝛿𝑘𝑚 =

(

 
 
 
 
 

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1)

 
 
 
 
 

  (43) 

Similarly, the objects ηm can be represented by sixteen 16x16 matrices. 

Let’s look at the functional 

𝑆 = ∫ 𝑑𝑠(16)
р2
р1

,  (44) 

where ds(16) is a segment of the 16-helix (36). 

Let’s equate the first variation of this functional to zero 

S = 1/√16 (η1  ds(+ – – –) + η2  ds(+ + + +) + η3  ds(– – – +) + η4  ds(+ – – +) +  

   + η5  ds(– – + –) + η6   ds(+ + – –) + η7   ds(– + – –) + η8  ds(+ – + –) +  

    + η9  ds(– + + +) + η10 ds(– – – –) + η11  ds(+ + + –) + η12 ds (– + + –) +  

      + η13  ds(+ + – +) + η14  ds(– – + +) + η15 ds(+ – + +) + η16 ds(– + – +)) = 0. 

(45) 

With each term ηq∫ 𝑑𝑠(𝑞) 
р2
р1

from Ex. (45) we perform operations like (17) – (24), as a result we 

obtain the extremal equation for a geodesic line in a curved 16-sided 26-m,n-vacuum 

𝑑2𝑥𝑙

𝑑𝑠2
+ 1/√16 (𝜂1Г𝑖𝑗

𝑙(1)
+ 𝜂2Г𝑖𝑗

𝑙(2)
+ 𝜂3Г𝑖𝑗

𝑙(3)
+. . . +𝜂15Г𝑖𝑗

𝑙(15)
+ 𝜂16Г𝑖𝑗

𝑙(16)
)
𝑑𝑥𝑖

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑠
= 0,  (46) 

or 

𝑑2𝑥𝑙

𝑑𝑠2
= −

1

√16
(∑ 𝜂𝑞Г𝑖𝑗

𝑙(𝑞)16
𝑞=1 )

𝑑𝑥𝑖

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑠
 ,  (47) 

where  

Г𝑖𝑗
𝑙(𝑞)

=
1

2
𝑔𝑙𝜇(𝑞) (

𝜕𝑔𝜇𝑖
(𝑞)

𝜕𝑥𝑗
+
𝜕𝑔𝜇𝑗

(𝑞)

𝜕𝑥𝑖
−
𝜕𝑔𝑖𝑗

(𝑞)

𝜕𝑥𝜇
)  (48) 

is Christoffel symbols of the q-th metric space with components of the metric tensor  

𝑔𝑖𝑗
(𝑞)
=

(

  
 

𝑔00
(𝑞)

𝑔10
(𝑞)

𝑔20
(𝑞)

𝑔30
(𝑞)

𝑔01
(𝑞)

𝑔11
(𝑞)

𝑔21
(𝑞)

𝑔31
(𝑞)

𝑔02
(𝑞)

𝑔12
(𝑞)

𝑔22
(𝑞)

𝑔32
(𝑞)

𝑔03
(𝑞)

𝑔13
(𝑞)

𝑔23
(р)

𝑔33
(𝑞)
)

  
 

  (49) 

with the corresponding signature from matrix (35). 

Ex. (46) shows that at this level of consideration, the curved area of the 26-m,n-vacuum is a 

complex interweaving of the 16-“colored” geodesic lines (see Figure 7). In this case, the 16-strains 

of the same section of the 26-m,n-vacuum are described by the strain tensor (63) in [3]. 

At the same time, the equation of geodesic lines (46) can be represented in the form. 

𝑑2𝑥𝑙

𝑑𝑠2
= −

1

√16
(∑ 𝜂𝑞Г𝑖𝑗

𝑙(𝑞)16
𝑞=1 )

𝑑𝑥𝑖

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑠
,  (50) 

which defines the field of 4-accelerations 𝑑2𝑥𝑙 𝑑𝑠2⁄ , i.e. total massless force field (see Figure 7)  
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𝑑2𝑥𝑙

𝑑𝑠2
=

1

√16
∑ 𝜂𝑞

𝑑2𝑥𝑙(𝑞)

𝑑𝑠2
16
𝑞=1 =  𝑓𝑙 𝑚𝑏⁄ ,  (51) 

where 𝑚𝑏  is the mass of the body that is carried away by the total (more precisely averaged) 

accelerated flow. 

 

Figure 7. Fractal illustration of the interweaving of 16-“colored” geodesic lines, (i.e. accelerated 

streams or currents) forming the fabric of the 26-m,n-vacuum. 

The next level of consideration is the 210-m,n-vacuum, which is considered as the result of the 

interweaving of not 16, but 256 metric intra-vacuum layers (see §2.9 in [2] and § 2.5.3 in [3]). In this 

case, the curved area of 26-m,n-vacuum is the result of averaging 265-deformations of the curved 

area of the 210-m,n-vacuum, just as the curved area of the 23-m,n-vacuum is the result of averaging         

16-deformations of the curved area 26-m,n-vacuum. 

A more sophisticated consideration of the curvature of the m,n-vacuum area can be continued 

to infinity by a multiple of 2k (see § 2.9 in [2]). In this case, each time the metric-dynamics of the 

subsequent transverse level of consideration of the 2k-m,n-vacuum is the result of averaging (i.e., in 

fact, coarsening) of the metric-dynamics of the previous, much more finely and elegantly arranged 

level 2k+l-m,n-vacuum. 

3. Different directions of development of dynamics of a m,n-vacuum layers 

As part of the development of the general dynamics of m,n-vacuum layers, a number of other 

possibilities should be considered that may be useful for solving various metric-dynamic problems 

of geometrized vacuum physics. 

The expanded dynamics of a two-sided 23-m,n-vacuum is based on a functional of the form (8) 

𝑆 = ∫ 𝑑𝑠(±)
𝑝2

𝑝1

=
1

√2
∫ (𝑑𝑠(+) + 𝑖𝑑𝑠(−))
𝑝2

𝑝1

,  
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however, the linear forms 𝑑𝑠(+) and  𝑑𝑠(−) can be represented in different ways, depending on the 

task and the depth of consideration. Below are several  

(1). Let's return to the simplest level of consideration of the curved two-sided area of the                   

23-m,n-vacuum. In this case, instead of the system of metrics (1), the outer and inner sides (i.e. 

subcont and antisubcont) of the curved area of the 23-m,n-vacuum are described by conjugate metrics 

{
 𝑑𝑠(+)2 =  𝑔𝑖𝑗

(+)
𝑑𝑥𝑖𝑑𝑥𝑗  with signature (+ – – – ),

 𝑑𝑠(–)2 =  𝑔𝑖𝑗
(–)
𝑑𝑥𝑖𝑑𝑥𝑗  with signature (–+ + +),

  (52) 

which, according to Exs. (13) – (14), can be represented as scalar products of vectors 𝑑𝐬(𝑎)and 𝑑𝐬(𝑏) 

 

{
 𝑑𝑠(+)2 = 𝑑𝐬(𝑎)𝑑𝐬(𝑏) with signature (+ – – – ),

 𝑑𝑠(–)2 = 𝑑𝐬(𝑐)𝑑𝐬(𝑑) with signature (–+ + +),
  (53) 

where, for example, 

ds(a) = βpm(a)em(а)αpi(a)dxi with signature {– – – –} 

ds(b) = βln(b)en(b)αlj(b)dxj  with signature {– + + +} 

 ds(c) = βpm(с)em(с)αpi(с)dxi  with signature {+ + + +} 

      ds(d) = βln(d)en(d)αlj(d)dxj  with signature {– + + +}. 

(54) 

 

We find variations of all possible binary scalar products of vectors (54) 

 

 (ds(a)ds(b)) =  (ds(a))ds(b) + ds(a)(ds(b)) with signature (+ – – –) 

 (ds(c)ds(d)) =  (ds(c))ds(d) + ds(c)(ds(d)) with signature (– + + +) 

 (ds(a)ds(с)) =  (ds(a))ds(с) + ds(a)(ds(с)) with signature (– – – –) 

 (ds(c)ds(b)) =  (ds(c))ds(b) + ds(c)(ds(b)) with signature (– + + +) 

 (ds(a)ds(d)) =  (ds(a))ds(d) + ds(a)(ds(d)) with signature (+ – – –) 

 (ds(d)ds(b)) =  (ds(d))ds(b) + ds(d)(ds(b)) with signature (+ + + +). 

(55) 

 

Among them there are only four variations with different signatures 

 

(ds(c)ds(d)) =  (ds(c))ds(d) + ds(c)(ds(d)) with signature (– + + +) 

  (ds(d)ds(b)) =  (ds(d))ds(b) + ds(d)(ds(b)) with signature (+ + + +) 

  (ds(a)ds(b)) =  (ds(a))ds(b) + ds(a)(ds(b)) with signature (+ – – –) 

        (ds(a)ds(с)) =  (ds(a))ds(с) + ds(a)(ds(с))  with signature (– – – –). 

(56) 

  

We equate the variations of the following functionals to zero 

 
 ds(a)=   βpm(a)em(а)αpi(a)dxi = (βpm(a)em(а)αpi(a)dxi+ βpm(a)em(а)αpi(a)dxi+βpm(a)em(а)αpi(a)dxi + βpm(a)em(а)αpi(a)dxi) = 0, 

 

 ds(b)=   βpm(b)em(b)αpi(b)dxi = (βln(b)en(b)αlj(b)dxj + βln(b)en(b)αlj(b)dxj + βln(b)en(b)αlj(b)dxj + βln(b)en(b)αlj(b)dxj) = 0, 

 

 ds(c)=   βpm(c)em(c)αpi(c)dxi = (βpm(с)em(с)αpi(с)dx i+ βpm(с)em(с)αpi(с)dxi + βpm(с)em(с)αpi(с)dx i+ βpm(с)em(с)αpi(с)dxi) = 0, 

 ds(d)=   βpm(d)em(d)αpi(d)dxi = (βln(d)en(d)αlj(d)dxj + βln(d)en(d)αlj(d)dxj + βln(d)en(d)αlj(d)dxj + βln(d)en(d)αlj(d)dxj) = 0. 

(57) 

Ex. (57) can be represented as 
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 ds(a) = βpm(a)em(а)αpi(a)dxi+βpm(a)em(а)αpi(a)dxi+βpm(a)em(а)αpi(a)dxi+βpm(a)em(а)αpi(a)dxi = 0, 

 ds(b)  = βln(b)en(b)αlj(b)dxj + βln(b)en(b)αlj(b)dxj + βln(b)en(b)αlj(b)dxj + βln(b)en(b)αlj(b)dxj = 0, 

  ds(c) = βpm(с)em(с)αpi(с)dxi+ βpm(с)em(с)αpi(с)dxi + βpm(с)em(с)αpi(с)dxi+βpm(с)em(с)αpi(с)dx = 0, 

  ds(d) = βln(d)en(d)αlj(d)dxj + βln(d)en(d)αlj(d)dxj + βln(d)en(d)αlj(d)dxj + βln(d)en(d)αlj(d)dxj} = 0. 

(58) 

 

Here, all possible changes (distortions, deformations and displacements) of the 4-bases em(а), 

for example, those shown in Figure 4b. 

Substituting variations (58) into Exs. (56), and finding equations for the extremals of these 

functionals, we obtain 32 types of different accelerations (or massless force effects). 

(2). In §2.10 in [2], the spintensor representation of metrics with various signatures was 

considered. For example, let’s write the diagonal quadratic form with the signature (+ – – –) in the 

following form 

𝑑𝑠(+)2 = 𝑔00𝑑𝑥
0𝑑𝑥0 − 𝑔11𝑑𝑥

1𝑑𝑥1 − 𝑔22𝑑𝑥
2𝑑𝑥2 − 𝑔33𝑑𝑥

3𝑑𝑥3 = 

= (
𝑞0𝑑𝑥

0 + 𝑞3𝑑𝑥
3 𝑞1𝑑𝑥

1 + 𝑖𝑞2𝑑𝑥
2

𝑞1𝑑𝑥
1 − 𝑖𝑞0𝑑𝑥

0 𝑞0𝑑𝑥
0 − 𝑞3𝑑𝑥

3 )
𝑑𝑒𝑡

, 
(59) 

where 𝑞𝑖 = √𝑔𝑖𝑖  .  

This A4 matrix can be represented as a linear form 

                                                  𝐴4
(+−−−)

= (
𝑞0𝑑𝑥

0 + 𝑞3𝑑𝑥
3 𝑞1𝑑𝑥

1 + 𝑖𝑞2𝑑𝑥
2

𝑞1𝑑𝑥
1 − 𝑖𝑞0𝑑𝑥

0 𝑞0𝑑𝑥
0 − 𝑞3𝑑𝑥

3 ) =

= 𝑞0𝑑𝑥
0 (
1 0
0 1

) − 𝑞1𝑑𝑥
1 (
0 −1
−1 0

) − 𝑞2𝑑𝑥
2 (
0 −𝑖
𝑖 0

) − 𝑞3𝑑𝑥
3 (
−1 0
0 1

). 

(60) 

In this case, the dynamics of a 23-m,n-vacuum layer with signature (+ – – –) can be determined 

by the equality to zero of the first variation of the functional of the form 

∫ 𝐴4
(+−−−)

= ∫ (𝑞0𝑑𝑥
0 (
1 0
0 1

) − 𝑞1𝑑𝑥
1 (
0 −1
−1 0

) − 𝑞2𝑑𝑥
2 (
0 −𝑖
𝑖 0

) − 𝑞3𝑑𝑥
3 (
−1 0
0 1

)) = 0
р2
р1

р2
р1

, (61) 

The dynamics of all other 23-m,n-vacuum layers are determined similarly (see Table 1 in §10 in 

[2]) with all possible signatures from matrix (35). 

(3). In §2.12 in [2] the Dirac representation of a diagonal quadratic form is considered, for 

example, with signature (+ + + +) 

ds2 = g00dx0dx0 + g11dx1dx1 + g22dx2dx2 + g33dx3dx3 (62) 

as a product of two affine (linear) forms 

ds2 = ds’ds”= (γ0q0dx0′ + γ1q1dx1′ + γ2q2dx2′ + γ3q3dx2′)·(γ0q0dx0” + γ1q1dx1” + γ2q2dx2”+ γ3q3dx2”), (63) 

where 𝑞𝑖 = √𝑔𝑖𝑖;  

 is objects satisfying the anticommutative relation of the Clifford algebra 

η +  η  = 2 η . (64) 

Condition (64) is satisfied, for example, by the following set of 44-Dirac matrices: 

 

𝛾0 = (

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

) , 𝛾1 = (

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

) ,   𝛾2 = (

0 0 0 −𝑖
0 0 𝑖 0
0 −𝑖 0 0
𝑖 0 0 0

) ,     𝛾3 = (

0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

), 
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𝛿𝜇𝜂 = (

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

). 

Also, the diagonal quadratic form (62) with signature (+ + + +) can be represented as 

 

𝑑𝑠 ≡ √(𝑑𝑠𝑖𝑖
2) =

(

  
 

√𝑑𝑠00
2 0 0 0

0 √𝑑𝑠11
2 0 0

0 0 √𝑑𝑠22
2 0

0 0 0 √𝑑𝑠33
2 )

  
 
= √

1

2
∑ ∑ (𝛾𝜇𝛾𝜂 + 𝛾𝜂𝛾𝜇)𝑑𝑥

𝜇𝑑𝑥𝜂3
𝜇=0

3
𝜇=0 .  (65) 

 

The variation of the product of two linear forms (63) is equal to 

(ds’ds”) =  (ds’)ds”+ ds’(ds”).  (66) 

In this case, the dynamics of a 23-m,n-vacuum layer with signature (+ + + +) is determined by 

the system of equations 

 

{
𝑑𝑠’ =  (𝛾0𝑞0𝑑𝑥

0’ +  𝛾1𝑞2𝑑𝑥
1’ +  𝛾2𝑞2𝑑𝑥

2’ +  𝛾3𝑞3𝑑𝑥
3’)  =  0,

 𝑑𝑠” =  (𝛾0𝑞0𝑑𝑥
0” +  𝛾1𝑞2𝑑𝑥

1” +  𝛾2𝑞2𝑑𝑥
2” + 𝛾3𝑞3𝑑𝑥

3”)  =  0.
  (67) 

 

The dynamics of all other 23-m,n-vacuum layers with all possible signatures (35) are 

determined similarly, see §2.12 in [2]. 

Further development of various options for the dynamics of vacuum layers, based on different 

methods of representing quadratic forms with different signatures (35) in the form of two linear 

forms with different signatures (3) in [1] can significantly enrich the mathematical apparatus of the 

Algebra of Signature for describing complex intra-vacuum structures and processes. Perhaps these 

areas of the calculus of variations will interest mathematicians with the hope that they will be in 

demand by physicists. 

Looking significantly ahead, we note that for the geometrization of most branches of modern 

physics based on the Algebra of Signatures, simplifications related to Riemannian geometry (see 

Figure 4a) are sufficient. This will be shown in the following articles of this series. However, to 

geometrize psychophysical phenomena, it is necessary to develop the most complex version of 

differential geometry: – the geometry of absolute parallelism (see Figure 4b) [4,6] with using the 

Algebra of Signature, i.e. taking into account the totality of distortions of all 16 types of affine spaces 

with different stignatures (3) in [1] 

 

𝑠𝑡𝑖𝑔𝑛(𝑒𝑖
(𝑎)
) = (

{+ + + +} {+ + + −} {− + + −} {+ + − +}

{− − − +} {− + + +} {− − + +} {− + − +}

{+ − − +} {+ + − −} {+ − − −} {+ − + +}

{− − + −} {+ − + −} {− + − −} {− − − −}

).  (68) 

 

4. Dynamics of a two-sided 23-m,n-vacuum in a state of constant curvature 

4.1. Stationary metric in Riemannian geometry 

Let's continue considering metrics (52) 

{
𝑑𝑠(+)2 =  𝑔𝑖𝑗

(+)
𝑑𝑥𝑖𝑑𝑥𝑗 with signature (+ – – – ) − metric of 𝑠𝑢𝑏𝑐𝑜𝑛𝑡 (outer side of 𝑎 23–𝑚,𝑛– vacuum),   

 𝑑𝑠(–)2 =  𝑔𝑖𝑗
(–)
𝑑𝑥𝑖𝑑𝑥𝑗 with signature (–+ + +) −metric of 𝑎𝑛𝑡𝑖𝑠𝑢𝑏𝑐𝑜𝑛𝑡 (iner side of 𝑎 23–𝑚,𝑛– vacuum).

 (69) 
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Everything described below applies to both metrics (69) separately, so we investigate the 

general case 

𝑑𝑠2 = 𝑔𝑖𝑗𝑑𝑥
𝑖𝑑𝑥𝑗 ↔ {

𝑜𝑟 𝑑𝑠(+)2 =  𝑔𝑖𝑗
(+)
𝑑𝑥𝑖𝑑𝑥𝑗 ,

𝑜𝑟 𝑑𝑠(–)2 =  𝑔𝑖𝑗
(–)
𝑑𝑥𝑖𝑑𝑥𝑗 .

  (70) 

Further in this paragraph we will partially repeat the derivation of several equations from the 

classical source [5], pp. 250 – 251 due to the fact that these equations are of particular importance 

for the vacuum dynamics developed here. In addition, the order of presentation has been expanded 

and changed, and a slightly different interpretation of the results obtained has been proposed. 

We assume that all components of the metric tensor in metric (70) are independent of time 

𝑔𝑖𝑗 =  𝑐𝑜𝑛𝑠𝑡. (71) 

 

Let’s rewrite the quadratic form (70), highlighting the components with zero indices 

𝑑𝑠2 = с2𝑔00𝑑𝑡
2 + 2𝑐𝑔0𝛼𝑑𝑥

𝛼𝑑𝑡 + 𝑔𝛼𝛽𝑑𝑥
𝛼𝑑𝑥𝛽 ↔ {

𝑜𝑟 𝑑𝑠(+)2 = 𝑔00
(+)(𝑑𝑥0)2 + 2𝑔0𝛼

(+)
 𝑑𝑥0𝑑𝑥𝛼 + 𝑔𝛼𝛽

(+)
𝑑𝑥𝛼𝑑𝑥𝛽 ,

𝑜𝑟 𝑑𝑠(–)2 = 𝑔00
(−)(𝑑𝑥0)2 + 2𝑔0𝛼

(−)
 𝑑𝑥0𝑑𝑥𝛼 + 𝑔𝛼𝛽

(−)
𝑑𝑥𝛼𝑑𝑥𝛽 ,

 (72) 

where ,  = 1, 2, 3; dx0 = cdt. 

4.2. Velocity of a local region of metric space 

Let’s determine the speed of movement of a local region of the metric space (in particular, 

subcont or antisubcont), the metric-dynamic properties of which are determined by the stationary 

metric (72). 

To do this, to the right side of the generalized metric (72) we add and subtract the quantity 

(
𝑔0𝛼𝑑𝑥

𝛼

√𝑔00
)
2

= 
𝑔0𝛼𝑔0𝛽

𝑔00

𝑑𝑥𝛼𝑑𝑥𝛽,    (73) 

as a result, we get 

𝑑𝑠2 = с2 [√𝑔00𝑑𝑡 +
𝑔0𝛼𝑑𝑥

𝛼

𝑐√𝑔00
]
2

− [−𝑔𝛼𝛽 +
𝑔0𝛼𝑔0𝛽

𝑔00
] 𝑑𝑥𝛼𝑑𝑥𝛽 ,  (74) 

whence for the studied area of space we have an analogue of proper time [5] 

𝑑𝜏 = √𝑔00𝑑𝑡 +
𝑔0𝛼𝑑𝑥

𝛼

𝑐√𝑔00
   or   𝑑𝜏 =

√𝑔00

с
(𝑑𝑥0 +

𝑔0𝛼

𝑔00
𝑑𝑥𝛼).  (75) 

The second term in Ex. (74) is the square of the distance between two points in a 3-dimensional 

metric space (in this case, in a 3-dimensional subcount or in a 3-dimensional antisubcount) 

𝑑𝑙2 = −[𝑔𝛼𝛽 −
𝑔0𝛼𝑔0𝛽

𝑔00
] 𝑑𝑥𝛼𝑑𝑥𝛽  or  𝑑𝑙2 = 𝛾𝛼𝛽𝑑𝑥

𝛼𝑑𝑥𝛽,  (76) 

where the 3-dimensional spatial metric tensor is introduced 

𝛾𝛼𝛽 = −𝑔𝛼𝛽 +
𝑔0𝛼𝑔0𝛽

𝑔00
.  (77) 

 

Metric (74) taking into account Exs. (75) and (76) takes the form 

𝑑𝑠2 = с2𝑑𝜏2 − 𝑑𝑙2,  (78) 

which corresponds to the reference system in which the local area under study of one of the sides 

of the 23-m,n-vacuum (in particular, subcont or antisubcont) is at rest. 

Now we can introduce the 3-dimensional speed of movement of a local region of the metric 

space (in this case, subcont or antisubcont), the metric-dynamic properties of which are specified by 
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the components of the metric tensor from metric (72). We divide the distance (76) by the time (75), 

as a result we obtain the modulus of the velocity vector 

|�⃗�| =
𝑑𝑙

𝑑𝜏
=

𝑐𝑑𝑙

√𝑔00(𝑥
0+

𝑔0𝛼
𝑔00

𝑑𝑥𝛼)
=
𝑐√(−𝑔𝛼𝛽+

𝑔0𝛼𝑔0𝛽

𝑔00
)𝑑𝑥𝛼𝑑𝑥𝛽

√𝑔00(𝑥
0+

𝑔0𝛼
𝑔00

𝑑𝑥𝛼)
  (79) 

with components [5], p. 250 

𝑣𝛼 =
𝑐𝑑𝑥𝛼

√𝑔00(𝑥0+
𝑔0𝛼
𝑔00

𝑑𝑥𝛼)
.  (80) 

 

The covariant components of the velocity vector 𝑣𝛼  are determined by the Expressions [5], p. 250 

 

𝑣𝛼 = 𝛾𝛼𝛽𝑣
𝛽 ,  𝑣2 = 𝑣𝛼𝑣

𝛽 ,  

 

Taking into account Ex. (79), the stationary metric (72) can be represented as [5], p. 250 

  𝑑𝑠2 = 𝑔00(𝑑𝑥
0 − 𝑔𝛼𝑑𝑥

𝛼)2 (1 −
𝑣2

с2
),  (81) 

where the 3-dimensional vector is introduced 

  𝑔𝛼 = −
𝑔0𝛼

𝑔00
.  (82) 

The 4-speed components 𝑢𝑖 =
𝑑𝑥𝑖

𝑑𝑠
, taking into account Ex. (81) are equal [5], p. 251 

𝑢0 =
1

√𝑔00√1− 
𝑣2

 𝑐2

+
𝑔𝛼𝑣

𝛼

𝑐√1− 
 𝑣2

𝑐2

,     𝑢𝛼 =
𝑣𝛼

𝑐√1− 
𝑣2

𝑐2

.  
(83) 

4.3. Acceleration of a local region of metric space 

Let’s find the acceleration of a local region of the metric space (in particular, subcont or 

antisubcont), the metric-dynamic properties of which are determined by the stationary metric (72). 

As was shown in §1.1, the acceleration of a local region of the metric space with simplifications 

related to Riemannian geometry is given by Eq. (26) 

𝑑2𝑥𝑙

𝑑𝑠2
= −Г𝑖𝑗

 𝑙 𝑑𝑥
𝑖

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑠
,  (84) 

We find Christoffel symbols (25) 

Г𝑖𝑗
𝑙 =

1

2
𝑔𝑙𝜇 (

𝜕𝑔𝜇𝑖

𝜕𝑥𝑗
+
𝜕𝑔𝜇𝑗  

𝜕𝑥𝑖
−
𝜕𝑔𝑖𝑗

𝜕𝑥𝜇
)  (85) 

for the considered stationary case. 

Let’s substitute the components of the metric tensor from the stationary metric (72) into      

Ex. (85). As a result, taking into account conditions (71), we obtain the following non-zero 

components of this pseudo-tensor [5], p. 251 

Г 00
 =  ½ 𝑔00

;  , (86) 

Г0𝛽
   =  ½ 𝑔00(𝑔;𝛽

 − 𝑔𝛽
;) − ½ 𝑔𝛽𝑔00

;  , (87) 

Г 𝛽
  = 𝛽

  +  ½ 𝑔00[𝑔𝛽(𝑔
; –  𝑔;

) + 𝑔(𝑔𝛽
; – 𝑔;𝛽

 )] +  ½ 𝑔𝛽𝑔 𝑔00
;  , (88) 

 

where, for example, 𝑔
;

 is the covariant derivative, which in this case coincides with the partial 



 17 

 

derivative [5]: 

𝑔;𝛾
𝛼 =

𝜕𝑔𝛼

𝜕𝑥𝛾
+ Г𝑘𝛾

𝛼 𝑔𝑘 =
𝜕𝑔𝛼

𝜕𝑥𝛾
;  (89) 

𝛽


 is a 3-dimensional Christoffel symbol composed of components of the metric tensor 𝑔𝛼𝛽 in the 

same way as Г𝑖𝑗
 𝑙  is composed of components 𝑔𝑖𝑗. 

In Ex. (86) – (89) all tensor actions (covariant differentiation, raising and lowering indices) are 

performed in a 3-dimensional space with a metric 𝑔𝛼𝛽 over a 3-dimensional vector 𝑔𝛼 and a scalar 

𝑔00. 

Let’s substitute Ex. (86) – (89) into the equation of motion (84), as a result we obtain [5], p. 251 

𝑑𝑢𝛼

𝑑𝑠
= – Г 00

 (𝑢0)2–  2 Г0𝛽
  𝑢0𝑢 – Г 𝛽

  𝑢𝑢.  (90) 

After transforming Ex. (90) using 4-speed components (83) and Christoffel symbols (86) – (89), 

we obtain [5], p. 251 

𝑑𝑢𝑎

𝑑𝑠
=

𝑑

𝑑𝑠

𝜈𝛼

с√1−
𝜈2

с2

= −
𝑔00
;𝛼

2𝑔00(1−
𝜈2

𝑐2
)
−
√𝑔00(𝑔;𝛽

𝛼 −𝑔𝛽
;𝛼)𝜈𝛽

𝑐(1−
𝜈2

𝑐2
)

−
𝜆𝛽𝛾
𝛼 𝜈𝛽𝜈𝛾

𝑐2(1−
𝜈2

𝑐2
)
 .  (91) 

In the general theory of relativity, based on Riemannian geometry, the force acting on a particle 

with momentum p = mv (where m is the mass of the particle, v is the speed of the flow entraining 

the particle) is defined as a 3-dimensional covariant differential [5], p. 251 

𝑓𝛼 = 𝑐√1 −
𝜈2

с2
𝐷𝑝𝛼

𝑑𝑠
= 𝑐√1 −

𝜈2

с2
𝑑

𝑑𝑠

𝑚𝜈𝛼

√1− 
𝜈2

с2

+ 𝜆𝛽𝛾
𝛼 𝑚𝜈𝛽𝜈𝛾

√1− 
𝜈2

с2
 

.  (92) 

Let’s divide the components of the force vector (92) by the particle mass m. As a result, we 

obtain the rooms of the acceleration vector of the local region of the metric space (in particular, 

subcont or antisubcont) 

𝑓𝛼

𝑚
= 𝑎𝛼 = 𝑐√1 −

𝜈2

с2
𝑑

𝑑𝑠

𝜈𝛼

√1− 
𝜈2

с2

+
𝜆𝛽𝛾
𝛼 𝜈𝛽𝜈𝛾

√1− 
𝜈2

с2

.  (93) 

components of the acceleration vector (93), taking into account Ex. (91), can be represented in the 

form (for convenience, the index  is omitted) [5], p. 252 

 

𝑎𝛼 =
𝑐2

√1−
𝜈2

𝑐2

{−
𝜕 𝑙𝑛√𝑔00

𝜕𝑥𝑎
+√𝑔00 (

𝜕𝑔𝛽

𝜕𝑥𝑎
−
𝜕𝑔𝛼

𝜕𝑥𝛽
)
𝑣𝛽

𝑐
},  (94) 

or in conventional three-dimensional vector notation [5], p. 252 

�⃗� =
𝑐2

√1−
𝑣2

𝑐2

{−𝑔𝑟𝑎𝑑(𝑙𝑛 √𝑔00) + √𝑔00 [
�⃗⃗�

𝑐
× 𝑟𝑜𝑡�⃗�]},  (95) 

where �⃗�(𝑔1, 𝑔2, 𝑔3) is a 3-dimensional vector with components 

 

𝑔𝛼 = −
𝑔0𝛼

𝑔00
. (96) 

In the note by Landau L.D. and Lifshits E.M. noted that in three-dimensional curvilinear 

coordinates 𝑟𝑜𝑡�⃗�  should be understood in the same sense as the vector dual to the tensor 

(
𝜕𝑔𝛽

𝜕𝑥𝑎
−
𝜕𝑔𝛼

𝜕𝑥𝛽
), so that its contravariant components should be written in the form [5], p 252 
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(𝑟𝑜𝑡�⃗�)𝛾 = 
1

2√𝛾
𝑒𝛼𝛽𝛾 (

𝜕𝑔𝛽

𝜕𝑥𝑎
−
𝜕𝑔𝛼

𝜕𝑥𝛽
),  (97) 

where √𝛾 is the determinant of the spatial metric tensor (77); 

𝑒𝛼𝛽𝛾 = 𝑒123 = 𝑒123= 1, and when two symbols are rearranged, the sign changes. 

�⃗� =
𝑑𝑙

𝑑𝜏
=

𝑐𝑑𝑙

√𝑔00(𝑑𝑥0+
𝑔𝛼𝛽

𝑔00
𝑑𝑥𝛼)

  (98) 

is vector of the 3-dimensional velocity of a local region of a metric space (in particular, subcont or 

antisubcont) with components (80) 

𝑣1 =
𝑐𝑑𝑥1

√𝑔00(𝑥
0+

𝑔01
𝑔00

𝑑𝑥1)
 ,     𝑣2 =

𝑐𝑑𝑥2

√𝑔00(𝑥
0+

𝑔02
𝑔00

𝑑𝑥2)
 ,     𝑣3 =

𝑐𝑑𝑥3

√𝑔00(𝑥
0+

𝑔03
𝑔00

𝑑𝑥3)
 .  (99) 

We note once again that the formula for the acceleration vector (95) was borrowed from the 

classical source [5], pp. 250 – 251, where it was obtained within the framework of Riemannian 

geometry (see Figure 4a), and under the condition that the metric is stationary (72), i.e. when the 

components of the metric tensor are independent of time (71) 𝑔𝑖𝑗 =  𝑐𝑜𝑛𝑠𝑡. 

4.4. Acceleration of a local section of 23-m,n-vacuum 

If we perform all operations (71) – (98) separately with each of the metrics (69), we obtain two 

acceleration vectors: 

a(+) = �⃗�(+) =
𝑐2

√1−
𝑣(+)2

𝑐2

{−𝑔𝑟𝑎𝑑 (𝑙𝑛 √𝑔00
(+)
) + √𝑔00

(+)
[
�⃗⃗�(+)

𝑐
× 𝑟𝑜𝑡�⃗�(+)]}  (100) 

is acceleration vector of the local region of the subcont (i.e., the outer side of the 23-m,n-vacuum); 

 

a(–) = �⃗�(−) =
𝑐2

√1−
𝑣(−)2

𝑐2

{−𝑔𝑟𝑎𝑑 (𝑙𝑛 √𝑔00
(−)
) + √𝑔00

(−)
[
�⃗⃗�(−)

𝑐
× 𝑟𝑜𝑡�⃗�(−)]}  (101) 

 

is acceleration vector of the local region of the antisubcont (i.e., the inner side of the 23-m,n-vacuum). 

Acceleration of a local region of the 23-m,n-vacuum (32) 

𝑑2𝑥𝑙

𝑑𝑠2
= − 

1

√2
(Г𝑖𝑗
 𝑙(+) 𝑑𝑥𝑖

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑠
+ 𝑖Г𝑖𝑗

 𝑙(−) 𝑑𝑥𝑖

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑠
),  (102) 

can be represented in the form 

𝑎(±)𝑙 =
1

√2
(𝑎(+)𝑙 + 𝑖𝑎(−)𝑙),  (103) 

or with indexes omitted 

𝑎𝛼
(±)
=

1

√2
(𝑎𝛼
(+) + 𝑖𝑎𝛼

(−)
),  (104) 

where in the stationary case under consideration, according to Ex. (94), 

𝑎𝛼
(+) =

𝑐2

√1−
𝑣(+)2

𝑐2

{−
𝜕 𝑙𝑛√𝑔00

(+)

𝜕𝑥𝑎
+√𝑔00

(+)
(
𝜕𝑔𝛽

(+)

𝜕𝑥𝑎
−
𝜕𝑔𝛼

(+)

𝜕𝑥𝛽
)
𝑣(+)𝛽

𝑐
},  (105) 

𝑎𝛼
(−) =

𝑐2

√1−
𝑣(−)2

𝑐2

{−
𝜕 𝑙𝑛√𝑔00

(−)

𝜕𝑥𝑎
+√𝑔00

(−)
(
𝜕𝑔𝛽

(−)

𝜕𝑥𝑎
−
𝜕𝑔𝛼

(−)

𝜕𝑥𝛽
)
𝑣(−)𝛽

𝑐
}.  (106) 



 19 

 

In this case, the acceleration vector of the local region of the 23-m,n-vacuum, taking into account 

(100) – (101) has the form 

a(±) = 
1

√2
 (a(+) + ia(–)), (107) 

where  a(±) = �⃗�(±) (
1

√2
(𝑎1
(+) + 𝑖𝑎1

(−)
),

1

√2
(𝑎2
(+) + 𝑖𝑎2

(−)
),   

1

√2
(𝑎3
(+) + 𝑖𝑎3

(−)
)).  

5. Geometrized Lorentz force 

5.1. Geometricized vectors of eclectic tension and magnetic induction 

Consider the vector Ex. (95) 

a = �⃗� =
1

√1−
𝑣2

𝑐2

𝑐2 {−𝑔𝑟𝑎𝑑(𝑙𝑛 √𝑔00) + √𝑔00 [
�⃗⃗�

𝑐
× 𝑟𝑜𝑡�⃗�]}, (108) 

where �⃗�(−
𝑔01
𝑔00
, −

𝑔01
𝑔00
,−

𝑔01
𝑔00
) is a 3-dimensional vector.  

We introduce the notation 

Ev = �⃗⃗�𝑣 = − 𝛾𝑐 𝑔𝑟𝑎𝑑 𝜑,  (109) 

  Bv = �⃗⃗�𝑣 = 𝛾𝑐 √𝑔00 𝑟𝑜𝑡
�⃗�

с 
 , (110) 

where 

𝜑 = 𝑙𝑛√𝑔00 – geometrized scalar potential; 
(111) 

𝐴 = �⃗� – geometrized vector potential; (112) 

𝛾𝑐 =
𝑐2

√1−
𝑣2

𝑐2

, – Lorentz-factor multiplied by 𝑐2. (113) 

Taking into account notations (109) – (113), the acceleration vector (108) takes the form 

a = Ev + [v  Bv], (114) 

Let's compare this acceleration vector with the Lorentz force 

Fl = qE + q[v  B]    or    Fl /q = E + [v  B],  (115) 

where 

E is electric field strength vector;  B is magnetic field induction vector;  q is the charge of the 

particle. 

The obvious analogy of expressions (114) and (115) allows us to consider vectors (109) and 

(110) as: 

Ev is the geometrized vector of electric field strength with components: 

𝐸𝑣1 = 𝛾𝑐  
𝜕 𝑙𝑛 √𝑔00

𝜕𝑥1
,   

 

𝐸𝑣2 = 𝛾𝑐  
𝜕 𝑙𝑛√𝑔00

𝜕𝑥2
,   

 

𝐸𝑣3 = 𝛾𝑐  
𝜕 𝑙𝑛√𝑔00

𝜕𝑥3
.

 

 (116) 

Bv is the geometrized vector of magnetic induction with components: 
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𝐵𝑣1 = 𝛾𝑐  √𝑔00 (
𝜕𝑔3

𝜕𝑥2
−
𝜕𝑔2

𝜕𝑥3
),   𝐵𝑣2 = 𝛾𝑐 √𝑔00 (

𝜕𝑔1

𝜕𝑥3
−
𝜕𝑔3

𝜕𝑥1
),  

 

𝐵𝑣3 = 𝛾𝑐  √𝑔00 (
𝜕𝑔2

𝜕𝑥1
−
𝜕𝑔1

𝜕𝑥2
). (117) 

where 

𝑔1 = −
𝑔01

𝑔00
,  

 

𝑔2 = −
𝑔02

𝑔00
,  

 

𝑔3 = −
𝑔03

𝑔00
.

 

 (118) 

5.2. The meaning of geometrized vectors of electric field strength Ev and magnetic induction Bv 

To clarify the meaning of the vectors Ev and Bv, consider the arbitrary motion of an affine space 

with stignature {+ + + +} (i.e., reference frame) K (t,x,y,z) relative to a stationary affine space with 

signature {+ + + +} (i.e. frame of reference) K (t,x,y,z) (see Figure 8). This well-known classical task is 

borrowed from [7] in full, because otherwise, establishing the meaning of the vectors Ev and Bv will 

be very problematic.  

 

Figure 8. Motion of the reference frame (or affine space) К with signature {+ + + +}. relative the 

rest reference frame (or affine space) K with signature {+ + + +} 

The Figure 8 shows that the radius vectors r and r, which define the position of point M in the 

systems K and K are related by the relation 

r = r0 + r (119) 

or 

i x + j y + k z = r0 + i x + j y + k z, (120) 

where  

i, j, k are orthogonal unit vectors that specify the directions of the axes of a fixed affine space K with 

signature {+ + +}; 

i, j,k are orthogonal unit vectors that specify the directions of the axes of a moving affine space 

K with signature {+ + +}. 

The speed of point M (belonging to the reference frame, or affine space, K ) relative to the 

reference frame K at t= t is obtained as a result of differentiating both sides of Ex. (119) [7] 

     va = dr/dt = dr0 /dt + dr /dt, (121) 

in this case, taking into account Ex. (120) we have 

     va = v0 + (x d i/dt + y d j/dt + z d k/dt) + (idx/dt + jdy/dt + kdz/dt). (122) 

Let the vectors i, j, k of the moving reference frame K can change relative to the reference 

frame K only due to its rotation around the point О with angular velocity . Therefore, the time 

derivatives of the unit vectors i, j, k equal to the speeds of the ends of these vectors during rotation 

of the reference frame К [7] 
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d i/dt = [  i],  d j/dt = [  j],  d k/dt = [  k].  (123) 

 

Substituting Exs. (123) into Ex. (122), we obtain 

va = v0 + [  r] + (idx/dt + jdy/dt + kdz/dt).  (124) 

  

The acceleration of point M relative to the reference frame K at t= t is equal to [7] 

а = dva /dt = аr + аe + аk , (125) 

where 

аr = (id2x/dt2 + jd2y/dt2 + kd2z/dt2) is relative acceleration;  (126) 

   ае = dv0/dt + [d/dt  r] + [  [  r]] is portable acceleration;  (127) 

аk = 2[  vr] is Coriolis acceleration.  (128) 

 

We rewrite Ex. (125) for the stationary case dv0/dt = 0 and [d/dt  r] = 0,  

а = аpс + 2[  vr],  (129) 

where 

аpс= (id 2x/dt2 + jd 2y/dt2 + kd 2z/dt2) + [  [  r]] (130) 

is stationary relative-transportable acceleration of the moving reference frame K. 

Taking into account the relation known in analytical geometry 

   [  vr] = – [vr  ],  (131) 

Ex. (129) can be represented as 

    а = аpс – 2[vr  ]. (132) 

When comparing acceleration (132) with acceleration (114) 

a = Ev + [v  Вv], 

we find the following obvious analogy 

Ev  аpс ,   Bv  – 2 ,   v  vr . (133) 

Thus, it turns out the following: 

- the geometrized vector of electric field strength Ev of the vacuum layer is identical to the 

stationary transport acceleration with torsion аpс (130) of the local area of the moving affine 

space K in the vicinity of the point M relative to the resting affine space K; 

- the geometrized vector of magnetic induction Bv of the vacuum layer is identical to the 

doubled stationary angular velocity of rotation  of the same area of moving affine space K 

in the vicinity of the point M relative to the resting affine space K; 

- the velocity vector v of the vacuum layer corresponds to the constant displacement velocity 

vr of the same area of the affine space K relative to the affine space K. 
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Within the Algebra of Signatures, each of the reference frames K (t,x,y,z) and K (t, x, y, z) can 

have any of the 16 possible bases unit vector shown in Figure 7 in [1], with the corresponding 

signature from matrix (68) 

𝑠𝑡𝑖𝑔𝑛(𝑒𝑖
(𝑎)
) = (

{+ + + +} {+ + + −} {− + + −} {+ + − +}

{− − − +} {− + + +} {− − + +} {− + − +}

{+ − − +} {+ + − −} {+ − − −} {+ − + +}

{− − + −} {+ − + −} {− + − −} {− − − −}

). 

 

Therefore, within the framework of the Algebra of Signature, 256 options for the movement of 

two affine spaces relative to each other are possible. 

Let’s also note that the complete analogy between vectors (132) and (114) is due to the fact that 

they were obtained under the same stationarity dv0/dt = 0 and [d/dt  r] = 0, and at the same 

simplifications corresponding to Riemannian geometry (see Figure 4a), i.e. only the displacement 

and rotation of the reference frame K are taken into account while maintaining the sizes of the basis 

vectors i, j , k (or e1(a, e2(a ), e3(a )) and the angles between them. 

A similar analysis can be performed for more complex cases, when all four parameters αij(a), 

βpm(a), em(a), dxj(a) both of the reference frame K and the reference frame K can change (see Figure 4b), 

and this will correspond to the more complex differential geometry, for example, such as the 

geometry of absolute parallelism.  

6. Geometricized vectors of electric field strength and magnetic induction of the 2k-m,n-vacuum 

6.1. Geometricized vectors of electric field strength and magnetic induction of the 23-m,n-vacuum 

Let‘s return to the consideration of a stationary curved area of a two-sided 23-m,n-vacuum 

within the framework of the Algebra of Signature representations with simplifications related to 

Riemannian geometry (see Figure 4a). 

In § 4.4, the acceleration vector of the stationary area of the 23-m,n-vacuum (107) was obtained 

a(±) = 
1

√2
 (a(+) + ia(–)), (134) 

where, according to Exs. (100) – (101) and § 5.1, 

a(+) = �⃗�(+) =
𝑐2

√1−
𝑣(+)2

𝑐2

{−𝑔𝑟𝑎𝑑 (𝑙𝑛 √𝑔00
(+)
) + √𝑔00

(+)
[
�⃗⃗�(+)

𝑐
× 𝑟𝑜𝑡�⃗�(+)]} = Ev(+) + [v(+)  Bv(+)],     (135) 

a(–) = �⃗�(−) =
𝑐2

√1−
𝑣(−)2

𝑐2

{−𝑔𝑟𝑎𝑑 (𝑙𝑛 √𝑔00
(−)
) + √𝑔00

(−)
[
�⃗⃗�(−)

𝑐
× 𝑟𝑜𝑡�⃗�(−)]} = Ev(–) + [v(–)  Bv(–)].  (136) 

Let‘s substitute the acceleration vectors (135) and (136) into Ex. (134), as a result we obtain 

a(±) = 
1

√2
 {Ev(+) + [v(+)  Bv(+)] + i (Ev(–) + [v(–)  Bv(–)])}, (137) 

                or      a(±) = 
1

√2
 {(Ev(+) + iEv(–)) + ([v(+)  Bv(+)] + i [v(–) Bv(–)])}. (138) 

where according to expressions (116) – (118): 

 

Ev(+) is geometrized vector of the electric field strength of subcont, with components: 

𝐸𝑣1
(+)
= 𝛾𝑐  

𝜕 𝑙𝑛 √𝑔00
(+)

𝜕𝑥1
,    

 

𝐸𝑣2
(+)
= 𝛾𝑐  

𝜕 𝑙𝑛√𝑔00
(+)

𝜕𝑥2
,    

 

𝐸𝑣3
(+)
= 𝛾𝑐  

𝜕 𝑙𝑛√𝑔00
(+)

𝜕𝑥3
. (139) 

Bv(+) is geometrized vector of the magnetic induction with of subcont, with components: 
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𝐵𝑣1
(+)
= 𝛾𝑐 √𝑔00

(+)
(
𝜕𝑔3

(+)

𝜕𝑥2
−
𝜕𝑔2

(+)

𝜕𝑥3
) ,     𝐵𝑣2

(+)
= 𝛾𝑐 √𝑔00

(+)
(
𝜕𝑔1

(+)

𝜕𝑥3
−
𝜕𝑔3

(+)

𝜕𝑥1
),     𝐵𝑣3

(+)
= 𝛾𝑐 √𝑔00

(+)
(
𝜕𝑔2

(+)

𝜕𝑥1
−
𝜕𝑔1

(+)

𝜕𝑥2
).

 

  (140) 

here 

 𝑔1
(+)
= −

𝑔01
(+)

𝑔00
(+),  

 

𝑔2
(+)
= −

𝑔02
(+)

𝑔00
(+),  

 

𝑔3
(+)
= −

𝑔03
(+)

𝑔00
(+). (141) 

Ev(–) is geometrized vector of the electric field strength of antisubcont, with components: 

𝐸𝑣1
(−)
= 𝛾𝑐  

𝜕 𝑙𝑛√𝑔00
(+)

𝜕𝑥1
,   

 

𝐸𝑣2
(−)
= 𝛾𝑐  

𝜕 𝑙𝑛 √𝑔00
(−)

𝜕𝑥2
,   

 

𝐸𝑣3
(−)
= 𝛾𝑐  

𝜕 𝑙𝑛√𝑔00
(−)

𝜕𝑥3
. (142) 

Bv(–) is geometrized vector of the magnetic induction with of antisubcont, with components: 

𝐵𝑣1
(−)
= 𝛾𝑐 √𝑔00

(−)
(
𝜕𝑔3

(−)

𝜕𝑥2
−
𝜕𝑔2

(−)

𝜕𝑥3
),     𝐵𝑣2

(−)
= 𝛾𝑐  √𝑔00

(−)
(
𝜕𝑔1

(−)

𝜕𝑥3
−
𝜕𝑔3

(−)

𝜕𝑥1
),    𝐵𝑣3

(−)
= 𝛾𝑐  √𝑔00

(−)
(
𝜕𝑔2

(−)

𝜕𝑥1
−
𝜕𝑔1

(−)

𝜕𝑥2
).   (143) 

here 

𝑔1
(−)
= −

𝑔01
(−)

𝑔00
(−),  

 

𝑔2
(−)
= −

𝑔02
(−)

𝑔00
(−),   

 

𝑔3
(−)
= −

𝑔03
(−)

𝑔00
(−). (144) 

We recall that time-independent components of the metric tensors 𝑔𝑖𝑗
(+)
= 𝑐𝑜𝑛𝑠𝑡  and               

𝑔𝑖𝑗
(−)
= 𝑐𝑜𝑛𝑠𝑡 from the conjugate stationary metrics (72):  

{
 𝑑𝑠(+)2 = 𝑔00

(+)(𝑑𝑥0)2 + 2𝑔0𝛼
(+)
 𝑑𝑥0𝑑𝑥𝛼 + 𝑔𝛼𝛽

(+)
𝑑𝑥𝛼𝑑𝑥𝛽 is metric of stationary 𝑠𝑢𝑏𝑐𝑜𝑛𝑡 (see Fig. 2),

𝑑𝑠(−)2 = 𝑔00
(−)(𝑑𝑥0)2 + 2𝑔0𝛼

(−)
 𝑑𝑥0𝑑𝑥𝛼 + 𝑔𝛼𝛽

(−)
𝑑𝑥𝛼𝑑𝑥𝛽  is metric of stationary 𝑎𝑛𝑡𝑖𝑠𝑢𝑏𝑐𝑜𝑛𝑡               

 (145) 

are substituted into Exs. (139) – (144).  

Taking into account Exs. (139) – (144), the components of the 3-dimensional acceleration vector 

of the stationary curved local area of the two-sided 23-m,n-vacuum a(±) (138) are equal to the modules 

of complex numbers: a(±) (|𝑎1
(±)
| , | 𝑎2

(±)
| , |𝑎3

(±)
|),  

where: 

       𝑎1
(±) =

1

√2
 {(𝐸𝑣1

(+)
+ 𝑖 𝐸𝑣1

(−)
) + [(𝑣2

(+)
𝐵𝑣3
(+)
− 𝑣3

(+)
𝐵𝑣2
(+)
) + 𝑖(𝑣2

(−)
𝐵𝑣3
(−)
− 𝑣3

(−)
𝐵𝑣2
(−)
)]}, 

      𝑎2
(±) =

1

√2
 {(𝐸𝑣2

(+) + 𝑖 𝐸𝑣2
(−)) + [(𝑣3

(+)𝐵𝑣1
(+) − 𝑣1

(+)𝐵𝑣3
(+)) + 𝑖(𝑣3

(−)𝐵𝑣1
(−) − 𝑣1

(−)𝐵𝑣3
(−))]}, 

      𝑎3
(±) =

1

√2
 {(𝐸𝑣3

(+)
+ 𝑖 𝐸𝑣3

(−)
) + [(𝑣1

(+)
𝐵𝑣2
(+)
− 𝑣2

(+)
𝐵𝑣1
(+)
) + 𝑖(𝑣1

(−)
𝐵𝑣2
(−)
− 𝑣2

(−)
𝐵𝑣1
(−)
)]}. 

(146) 

or according to Ex. (137) 

     𝑎1
(±) =

1

√2
 {[𝐸𝑣1

(+) + (𝑣2
(+)𝐵𝑣3

(+) − 𝑣3
(+)𝐵𝑣2

(+))] + 𝑖[𝐸𝑣1
(−) + (𝑣2

(−)𝐵𝑣3
(−) − 𝑣3

(−)𝐵𝑣2
(−))]},  

      𝑎2
(±) =

1

√2
 {[𝐸𝑣2

(+) + (𝑣3
(+)𝐵𝑣1

(+) − 𝑣1
(+)𝐵𝑣3

(+))] + 𝑖[𝐸𝑣2
(−) + (𝑣3

(−)𝐵𝑣1
(−) − 𝑣1

(−)𝐵𝑣3
(−))]},  

𝑎3
(±) =

1

√2
 {[𝐸𝑣3

(+) + (𝑣1
(+)𝐵𝑣2

(+) − 𝑣2
(+)𝐵𝑣1

(+))] + 𝑖[𝐸𝑣3
(−) + (𝑣2

(−)𝐵𝑣1
(−) − 𝑣1

(−)𝐵𝑣2
(−))]}. 

(147) 
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We recall that these results were obtained for the simplest level of consideration, i.e. for a two-

sided 23-m,n-vacuum with simplifications corresponding to Riemannian geometry, and in the case 

of constancy of the subcont metric tensors 𝑔𝑖𝑗
(+)
= 𝑐𝑜𝑛𝑠𝑡 and antisubcont 𝑔𝑖𝑗

(−)
= 𝑐𝑜𝑛𝑠𝑡. 

 

6.2. Geometricized vectors of electric field strength and magnetic induction of the 26-m,n-vacuum 

 

At the level of considering a 16-sided 26-m,n-vacuum with similar simplifications and 

stationarity conditions, based on Ex. (47), we similarly obtain 

 

aΣ16 = 1/√16 (η1 a(1) + η2 a(2) + η3 a(3)  + η4 a(4) 

  + η5 a(5) + η6 a(6) + η7 a(7)  + η8 a(8) 

+ η9 a(9) + η10a(10) + η11a(11) + η12a(12) 

  + η13a(13) + η14a(14) + η15a(15) + η16a(16)),      

(148) 

where 

a(q) = �⃗�(𝑞) =
𝑐2

√1−
𝑣(𝑞)2

𝑐2

{−𝑔𝑟𝑎𝑑 (𝑙𝑛√𝑔00
(𝑞)
) + √𝑔00

(𝑞)
[
�⃗⃗�(𝑞)

𝑐
× 𝑟𝑜𝑡�⃗�(𝑞)]} = Ev(q) + [v(q)  Bv(q)], (149) 

where 𝑔𝛼
(𝑞)
= −

𝑔0𝛼
(𝑞)

𝑔00
(𝑞) , 

in this case, the time-independent components of the metric tensors 𝑔𝑖𝑗
(𝑞)
= 𝑐𝑜𝑛𝑠𝑡 are taken from 

sixteen interconnected stationary metrics 

𝑑𝑠(𝑞)2 = 𝑔00
(𝑞)(𝑑𝑥0)2 + 2𝑔0𝛼

(𝑞)
 𝑑𝑥0𝑑𝑥𝛼 + 𝑔𝛼𝛽

(𝑞)
𝑑𝑥𝛼𝑑𝑥𝛽 (150) 

with the corresponding signature from matrix (35).  

The dynamics of the next deeper level of stationary 210-m,n-vacuum and the dynamics of all 

subsequent deeper 2k-m,n-vacuums (with k tending to infinity) can be developed similarly. 

Conclusions 

In this fourth part of the scientific project under the general title “Geometrized vacuum 

physics", the dynamics of vacuum layers is considered using the Algebra of Signature (Alsigna), 

the foundations of which are presented in [1,2,3]. 

This article continues the development of Alsigna’s mathematical apparatus for studying 

accelerated processes in m,n-vacuum layers at the simplest levels of consideration: 23-m,n-vacuum 

and 26-m,n-vacuum. In this case, the main results were obtained with simplifications related to 

Riemannian geometry. 

At the same time, methods are given to expand the capabilities of differential geometry by 

increasing the complexity of the considered types of distortions of metric spaces with different 

signatures (i.e., topologies), which are considered as adjacent layers of 2k-m,n-vacuum. 

At the end of the article, the acceleration of layers of a 2k-m,n-vacuum, which is in a stationary 

state (i.e., unchanged with time), is considered. In this case, with simplifications related to 

Riemannian geometry, it was possible to show that stable intertwined, accelerated laminar and 

rotational flows of a 2k-m,n-vacuum can be described in terms of vacuum electric field strength and 

vacuum magnetic induction. 

This result may be important, since it allows us to outline ways of conscious control of intra-

vacuum processes by generating electromagnetic fields of a given configuration. 

Thus, the stationary dynamic models of accelerated and rotational movements of a 2k-m,n-

vacuum layers proposed in this article can serve as a theoretical basis for the development of 
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“vacuum electromagnetic dynamics” and subsequently for increasing the capabilities of “zero” (i.e. 

vacuum) technologies. 

In subsequent articles of the “Geometrized vacuum physics” it will be shown that Riemannian 

geometry, taking into account the Algebra of Signature, may be sufficient to create geometrized 

mathematical models of the standard Universe, all elementary particles, electromagnetic 

phenomena, nuclear and gravitational interactions and many others physical processes. In other 

words, a project aimed at the complete geometrization of inanimate physics does not require a 

radical complication of the original differential geometry. 

However, it later became clear that it is impossible to create a completely complete 

mathematical model of the Universe without developing the most complex version of differential 

geometry, which takes into account all types of distortions (see Figure 4b) of intertwined spaces 

with different signatures (i.e. topologies). Some directions of development of differential geometry 

are indicated in §3. Many steps in this direction have already been made in the geometries of Weyl, 

Eddington, Lobachevsky, Klein, Cartan - Schouten, Penrose, Finsler, Weizenbeck - Vitali - Shipov, 

etc. However, an all-encompassing differential geometry has not yet been created, and this does 

not allow physicists to break out of the circle outlined by simplified versions of geometries. 
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