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Abstract: This article is the third part of a scientific project under the general title "Geometrized 

vacuum physics based on the Algebra of Signatures". In the first two papers [1,2], the ideal (i.e., non-

curved and immobile) local region of vacuum was studied and the foundations of the Algebra of 

Signatures were laid. This article considers the possibilities of describing the curved and moving 

state of the same vacuum region on the basis of the mathematical apparatus of the Algebra of 

Signatures. The reasons for the multilateral consideration of vacuum and twisting of intra-vacuum 

processes into spiral bundles are disclosed. The 4-tensor is introduced for two-sided and 16-sided 

consideration of the curvature of the local vacuum region. On the basis of kinematic models, the 

following assumptions were made: about the inert properties of vacuum layers; about the possibility 

of displacement of vacuum layers relative to each other at a speed significantly exceeding the speed 

of light; about the possibility of "rupture" of the local region of vacuum. The proposed kinematic 

models of the movement of vacuum layers can be a theoretical basis for the development of "zero" 

(i.e., vacuum) technologies. 
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1. Background and Introduction 

This work is the third of a series of articles under the title "Geometric vacuum physics". In the 

previous two articles [1,2], the foundations of the Algebra of Stignatures and the Algebra of 

Signatures were presented, which were obtained on the basis of the study of an ideal (i.e., non-curved 

and immobile) region of the vacuum. 

This article considers the possibility of expanding the capabilities of the Algebra of Signatures 

to describe the curvature of the same region of the vacuum. 

In §1 of the article [1], it was shown that as a result of probing an ideal region of vacuum with 

light rays with a wavelength m,n (from the subrange Δ = 10m  10n cm) from three mutually 

perpendicular directions makes it possible to obtain a light cubic lattice (see Figure 1 of the article 

[1]). Such a lattice illuminated from the void was called the m,n-vacuum (or 3Dm,n-landscape). 

 

Figure 1. Discrete set of nested m,n-vacuums of the same 3-dimensional volume of a vacuum, where 

m,n > m+1,n+1 > m+2,n+2 >m+3,n+3. 
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It was also shown in [1] that if we similarly probe the area of ideal vacuum with light rays of 

other wavelengths, we will obtain an infinite number of m,n-vacuums (i.e., 3Dm,n-landscapes with an 

edge length cubic cell εm,n ~ 100m,n) which nested into each other like nesting dolls (see Figure 1, or 

Figure 2 in [1]). 

As already noted in §2 of the article [1], if the area of vacuum under study is not curved, then all 

m,n-vacuums will be represented as ideal cubic 3Dm,n-lattices, which differ from each other only by 

the length of the edge of cubic cell εm,n ~ 102m,n (see Figure 1). 

However, if the region of vacuum under study is curved, then all m,n-vacuums will differ 

somewhat from each other due to the fact that light rays (i.e., eikonals) with different wavelengths 

have different thicknesses (i.e., circular cross section of the eikonal, see Figure 2, or Figure 3 in [1]), 

which leads to averaging of vacuum curvature within the beam thickness. 

 

Figure 2. Experimental data on the thickness of the laser beam depending on the length wave  of the 

corresponding monochromatic electromagnetic radiation. 

In this case, each m,n-vacuum (i.e., the light 3Dm,n-landscape) will be unique. That is, each     

m,n-vacuum is only one 3-dimensional "slice" of the curved vacuum region. For a complete 

description of a curved region of vacuum, it is necessary to have an infinite set of curved m,n-vacuums 

nested in each other (see Figure 3 or Figure 4 in [1]). 

 

Figure 3. Illustration of a curved m,n-vacuum embedded in curved f,d-vacuum (where f,d   m,n). 

Thus, the local volume of a curved area of vacuum is an infinitely complex system consisting of 

an infinite number of m,n-vacuums nested in each other. 

However, the situation is simplified by the fact that in the entire studied range of electromagnetic 

wave lengths, all m,n-vacuums obey the same physical and geometric laws. Therefore, the method of 

describing one curved area of the k,r-vacuum is automatically extended to all other m,n-vacuums. 

The mathematical apparatus of the Algebra of Stignatures is developed below, designed to study 

the local volume of only one curved m,n-vacuum. But this mathematical apparatus is suitable for 

studying not only all m,n-vacuums, but also any other deformed continuous media in which wave 

disturbances propagate at a constant speed. 

Below, we develop the mathematical apparatus of the Algebra of Stignatures, designed to study 

the local volume of only one curved m,n-vacuum. But this mathematical apparatus is suitable for 



 3 

 

studying not only all m,n-vacuums, but also any other deformed continuous media in which wave 

disturbances propagate at a constant speed. 

2. Materials and Method 

2.1. Curved area of m,n-vacuum 

Let’s consider a curved area of vacuum. If the wavelength m,n of test monochromatic light rays 

is much smaller than the dimensions of the vacuum curvature, then in this area the cubic cell of the 

m,n-vacuum (i.e., the cubic cell of the 3Dm,n-landscape, which limited by these rays) will be curved 

(see Figure 4a). 

  
(a) (b) 

Figure 4. a) Curved cubic cell of the m,n-vacuum; b) One of the corners of a curved m,n-vacuum cubic 

cell. 

We consider one of the eight vertices of the curved cube of the m,n-vacuum (see Figure 4a). Let’s 

replace the distorted edges emerging from this vertex with distorted axes of the curvilinear 

coordinate system x0(а), x1(а), x2(а), x3(а) (see Figure 4b). We denote the same edges of the original, ideal 

cube by the pseudo-Cartesian coordinate system x0(а), x1(а), x2(а), x3(а). 

In the area of the vertex of the angle under consideration (see Figure 4b), its distortions can be 

decomposed into two components:  1) changing the lengths (compression or expansion) of the axes 

x0(а), x1(а), x2(а), x3(а) while maintaining right angles between these axes;  2) deviations of the angles 

between the axes x0(а), x1(а), x2(а), x3(а)  from right angles (i.e., 90o) while preserving their lengths. 

Let's consider these distortions separately. 

1) Let only the lengths of the axes x0(а), x1(а), x2(а), x3(а) change near the vertex during the 

curvature, then these axes can be expressed through the original (ideal) axes x0(а), x1(а), x2(а), x3(а) using 

the corresponding coordinate transformations [3]: 

x0(а) = α00(а)x0(а) + α01(а)x1(а) + α02(а)x2(а) + α03(а)x3(а); 

x1(а) = α10(а)x0(а) + α11(а)x1(а) + α12(а)x2(а) + α13(а)x3(а); 

x2(а) = α20(а)x0(а) + α21(а)x1(а) + α22(а)x2(а) + α23(а)x3(а); 

x3 (а) = α30(а)x0(а) + α31(а)x1(а) + α32(а)x2(а) + α33(а)x3(а), 

(1) 

where  

αij(a) =dxi(a)/dxj(a) (2) 

is the Jacobian of the transformation, or the components of the elongation tensor. 

2) Now let the distortion near the vertex be associated only with a change in the angles between 

the axes of the coordinate system x0(а), x1(а), x2(а), x3(а), while the lengths of these axes remain 

unchanged. In this case, it is sufficient to consider only the change in the angles between the basis 

vectors e0(a), e1(a), e2(a), e3(a) of the distorted reference system. 
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It is known from vector analysis that the basis vectors of the distorted 4-basis e0(a), e1(a), e2(a), e3(a) 

can be expressed in terms of the original basis vectors e0(a), e1(a), e2(a), e3(a) of an orthogonal 4-basis by 

means of the following system of the linear equations [3]: 

e0(a) = β00(a) e0(a) + β01(a) e1(a) + β02(a) e2(a) + β 03(a) e3(a); 

e1(a) = β10(a) e0(a) + β11(a) e1(a) + β12(a) e2(a) + β13(a) e3(a); 

e2(a) = β20(a) e0(a) + β21(a) e1(a) + β22(a) e2(a) + β23(a) e3(a); 

e3(a) = β30(a) e0(a) + β31(a) e1(a) + β32(a) e2(a) + β03(a) e3(a), 

(3) 

where  

β pm(a) = (ep(a) em(a)) = cos (ep(a) ^em(a)) (4) 

are the guiding cosines. 

The systems of Eqs. (1) and (3) can be represented in a compact form: 

xi (a) = αij(a) x j(a), (5) 

ep(a) = β pm(a) em(a). (6) 

here and below, the "Einstein summation rule" is used. 

For example, we write the vector (48) in [1] 

ds (7) = ei(7)dx i (7). (7) 

in the distorted 4-basis, taking into account Exs. (5) and (6), vector (7) can be represented as 

ds (7) = β pm(7) em(7)αpj(7)dxj(7). (8) 

Distortions of the remaining 7 trihedral angles of the curved cube of the m,n-vacuum (Figure 4) 

(i.e., the fifteen remaining 4-bases shown in Figure 5, or Figure 7 in [1]) are described in a similar way. 

 

Figure 5. Sixteen 4-bases associated with eight corners of the m,n-vacuum cube (repeat of the                         

Figure 7 in [1]). 

Thus, all sixteen 4-bases (see Figure 5) associated with the distorted trihedral angles of the     

m,n-vacuum cube (see Figure 4) can be represented by the vectors 

ds (a) = β pm(a) em(a) αpj(a)dxj(a), (9) 

where а = 1,2,…,16. 
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2.2. Curved metric 4-spaces 

Consider two vectors (48) and (49) in [1], given in the 5th and 7th curved affine spaces 

ds (5)= βln(5)en(5)αlj(5)dxj, (10) 

ds (7)= βpm(7)em(7)αpi(7)dxi. (11) 

Let's find the scalar product of these vectors 

ds (7,5)2 = ds (7)ds (5) = βpm(7)em(7)αpi(7)βln(5)en(5)αlj(5)dxidxj = сij(7,5)dxidx j, (12) 

where 

сij(7,5)=  βpm(7)em(7)αpi(7)βln(5)en(5)αlj(5) (13) 

are the components of the metric tensor of the (7,5)-th metric 4-space. 

Thus, we have obtained the metric of the (7,5)-th metric 4-space 

ds (7,5)2 = сij(7,5)dxidxj (14) 

with signature (53) in [1] (+ + + –) and metric tensor 

𝑐𝑖𝑗
(7,5)

=

(

  
 

𝑐00
(7,5)

𝑐10
(7,5)

𝑐20
(7,5)

𝑐30
(7,5)

𝑐01
(7,5)

𝑐11
(7,5)

𝑐21
(7,5)

𝑐31
(7,5)

𝑐02
(7,5)

𝑐12
(7,5)

𝑐22
(7,5)

𝑐32
(7,5)

𝑐03
(7,5)

𝑐13
(7,5)

𝑐23
(7,5)

𝑐33
(7,5)

)

  
 

. (15) 

Similarly, the scalar pairwise product of any two of the 16 vectors (9) 

ds (a)= βpm(a)em(а)αpi(a)dxi, (16) 

ds (b) = βln(b)en(b)αlj(b)dxj (17) 

leads to the formation of an atlas consisting of 16 × 16 = 256 possible curved 4-sheets (that is, metric 

4-spaces) with metrics 

ds (a, b)2 = сij(a, b)dxidxj, (18) 

where a = 1,2,3,…,16; b = 1,2,3,…,16, with corresponding signatures (11) in [2] and metric tensors  

𝑐𝑖𝑗
(𝑎,𝑏)

=

(

  
 

𝑐00
(𝑎,𝑏)

𝑐10
(𝑎,𝑏)

𝑐20
(𝑎,𝑏)

𝑐30
(𝑎,𝑏)

𝑐01
(𝑎,𝑏)

𝑐11
(𝑎,𝑏)

𝑐21
(𝑎,𝑏)

𝑐31
(𝑎,𝑏)

𝑐02
(𝑎,𝑏)

𝑐12
(𝑎,𝑏)

𝑐22
(𝑎,𝑏)

𝑐32
(𝑎,𝑏)

𝑐03
(𝑎,𝑏)

𝑐13
(𝑎,𝑏)

𝑐23
(𝑎,𝑏)

𝑐33
(𝑎,𝑏)

)

  
 
, (19) 

where  

сij
(a, b)=  βpm(a)em

(a)αpi
(a)βln(b)en

(b)αlj
(b) (20) 

are the components of the metric tensor of the (a,b)-th curved metric 4-space. 

2.3. The first stage of compactification of curved measurements 

Just as it was done in §2.3 in [2], at the first stage of the compactification of additional curved 

mathematical dimensions in the Algebra of Signatures, metric 4-spaces with the same signature are 

averaged. 

For example, for metrics with signature (– + – +), we have the following averaged metric tensor 
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с𝑖𝑗
(р)
=

(

  
 

с00
(р)

с10
(р)

с20
(р)

с30
(р)

с01
(р)

с11
(р)

с21
(р)

с31
(р)

с02
(р)

с12
(р)

с22
(р)

с32
(р)

с03
(р)

с13
(р)

с23
(р)

с33
(р)
)

  
 
=
1

16

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

(

  
 

𝑐00
(14,2)

𝑐10
(14,2)

𝑐20
(14,2)

𝑐30
(14,2)

𝑐01
(14,2)

𝑐11
(14,2)

𝑐21
(14,2)

𝑐31
(14,2)

𝑐02
(14,2)

𝑐12
(14,2)

𝑐22
(14,2)

𝑐32
(14,2)

𝑐03
(14,2)

𝑐13
(14,2)

𝑐23
(14,2)

𝑐33
(14,2)

)

  
 
+

+

(

  
 

𝑐00
(13,1)

𝑐10
(13,1)

𝑐20
(13,1)

𝑐30
(13,1)

𝑐01
(13,1)

𝑐11
(13,1)

𝑐21
(13,1)

𝑐31
(13,1)

𝑐02
(13,1)

𝑐12
(13,1)

𝑐22
(13,1)

𝑐32
(13,1)

𝑐03
(13,1)

𝑐13
(13,1)

𝑐23
(13,1)

𝑐33
(13,1)

)

  
 
+

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+

(

  
 

𝑐00
(1,13)

𝑐10
(1,13)

𝑐20
(1,13)

𝑐30
(1,13)

𝑐01
(1,13)

𝑐11
(1,13)

𝑐21
(1,13)

𝑐31
(1,13)

𝑐02
(1,13)

𝑐12
(1,13)

𝑐22
(1,13)

𝑐32
(1,13)

𝑐03
(1,13)

𝑐13
(1,13)

𝑐23
(1,13)

𝑐33
(1,13)

)

  
 

}
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

, (21) 

where p corresponds to the 14-th signature (– + – +), according to the following conditional numbering 

of signatures: 

𝑠𝑖𝑔𝑛(с𝑖𝑗
(р)
) =

(+ + + +)1 (+ + + −)5 (− + + −)9 (+ + − +)13

(− − − +)2 (− + + +)6 (− − ++)10 (− + − +)14

(+ − − +)3 (+ + − −)7 (+ − −−)11 (+ − + +)15

(− − + −)4 (+ − + −)8 (− + −−)12 (− − − −)16.

 (22) 

This matrix with numbered signatures corresponds to the matrix of signatures (32) in [2]. 

As a result of operation (21), the averaged metric is obtained 

<ds(– + – +) 2> = сij(14)dxi dxj , with signature (– + – +). (23) 

Similarly, as a result of averaging type (21) – (23) out of 256 metrics (18) of curved metric         

4-spaces, we can obtain 256 : 16 = 16 averaged metrics with 16 possible signatures 

<ds(+– – –)2>     <ds(+ + + +)2>       <ds(– – – +)2>      <ds(+ – – +)2 > 

<ds(– – + –)2>     <ds(+ + – –)2>       <ds(– + – –)2>       <ds(+ – + –)2> 

<ds(– + + +)2>        <ds(– – – – )2>     <ds(+ + + –)2>          <ds (– + + –)2> 

<ds(+ + – +)2>       <ds(– – + +)2>       <ds(+ – + +)2>      <ds(– + – +)2>, 

(24) 

where ‹  › means averaging. 

If the additive superposition (i.e., summation) of all these 16 averaged metrics (24) is equal to 

zero 

  𝑑𝑠𝛴
2 =

1

16
∑ с𝑖𝑗

(р)
𝑑𝑥𝑖𝑑𝑥𝑗 =

1

16
 [с𝑖𝑗

(1)𝑑𝑥𝑖𝑑𝑥𝑗 + с𝑖𝑗
(2)𝑑𝑥𝑖𝑑𝑥𝑗 + с𝑖𝑗

(3)𝑑𝑥𝑖𝑑𝑥𝑗 + с𝑖𝑗
(4)𝑑𝑥𝑖𝑑𝑥𝑗16

р=1 +                                                

                               + с𝑖𝑗
(5)
𝑑𝑥𝑖𝑑𝑥𝑗 + с𝑖𝑗

(6)
𝑑𝑥𝑖𝑑𝑥𝑗 + с𝑖𝑗

(7)
𝑑𝑥𝑖𝑑𝑥𝑗 + с𝑖𝑗

(8)
𝑑𝑥𝑖𝑑𝑥𝑗 + 

                               + с𝑖𝑗
(9)
𝑑𝑥𝑖𝑑𝑥𝑗 + с𝑖𝑗

(10)
𝑑𝑥𝑖𝑑𝑥𝑗 + с𝑖𝑗

(11)
𝑑𝑥𝑖𝑑𝑥𝑗 + с𝑖𝑗

(12)
𝑑𝑥𝑖𝑑𝑥𝑗 + 

                               + с𝑖𝑗
(13)

𝑑𝑥𝑖𝑑𝑥𝑗 + с𝑖𝑗
(14)

𝑑𝑥𝑖𝑑𝑥𝑗 + с𝑖𝑗
(15)

𝑑𝑥𝑖𝑑𝑥𝑗 + с𝑖𝑗
(16)

𝑑𝑥𝑖𝑑𝑥𝑗] = 0,      

(25) 

then this expression can be used for an average flat m,n-vacuum. At the same time, it is a condition 

for maintaining the m,n-vacuum balance. 

Recall that the “vacuum balance condition” was formulated in the introduction of the article [1], and 

this is the basic statement that, in particular, no matter what convex-concave curvatures 

(fluctuations) occur with the local area of the m,n-vacuum, on average over the entire area they are 

equal to zero. 
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In this case, all 16×16=256 components of 16 averaged metric tensors сij(p) can be random functions 

of time. But, according to the condition of m,n-vacuum balance, these metric-dynamic fluctuations 

should overflow into each other so that the total metric (25) on average remains equal to zero. 

Based on the metric (25), m,n-vacuum thermodynamics can be developed, which considers the 

most complex, near-zero “transfusions” of the local m,n-vacuum curvatures. Concepts about       

m,n-vacuum entropy and temperature (i.e., the essence of chaoticity and intensity of local m,n-vacuum 

fluctuations) can be introduced. We can talk about the “cooling” of the m,n-vacuum to “freezing”, its 

“heating“ to “evaporation” and many other effects similar to the processes occurring in atomistic 

continuous media. 

Features of m,n-vacuum thermodynamics are associated with processes when the gradients of 

m,n-vacuum fluctuations approach the speed of light (dсij(p)/dxa ~ c) or zero (dсij(p)/dxa ~ 0). A detailed 

consideration of m,n-vacuum thermodynamics and torsion fields is beyond the scope of this article. 

However, some aspects of this area of research are considered in [3–5]. 

2.4. The second stage of compactification of curved mathematical measurements 

Just as it was done in §7.2 in [2], Ex. (25) can be reduced to two terms 

 
1

2
(〈𝑑𝑠(+)2〉  + 〈𝑑𝑠(–)2〉) =

1

2
(〈𝑔𝑖𝑗

(+)〉𝑑𝑥𝑖𝑑𝑥𝑗  +  〈𝑔𝑖𝑗
(−)〉𝑑𝑥𝑖𝑑𝑥𝑗) =  0,                                                                                 (26) 

where   ⟨𝑔𝑖𝑗
(+)⟩𝑑𝑥𝑖𝑑𝑥𝑗 = ⟨𝑔𝑖𝑗

(+−−−)⟩𝑑𝑥𝑖𝑑𝑥𝑗 =
1

7
 ∑ с𝑖𝑗

(р)
𝑑𝑥𝑖𝑑𝑥𝑗7

р=1 , with signature (+ – – –) (27) 

is the quadratic form, which is the result of averaging seven metrics from the list (24) with signatures 

included in the numerator of the left rank (43) in [2] or (29); 

⟨𝑔𝑖𝑗
(−)⟩𝑑𝑥𝑖𝑑𝑥𝑗 = ⟨𝑔𝑖𝑗

(−+++)⟩𝑑𝑥𝑖𝑑𝑥𝑗 =
1

7
∑ с𝑖𝑗

(𝑞)
𝑑𝑥𝑖𝑑𝑥𝑗,14

𝑞=8  with signature (– + + +) (28) 

is the quadratic form, which is the result of averaging seven averaged metrics from the list (24) with 

signatures included in the numerator of the right rank (43) in [2] or (29). 
 

(+  +  +  +) 

(–  –  –  +) 

(+  –  –  +) 

(–  –  +  –) 

(+  +  –  –) 

(–  +  –  –) 

(+  –  +  –) 

(+  –  –  –)+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

(–  –  –  –) 

(+  +  +  –) 

(–  +  +  –) 

(+  +  –  +) 

(–  –  +  +) 

(+  –  +  +) 

(–  +  –  +) 

(–  +  +  +)+ 

= 0 

= 0 

= 0 

= 0 

= 0 

= 0 

= 0 

 = 0. 

(29) 

 

Thus, from the complex m,n-vacuum fluctuations, two averaged sides can be distinguished: 

1) the averaged “outer” side of the 23-m,n-vacuum (or subcont, see §2.7 in [2]) with the averaged metric 

〈𝑑𝑠(±−−−)2〉 =  〈𝑑𝑠(+)2〉 =  〈𝑔𝑖𝑗
(+)〉𝑑𝑥𝑖𝑑𝑥𝑗 ,  with signature (+ – – –), (30) 

where                  ⟨𝑔𝑖𝑗
(+)⟩𝑑𝑥𝑖𝑑𝑥𝑗 = ⟨𝑔𝑖𝑗

(+−−−)⟩𝑑𝑥𝑖𝑑𝑥𝑗 =
1

7
 ∑ с𝑖𝑗

(р)
𝑑𝑥𝑖𝑑𝑥𝑗7

р=1 , (31) 

here 

𝑔𝑖𝑗
(+)

=

(

  
 

𝑔00
(+)

𝑔10
(+)

𝑔20
(+)

𝑔30
(+)

𝑔01
(+)

𝑔11
(+)

𝑔21
(+)

𝑔31
(+)

𝑔02
(+)

𝑔12
(+)

𝑔22
(+)

𝑔31
(+)

𝑔03
(+)

𝑔13
(+)

𝑔23
(+)

𝑔33
(+)
)

  
 
  (32) 

are components of the metric tensor of the subcont (i.e., the "outer" side of the 23-m,n-vacuum). 
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2) the averaged “inner” side of the 23-m,n-vacuum (or antisubcont, see §2.7 in [2]) with the 

averaged metric  

〈𝑑𝑠(−+++)2〉 = 〈𝑑𝑠(−)2〉 = 〈𝑔𝑖𝑗
(−)〉𝑑𝑥𝑖𝑑𝑥𝑗,  with signature (– + + +), (33) 

where                 ⟨𝑔𝑖𝑗
(−)⟩𝑑𝑥𝑖𝑑𝑥𝑗 = ⟨𝑔𝑖𝑗

(−+++)⟩𝑑𝑥𝑖𝑑𝑥𝑗 =
1

7
∑ с𝑖𝑗

(𝑞)
𝑑𝑥𝑖𝑑𝑥𝑗14

𝑞=8 , (34) 

here 

𝑔𝑖𝑗
(−)

=

(

  
 

𝑔00
(−)

𝑔10
(−)

𝑔20
(−)

𝑔30
(−)

𝑔01
(−)

𝑔11
(−)

𝑔21
(−)

𝑔31
(−)

𝑔02
(−)

𝑔12
(−)

𝑔22
(−)

𝑔31
(−)

𝑔03
(−)

𝑔13
(−)

𝑔23
(−)

𝑔33
(−)
)

  
 

 (35) 

are the components of the metric tensor of the antisubcont (i.e., the “inner” side of the 23-m,n-vacuum). 

Recall that the two-sided model of m,n-vacuum, that is, the result of averaging complex metric-

dynamic fluctuations of m,n-vacuum to a two-sided level of consideration, is called in §2.7 in [2]    

“23-m,n-vacuum”, because in this case, only 4 + 4 = 8 = 23 mathematical measurements remain within 

the framework of consideration. 

To shorten the notation, the averaging signs < > of the components of the metric tensors (32) and 

(35) are omitted. 

Once again, we note that two concepts were formally introduced in [1]: 

- subcont (i.e., the substantial continuum or the outer side of the 23-m,n-vacuum with the averaged 

metric (30) and with the signature (+ – – –) of the Minkowski space); 

- antisubcont (i.e., antisubstantial continuum or inner side of 23-m,n-vacuum with averaged metric 

(33) and signature (– + + +) of Minkowski antispace). 

The fictitious concepts of subcont and antisubcont are introduced to simplify and facilitate our 

perception of the complex intra-vacuum processes. 

Thus, from the complexly fluctuating m,n-vacuum (see Figure 6), due to simplification and 

averaging, we singled out only one averaged 23-m,n-vacuum with two mutually opposite            

4-dimensional sides: subcont and antisubcont (see Figure 7). 

 

 

Figure 6. Fractal illustration of complex intra-vacuum processes. 
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On Figure 7 conditionally shows the average section of the two-sided 23-m,n-vacuum, the outer 

side of which (subcont) is described by the averaged metric 〈𝑑𝑠(+−−−)2〉(30), and the inner side 

(antisubcont) is described by the averaged metric 〈𝑑𝑠(−+++)2〉 (33).  

                  

 

 

 

 

 

 

 

 

 

 

 

Figure 7. The simplified illustration of a two-sided section of the 23-mn-vacuum, the outer side of 

which (subcont) is described by the averaged metric 〈𝑑𝑠(+−−−)2〉 (30) with the signature (+ – – –), and 

its inner side (antisubcont) is described by the metric 〈𝑑𝑠(−+++)2〉 (33) with the opposite signature    

(– + + +), as ε → 0. 

Let’s explain the importance of at least two-sided consideration with a simple example. Let's 

take a sheet of paper and draw lines (segments) of the same length on its two sides in the same place 

(see Figure 8 a,b) 

 
                     a)                                     b)                                c) 

       The outer side of the sheet                    The inner side of the sheet               Curved sheet of paper            

         with stignature {+ +}                          with stignature {– +} 

Figure 8. Two sides of one sheet of paper. 

Reference systems ХУ or Х′У′ on two opposite sides of a sheet of paper have different stignatures, 

respectively {+ +} and {+ –}. To understand this, take a sheet of paper and draw on it the XY reference 

system (as in Figure 8a). Then turn the sheet over, and on its reverse side depict the Х′У′ reference 

system in the same way in the same place. If you compare these reference systems, you will find that 

the X and X′ axes are directed in different directions, so their stignatures are different. 

4-dimensional inner side 

of the 23-m,n-vacuum 

(antisubcont) with metric 

〈𝑑𝑠(−+++)2〉 = 〈𝑔𝑖𝑗
(−)〉 𝑑𝑥𝑖𝑑𝑥𝑗  

with signature (– + + +) 

    

 

4-dimensional outside 

of the 23-m,n-vacuum 

(subcont) with metric 

〈𝑑𝑠(+−−−)2〉 = 〈𝑔𝑖𝑗
(+)〉 𝑑𝑥𝑖𝑑𝑥𝑗 , 

with signature (+ – – –) 
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If the given sheet of paper is not curved, then the reference system with stignatures {+ +} and   

{+ –} are alike, i.e., any of them can set the coordinates of the drawn lines. 

However, if this sheet is bent (see Figure 8c), then the line on the outer side of the sheet (see 

Figure 8a) will slightly expand, and the line on the inner side of the sheet (Figure 8b) will shrink by 

almost the same amount. In other words, the expansion of one line inevitably leads to the 

compression of another line drawn on the opposite side of the sheet. 

Therefore, at least a two-sided consideration of the process of curvature of a sheet of paper is 

inevitable. Otherwise, one-sided consideration will lead not only to the loss of information about the 

process under study, but also in some cases to paradoxical and erroneous conclusions. In addition, 

the two-pronged approach immediately takes into account the vacuum balance condition, which 

states that any action is accompanied by a reaction. In the considered case, the expansion of one line 

is inevitably accompanied by compression of the other line, therefore, if we neglect the thickness of 

the sheet, then its average deformation of these lines tends to zero. 

In fact, a sheet of paper has a thickness ε (see Figure 7). Therefore, in its thickness, one can always 

distinguish a cube with an edge length ε (see Figures 7 and 9). 

 

 

Figure 9. A cube isolated in the thickness of a sheet of paper (or in some other continuous medium, 

including vacuum). 

If the sheet is bent, all sixteen 3-bases associated with the trihedral angles of such a deformed 

cube will be distorted in different ways (see Figure 4). Therefore, the Algebra of Signatures develops 

a mathematical apparatus that initially takes into account the distortions of all sixteen 3-bases at once, 

shown in Figure 9. 

Only in the case when the thickness of a sheet of paper is so small that it can be neglected, it is 

permissible to simplify the problem to a two-sided consideration. 

Unilateral consideration, i.e. the study of the curvature of only one side of a sheet of paper is 

possible, but will inevitably lead to a fundamental incompleteness of the mathematical model of the 

process under study. 

In relation to vacuum physics, we are forced to state that the void (i.e., vacuum), which plays 

the role of the space surrounding us, has at least two sides: 1) external, i.e. Minkowski space with 

signature (+ – – –) and 2) internal, i.e. Minkowski antispace with signature (– + + +) (see Figure 7). 

One-sided consideration will inevitably lead to dead-ends and unfinished areas of scientific research. 

For example, a metric that is a solution to the equations of the general theory of relativity (GR) 

of A. Einstein with the signature (+ – – –) can only describe a one-sided cosmological model of the 

Universe, which, in principle, cannot be completed. We also need, at a minimum, a metric-solution 

of the same equations with the opposite signature (– + + +). A more complete cosmological model 

should take into account all 16 metric-solutions of GR equations with signatures (29). Only such a 

cosmological model can claim logical completeness. The project of the cosmological model taking 

into account metric-solutions with all 16 possible signatures will be presented in subsequent articles 

of this project. 
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2.5. Four-strain tensor of 23-m,n-vacuum in the case of a simplified two-sided consideration 

2.5.1. Four-strain tensors of two sides of 23-m,n-vacuum 

Let‘s assume that the simplified two-sided model of the 23-m,n-vacuum presented in the 

previous paragraph (see Figure 7) satisfies the given consideration accuracy. 

Let the initial uncurved state of the studied area of the outer side of the 23-m,n-vacuum (i.e., 

subcont) be characterized by a zero averaged metric (30) 

𝑑𝑠0
(+−−−)2 = 𝑑𝑠0

(+)2 = 𝑔𝑖𝑗0
(+)𝑑𝑥𝑖𝑑𝑥𝑗 ,  with signature (+ – – –). (36) 

Here and below, to shorten the entries, the averaging sign < > is removed, while it is conditionally 

assumed that 

𝑑𝑠(+−−−)2 = 〈𝑑𝑠(+−−−)2〉,    𝑑𝑠(+)2 = 〈𝑑𝑠(+)2〉   и   𝑔𝑖𝑗
(+) = 〈𝑔𝑖𝑗

(+)〉.  

In the Cartesian coordinate system, metric (36) takes the form 

                      𝑑𝑠0
(+)2 = 𝑐2𝑑𝑡2 − 𝑑𝑥2 − 𝑑𝑦2 − 𝑑𝑧2,             (36а)  

Wherein 

𝑔𝑖𝑗0
(+)

= (

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

) . 

(37) 

In the case of curvature of the same section of the subcont, its metric-dynamic state is determined 

by the averaged metric 

𝑑𝑠(+−−−)2 = 𝑑𝑠(+)2 = 𝑔𝑖𝑗
(+)𝑑𝑥𝑖𝑑𝑥𝑗 , with signature (+ – – –). (38) 

The difference between the curved state of the studied section of the subcont and its non-curved 

state is determined by the Expression [3] 

𝑑𝑠(+)2 − 𝑑𝑠0
(+)2 = (𝑔𝑖𝑗

(+) − 𝑔𝑖𝑗0
(+)) 𝑑𝑥𝑖𝑑𝑥𝑗 = 2𝑖𝑗

(+)𝑑𝑥𝑖𝑑𝑥𝑗, (39) 

here  

𝑖𝑗
(+) =  ½(𝑔𝑖𝑗

(+) − 𝑔𝑖𝑗0
(+)) (40) 

is the 4-deformation tensor of the local section of the subcont. 

The relative elongation (or contraction) of the curved section of the subcont is [3] 

𝑙(+) =
𝑑𝑠(+) − 𝑑𝑠0

(+)

𝑑𝑠0
(+)

=
𝑑𝑠(+)

𝑑𝑠0
(+)
− 1. (41) 

Whence it follows 

𝑑𝑠(+)2 = (1 + 𝑙(+))2𝑑𝑠0
(+)2. (42) 

Substituting (42) into (39), taking into account (40), we obtain [3] 

ij(+) = ½ [(1 + l(+))2 – 1] 𝑔𝑖𝑗0
(+), (43) 

or expanded 

ij(+) = ½ [(1 + li(+))(1 + lj(+)) cosij(+) – cosij0(+)] 𝑔𝑖𝑗0
(+), (44) 

where 

ij0(+) is the angle between the axes xi and xj of the reference system, "frozen" into the initial uncurved 

state of the subcont section under study; 

ij(+) is the angle between the axes xiand xj of the distorted reference system “frozen” into the 

distorted state of the same section of the subcont. 
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When ij0(+) = /2, Ex. (44) takes the form 

ij(+) = ½ [(1 + li(+))(1 + lj(+)) cosij(+) – 1] 𝑔𝑖𝑗0
(+). (45) 

For the diagonal components of the 4-strain tensor ii
(+), Ex. (45) is simplified 

ii 
(+) = ½ [(1 + li

(+))2 – 1] 𝑔𝑖𝑗0
(+)

, (46) 

whence follows [3] 

𝑙𝑖
(+)

= √1 +
2𝜀𝑖𝑖

(+)

𝑔𝑖𝑖0
(+)

− 1 = √1 +
𝑔𝑖𝑖
(+)
− 𝑔𝑖𝑖0

(+)

𝑔𝑖𝑖0
(+)

− 1 = √
𝑔𝑖𝑖
(+)

𝑔𝑖𝑖0
(+)
− 1. (47) 

If deformations of the subcont section ij(+) are small, then, expanding Ex. (47) into a series, and, 

confining ourselves to the first member of this series, we obtain the relative elongation of the local 

subcont section [3] 

𝑙𝑖
(+)

≈
𝜀𝑖𝑖
(+)

𝑔𝑖𝑖0
(+). (48) 

Similarly, the deformation of the local section of the inner side of the 23-m,n-vacuum (antisubcont) 

is determined by the Expression 

 𝑑𝑠(−)2 − 𝑑𝑠0
(−)2 = (𝑔𝑖𝑗

(−) − 𝑔𝑖𝑗0
(−))𝑑𝑥𝑖𝑑𝑥𝑗 = 2𝑖𝑗

(−)𝑑𝑥𝑖𝑑𝑥𝑗, (49) 

Where 

𝑖𝑗
(−) =  ½(𝑔𝑖𝑗

(−) − 𝑔𝑖𝑗0
(−)) (50) 

is the 4-deformation tensor of the local section of the antisubcont; 

𝑑𝑠0
(− + + +)2 = 𝑑𝑠0

(−)2 = 𝑔𝑖𝑗0
(−)𝑑𝑥𝑖𝑑𝑥𝑗 , with signature (– + + +) (51) 

is the metric of the uncurved state of the local section of the antisubcont. In the Cartesian coordinate 

system, metric (51) takes the form 

𝑠0
(−)2 = – 𝑐2𝑑𝑡2 + 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2,                  (51a) 

where 

  𝑔𝑖𝑗0
(−)

= (

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

) ;                         (51b) 

in its turn 𝑑𝑠(− + + +)2 = 𝑑𝑠(−)2 = 𝑔𝑖𝑗
(−)𝑑𝑥𝑖𝑑𝑥𝑗 , with the same signature (– + + +) (52) 

is the metric of the curved local section of the antisubcont. 

The relative elongation (or contraction) of the local section of the antisubcont is determined by 

the Expression 

𝑙(−) =
𝑑𝑠(−) − 𝑑𝑠0

(−)

𝑑𝑠0
(−)

=
𝑑𝑠(−)

𝑑𝑠0
(−)
− 1. (53) 

2.5.2. The 4-strain tensor of 23-m,n-vacuum in the case of two-sided consideration 

We define the 4-strain tensor of a local section of a two-sided 23-m,n-vacuum as the average value 

of the deformations of its two sides 

ij(±) = ½ (ij(+) + ij(–)) = ½ (ij(+ – – –) +ij(– + + +)), (54) 

or, taking into account expressions (40) and (50), we obtain 
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ij(±) = ½ (𝑔ij(+) + 𝑔ij(–)) – ½ (𝑔ij0(+) + 𝑔ij0(–)) = ½ (𝑔ij(+) + 𝑔ij(–)), (55) 

because from the condition of 23-m,n-vacuum balance (48) in [2] ds(+ – – –)2 + ds(– + + +)2 = 0 follows: 

𝑔ij0(+) + 𝑔ij0(–) = 𝑔ij0(+ – – –) + 𝑔ij0(– + + +)  = 0. (56) 

The relative elongation (or contraction) li(±) of the local section of the two-sided 23-m,n-vacuum is 

determined by the Expression  

𝑙𝑖
(±)

= 1 2⁄ (𝑙𝑖
(+)
+ 𝑙𝑖

(−)
) (57) 

where 

𝑙𝑖
(+)

= √1 +
2𝜀𝑖𝑖

(±)

𝑔𝑖𝑖0
(+)

− 1 = √1 +
𝑔𝑖𝑖
(+)

+ 𝑔𝑖𝑖
(−)

𝑔𝑖𝑖0
(+)

− 1, (58) 

𝑙𝑖
(−)

= √1 +
2𝜀𝑖𝑖

(±)

𝑔𝑖𝑖0
(−)

− 1 = √1 +
𝑔𝑖𝑖
(+)

+ 𝑔𝑖𝑖
(−)

𝑔𝑖𝑖0
(−)

− 1 = √1 −
𝑔𝑖𝑖
(+)

+ 𝑔𝑖𝑖
(−)

𝑔𝑖𝑖0
(+)

− 1, (59) 

because according to the condition of the m,n-vacuum balance (56) 𝑔ij0(–) = – 𝑔ij0(+). 

Substituting Exs. (58) and (59) into Ex. (57), we obtain 

𝑙𝑖
(±)

= 1 2⁄ (√1 +
𝑔𝑖𝑖
(+)

+ 𝑔𝑖𝑖
(−)

𝑔𝑖𝑖0
(+)

+√1 −
𝑔𝑖𝑖
(+)

+ 𝑔𝑖𝑖
(−)

𝑔𝑖𝑖0
(+)

)− 1. 

(60) 

It can be seen from this Expression that the relative elongation (or contraction) of the local section 

of the two-sided 23-m,n-vacuum, li(±)  can be a complex number. 

In this regard, we note the following important circumstance. If both sides of Ex. (55) are 

multiplied by dxidxj, then we obtain the averaged quadratic form 

ds(±)2 = 
2

1 (ds(+)2+ ds(–)2) = 2
1 (ds(+ – – – ) 2+ ds(– + + +) 2), (61) 

which resembles the Pythagorean theorem c2 = a2 + b2. 

This means that the line segments  ( 2
1 )1/2ds(+)  and  ( 2

1 )1/2ds(–), which lie on two mutually 

opposite sides of the two-sided 23-m,n-vacuum, are always mutually perpendicular to each other, i.e.                       

ds (+)⊥ ds (–) (Figure 10a).  

In this case, two lines directed in the same direction can always be mutually perpendicular only 

if they form a double helix (see Figures 10b and 12). 

 
 

a)  b) 

Figure 10. a) Mutually perpendicular segments ( 2
1 )1/2ds(+) and ( 2

1 )1/2ds(–); b) If you project a double 

helix onto a plane, then at the intersection of its lines ds(+) and  ds(–) are always mutually perpendicular. 

Thus, the averaged metric (61) corresponds to a “braid” segment consisting of two mutually 

perpendicular spirals s(+) and s(–). In this case, just like the relative elongation of the local section of the 

two-sided 23-m,n-vacuum li(±) (60), such a section of the “double helix” can be described by a complex 

number 
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ds (±) = 1
√2
⁄  (ds (+)+ids (–)),  

the square of whose modulus is equal to Ex. (61).  

Below, a k-braid is the result of averaging metrics with different signatures (where k is the number 

of averaged metrics, i.e., the number of “threads” in the “braid”). For example, the averaged metric 

(61) is called a 2-braid, since it is “twisted” from 2 lines : ds(+) = ds (+ – – –) and ds(–) = ds(– + + +).  

Here is another augment in favor of the mutual perpendicularity of the segments ds(+) and ds(–); 

Figure 8 showed that the reference systems XY or X'Y' on two opposite sides of a sheet of paper 

have different stignatures {+ +} and {+ –}. In order to get a completely opposite stignature {– –}, it is 

necessary first to depict the reference system XY on the sheet, then turn this sheet 90 degrees 

clockwise, then turn it to the other side and similarly draw the reference system X'Y' on the same 

place where the reference system XY (see Figure 11). The result will be a reference system Y'X' with 

a completely opposite stignature {– –} in relation to the XY system. 

 

Figure 11. Two sides of the space with completely opposite stignatures {+ +} and {– –}. 

If, on one side of the sheet, draw a line ds(+) along the X axis (see Figure 11), and on the other 

completely opposite side, draw the same line ds(–) along the X ′ axis, then it turns out that the lines 

ds(+) and  ds(–) are mutually perpendicular. Such a crossing of the ds(+) and  ds(–)  lines takes place in 

each local area of the sheet, which resembles the crossing of fabric threads (see Figure 12a). 

                      

                               (a)                                (b) 

Figure 12. Woven threads of the fabric. 

If a hypothetical sheet with two completely opposite sides (i.e., with opposite stignatures {+ +} 

and {– –}) is bent as shown in Figure 8c, then the line ds(+) will stretch, and the corresponding line   

ds(–) on the other side of such a sheet will remain the same (i.e., not deformed). In this case, the line 
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will shrink on the perpendicular axis Y′. This ultimately leads to the twisting of the ds(+) and ds(–) lines 

into spiral bundles (see Figures 10 and 12a). 

As applied to the model of the two-sided section of the 23-m,n-vacuum with completely opposite 

sides, i.e. with signatures (+ – – –) and (– + + +) (Figure 7), we conclude that the intertwined lines       

ds (+ – – –)  and  ds(– + + +) form a fabric of 3-dimensional extent. In other words, the 23-m,n-vacuum is not 

just a two-sided 8-dimensional space, but is the result of the interlacing of its two sides, like the 

threads of a fabric (see Figure 12b). 

Deformation of one side of such length inevitably leads to a perpendicular counter - response 

on its other side. This is the reason for the folding of local sections of such a two-sided space into 

double helixes (see Figure 10 a,b and Figure 12b). 

It is difficult to imagine a 3-dimensional tissue structure of a two-sided 8-dimensional              

23-mn-vacuum, but the mathematics of the Algebra of Signatures takes into account the ubiquitous 

interweaving of the lines ds (+ – – –) and ds(– + + +) automatically, since not summed these lines themselves, 

but their quadratic forms ds (+ – – –)2 and ds(– + + +)2 (61), which define the metrics of these extensions. 

2.5.3. The 4-strain tensor of a curved 26-m,n-vacuum in the case of sixteen-sided consideration 

At the next deeper 16-sided level of consideration, the number of mathematical dimensions is   

16 × 4 = 64 = 26, so at this level the subject of consideration is the 26-m,n-vacuum. 

The metric-dynamic properties of the local region of the 26-m,n-vacuum are characterized by a 

superposition (i.e., additive superposition or averaging) of sixteen metrics with all 16 possible 

signatures (29), i.e. 16-braid (according to the definition of k-braid after Ex. (61)): 

 

                       ds2 = 1/16 (ds(+ – – –)2 + ds(+ + + +)2 + ds(– – – +)2  + ds(+ – – +)2 + 

                              + ds(– – + –)2  + ds(+ + – –)2  + ds(– + – –)2 + ds(+ – + –)2 + 

                              + ds(– + + +)2 + ds(– – – – )2 + ds(+ + + –)2  + ds(– + + –)2 + 

                              + ds(+ + – +)2  + ds(– – + +)2  + ds(+ – + +)2 + ds(– + – +)2). 

 

(62) 

In this case, we have 16 4-deformation tensors of all 16 types of curved 4-spaces with different 

signatures (or topologies, see §2.4 in [2]) 

𝜀𝑖𝑗
(𝑝)

=

(

 
 
 

𝜀𝑖𝑗
(1)

𝜀𝑖𝑗
(2)

𝜀𝑖𝑗
(3)

𝜀𝑖𝑗
(4)

𝜀𝑖𝑗
(5)

𝜀𝑖𝑗
(6)

𝜀𝑖𝑗
(7)

𝜀𝑖𝑗
(8)

𝜀𝑖𝑗
(9)

𝜀𝑖𝑗
(10)

𝜀𝑖𝑗
(11)

𝜀𝑖𝑗
(12)

𝜀𝑖𝑗
(13)

𝜀𝑖𝑗
(14)

𝜀𝑖𝑗
(15)

𝜀𝑖𝑗
(16)

)

 
 
 

, (63) 

where according to expression (25) 

ij(p) =  ½ (сij(p) – сij0(p)) (64) 

is the 4-deformation tensor of the p-th 4-space, p = 1,2,…,16, where: 

сij0(p)  is the metric tensor of the non-curved region of the p-th 4-space with the corresponding 

signature; 

сij(p)  is the metric tensor of the same but curved region of the p-th 4-space with the same signature. 

By analogy with Ex. (54), at the 16-sided level of consideration, the general tensor of             

4-deformations 𝜀𝑖𝑗 Σ
(16) of the local curved region of the 26-m,n-vacuum is defined as the average value 

𝜀𝑖𝑗 Σ
(16) =

1

16
(𝑖𝑗
(1)
+ 𝑖𝑗

(2)
+ 𝑖𝑗

(3)
+⋯+ 𝑖𝑗

(16)
)  =

1

16
∑ 𝑖𝑗

(𝑝)
16

𝑝=1
. (65) 

In this case, the relative elongation of the local region of the 26-m,n-vacuum 𝑙𝑖 Σ
(16) in this case is 

given by the average hypercomplex number of the 16-th rank 
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𝑙𝑖 Σ
(16)= 1/√16 (η1 li (1) + η2 li (2) + η3 li (3) +…+ η16 li (16)), (66) 

where 

𝑙𝑖
(𝑝)

= √1 +
2𝜀
𝑖𝑖
(𝑝)

𝑐
𝑖𝑖
0(𝑝) − 1, (67) 

ηm is an orthonormal basis of 16 unit objects (m = 1,2,3,…,16) satisfying the anticommutation relation 

of the Clifford algebra 

ηmηn + ηnηm = 2δmn , (68) 

where δnm is the identity 1616-matrix.  

In this case, the curved section of the 16-braid consists of sixteen intertwined "colored" lines 

(threads): 

            ds 
(16)

 = 1/√16 (η1 ds(+– – –)   +  η2 ds(+ + + +)   +  η3 ds(– – – +)  + η4 ds(+ –  – +) +    

                         + η5 ds(– – + –) +  η6 ds(+ + – –)   +  η7 ds(– + – –)  + η8 ds(+ –  + –) +        

                         + η9 ds(– + + +) +  η10
  ds(– – – –)  + η11 ds(+ + +  –) + η12 ds (– + + –) + 

                         + η13 ds(+ + – +) + η14
  ds(– – + +) +  η15 ds(+ – + +)  + η16 ds(– +  – +)).    

(69) 

The colors of these lines conditionally correspond to the colors of the signatures (i.e., the types 

of topologies of these 4-dimensional spaces), which are formally assigned to these spaces in the 

framework of vacuum chromodynamics: 

 (70) 

  Red 

  Yellow 

  Orange 

  Green 

  Blue 

  Dark blue 

  Violet 

 White 

 (+  +  +  +) 

 (–  –  –  +) 

 (+  –  –  +) 

 (–  –  +  –) 

 (+  +  –  –) 

 (–  +  –  –) 

 (+  –  +  –) 

 (+  –  –  –)+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

(–  –  –  –) 

(+  +  +  –) 

(–  +  +  –) 

(+  +  –  +) 

(–  –  +  +) 

(+  –  +  +) 

(–  +  –  +) 

(–  +  +  +)+  

Аnti-red 

Аnti-yellow 

Аnti-orange 

Аnti-green 

Аnti-blue 

Аnti-dark blue  

Аnti-violet 

   Black 

 

 

Formal coloring of 16 lines (or threads) ds(+– – –), ds(– + + +), ds(+ + + +), ds(+ + – +), … , ds(– + – +) makes it 

possible to represent the “fabric” of 26-m,n-vacuum woven from them in color form (Figures 6 &13). 

 

Figure 13. Fractal illustration of a warped 26-m,n-vacuum fabric woven from 16 "color" lines (threads). 



 17 

 

Each “colored” 4-space with the corresponding signature (i.e., topology) (70) can be formally 

represented as a continuous plastic-elastic medium of the corresponding color. Such 4-spaces, which 

have elastoplastic properties, can be interpreted as "colored" ethers. But unlike the ether theory, in 

the geometrized vacuum physics based on the Algebra of Signatures (Alsigna), there is not one ether, 

but depending on the level of consideration, there can be 2 such ethers (“white” and “black”) or     

24 = 16 (with “colors” (70)) or 28 = 256 (with different shades of colors (70)) etc. to infinity. At the same 

time, all these formal “colored” ethers of Alsigna are intertwined into a single 3-dimensional “carpet” 

(see Figures 6 and 14), i.e. form a single intertwined and seething 3-dimensional space. Such a        

3-dimensional, mean-flat (i.e., "zero") space in each local area resembles a multi-dimensional Calabi-

Yau manifold. In addition, the “colored” ethers of Alsigna are illusory in nature and are intended 

only to facilitate the perception and awareness of the most complex intra-vacuum processes. 

If all curved linear forms ds(+ – – –),  ds(– + + +),   ds(+ + – +), … , ds(– + – +) can be represented in a diagonal 

form, then in accordance with (65) and (66) in [2], Ex. (69) can be represented in the spintensor form 

 (71) 

   ds 
(16)

 =
1

√16
[ √𝑔00

(1)
𝑑𝑥0 (

1 0
0 −1

) + √𝑔11
(1)
𝑑𝑥1 (

0 −𝑖
𝑖 0

) + √𝑔22
(1)
𝑑𝑥2 (

0 −1
1 0

) + √𝑔33
(1)
𝑑𝑥3 (

𝑖 0
0 −𝑖

)  + 
 

     

             +√𝑔00
(2)
𝑑𝑥0 (

−1 0
0 1

) + √𝑔11
(2)
𝑑𝑥1 (

0 −1
1 0

) + √𝑔22
(2)
𝑑𝑥2 (

0 −𝑖
𝑖 0

) + √𝑔33
(2)
𝑑𝑥3 (

−𝑖 0
0 𝑖

) + 

             + √𝑔00
(3)
𝑑𝑥0 (

1 0
0 −1

) + √𝑔11
(3)
𝑑𝑥1 (

0 𝑖
−𝑖 0

) + √𝑔22
(3)
𝑑𝑥2 (

0 1
−1 0

) + √𝑔33
(3)
𝑑𝑥3 (

1 0
0 −1

) + 

             + √𝑔00
(4)
𝑑𝑥0 (

−1 0
0 1

) + √𝑔11
(4)
𝑥1 (

0 1
−1 0

) + √𝑔22
(4)
𝑥2 (

0 −1
1 0

) + √𝑔33
(4)
𝑥3 (

−1 0
0 1

) +   

             + √𝑔00
(5)
𝑑𝑥0 (

1 0
0 −1

) + √𝑔11
(5)
𝑑𝑥1 (

0 −𝑖
𝑖 0

) + √𝑔22
(5)
𝑑𝑥2 (

0 1
−1 0

) + √𝑔33
(5)
𝑑𝑥3 (

𝑖 0
0 𝑖

) + 

             + √𝑔00
(6)
𝑑𝑥0 (

−1 0
0 1

) + √𝑔11
(6)
𝑑𝑥1 (

0 −1
1 0

) + √𝑔22
(6)
𝑑𝑥2 (

0 𝑖
−𝑖 0

) + √𝑔33
(6)
𝑑𝑥3 (

−1 0
0 1

) +    

             +√𝑔00
(7)
𝑑𝑥0 (

1 0
0 −1

) + √𝑔11
(7)
𝑑𝑥1 (

0 1
−1 0

) + √𝑔22
(7)
𝑑𝑥2 (

0 −1
1 0

) + √𝑔33
(7)
𝑑𝑥3 (

−𝑖 0
0 −𝑖

)+ 

            + √𝑔00
(8)
𝑑𝑥0 (

−1 0
0 1

) + √𝑔11
(8)
𝑑𝑥1 (

0 −1
1 0

) + √𝑔22
(8)
𝑑𝑥2 (

0 1
−1 0

) + √𝑔33
(8)
𝑑𝑥3 (

𝑖 0
0 −𝑖

) + 

             +√𝑔00
(9)
𝑑𝑥0 (

1 0
0 −1

) + √𝑔11
(9)
𝑑𝑥1 (

0 𝑖
−𝑖 0

) + √𝑔22
(9)
𝑑𝑥2 (

0 −1
1 0

) + √𝑔33
(9)
𝑑𝑥3 (

1 0
0 −1

) + 

            + √𝑔00
(10)

𝑑𝑥0 (
−1 0
0 1

) + √𝑔11
(10)

𝑑𝑥1 (
0 1
−1 0

) + √𝑔22
(10)

𝑑𝑥2 (
0 1
−1 0

) + √𝑔33
(10)

𝑑𝑥3 (
−𝑖 0
0 𝑖

)+ 

            + √𝑔00
(11)

𝑑𝑥0 (
1 0
0 −1

) + √𝑔11
(11)

𝑑𝑥1 (
0 −𝑖
𝑖 0

) + √𝑔22
(11)

𝑑𝑥2 (
0 −1
1 0

) + √𝑔33
(11)

𝑑𝑥3 (
1 0
0 1

)+ 

            + √𝑔00
(12)

𝑑𝑥0 (
−1 0
0 1

) + √𝑔11
(12)

𝑑𝑥1 (
0 −1
1 0

) + √𝑔22
(12)

𝑑𝑥2 (
0 1
−1 0

) + √𝑔33
(12)

𝑑𝑥3 (
−1 0
0 −1

)+ 

            + √𝑔00
(13)

𝑑𝑥0 (
1 0
0 −1

) + √𝑔11
(13)

𝑑𝑥1 (
0 𝑖
−𝑖 0

) + √𝑔22
(13)

𝑑𝑥2 (
0 −𝑖
−𝑖 0

) + √𝑔33
(13)

𝑑𝑥3 (
−1 0
0 1

)+  

            +√𝑔00
(14)

𝑑𝑥0 (
−1 0
0 1

) + √𝑔11
(14)

𝑑𝑥1 (
0 1
−1 0

) + √𝑔22
(14)

𝑑𝑥2 (
0 −1
1 0

) + √𝑔33
(14)

𝑑𝑥3 (
−𝑖 0
0 −𝑖

)+ 

            + √𝑔00
(15)

𝑑𝑥0 (
1 0
0 −1

) + √𝑔00
(15)

𝑑𝑥1 (
0 −1
1 0

) + √𝑔00
(15)

𝑑𝑥2 (
0 1
−1 0

) + √𝑔00
(15)

𝑑𝑥3 (
1 0
0 −1

)+  

     + √𝑔00
(16)

𝑑𝑥0 (
−1 0
0 1

) + √𝑔11
(16)

𝑑𝑥1 (
0 1
−1 0

) + √𝑔22
(16)

𝑑𝑥2 (
0 𝑖
𝑖 0

) + √𝑔33
(16)

𝑑𝑥3 (
𝑖 0
0 𝑖

)]  
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Within the framework of the Algebra of Signatures, much deeper 2n-sided levels of consideration 

of the metric-dynamic properties of the curved region of the m,n-vacuum are possible, while the 

number of components of the metric tensor characterizing its metric-dynamic properties can increase 

to infinity (see §2.9 in [2]). 

6. Physical meaning of the components of the metric tensor 

6.1. Nonzero components of the metric tensor 

Let the averaged metric-dynamic states of two 4-dimensional sides of the local region of the    

23-m,n-vacuum be given by metrics (30) and (33) (see Figure 7). Consider the nonzero components of 

the metric tensors (32) and (35) of these metrics 

𝑔𝛼𝛽
(+)

=

(

 
 

. . . . . . . . . . . .

. . . 𝑔11
(+)

𝑔21
(+)

𝑔31
(+)

. . . 𝑔12
(+)

𝑔22
(+)

𝑔31
(+)

. . . 𝑔13
(+)

𝑔23
(+)

𝑔33
(+)

)

 
 

,     𝑔𝛼𝛽
(−)

=

(

 
 

. . . . . . . . . . . .

. . . 𝑔11
(−)

𝑔21
(−)

𝑔31
(−)

. . . 𝑔12
(−)

𝑔22
(−)

𝑔31
(−)

. . . 𝑔13
(−)

𝑔23
(−)

𝑔33
(−)

)

 
 
 , (72) 

here the Greek alphabet indices α, β correspond to the 3-dimensional consideration (i.e., α, β = 1,2,3). 

The scalar curvature of the local two-sided region of the 23-m,n-vacuum in the framework of the 

Algebra of Signatures is determined by the complex number [6] 

𝑅(±) = 𝑅(+) + 𝑖𝑅(−), (73) 

⌊𝑅(±)⌋ = √𝑅(+)2 + 𝑅(−)2, (74) 

𝜑 = 𝑎𝑟𝑐𝑡𝑔 (
𝑅(−)

𝑅(+)
), (75) 

where the scalar curvature of each of the two sides of the 23-m,n-vacuum is defined in the same way 

as in general relativity (GR) 

𝑅(+) = 𝑔𝛼𝛽(+)𝑅𝛼𝛽
(+)

   и   𝑅(−) = 𝑔𝛼𝛽(−)𝑅𝛼𝛽
(−)

, (76) 

where 

𝑅𝛼𝛽
(+)

=
𝜕Г𝛼𝛽

𝑙(+)

𝜕𝑥𝑙
−
𝜕Г𝛼𝑙

𝑙(+)

𝜕𝑥𝛽
+ Г𝛼𝛽

𝑙(+)
Г𝑙𝑚
𝑚(+)

− Г𝛼𝑙
𝑚(+)

Г𝑚𝛽
𝑙(+)

 (77) 

is the Ricci tensor of the outer side of the local section of the 23-m,n-vacuum (i.e., the subcont); 

 

𝑅𝛼𝛽
(−)

=
𝜕Г𝛼𝛽

𝑙(−)

𝜕𝑥𝑙
−
𝜕Г𝛼𝑙

𝑙(−)

𝜕𝑥𝛽
+ Г𝛼𝛽

𝑙(−)
Г𝑙𝑚
𝑚(−)

− Г𝛼𝑙
𝑚(−)

Г𝑚𝛽
𝑙(−)

 (78) 

is the Ricci tensor of the inner side of the local section of the 23-m,n-vacuum (i.e., the antisubcont); 

  

Г𝛼𝛽
𝜆(+)

=
1

2
𝑔𝜆𝜇(+) (

𝜕𝑔𝜇𝛽
(+)

𝜕𝑥𝛼
+
𝜕𝑔𝛼𝜇

(+)

𝜕𝑥𝛽
−
𝜕𝑔𝛼𝛽

(+)

𝜕𝑥𝜇
) (79) 

are the Christoffel symbols of the local section of the subcont; 

 

Г𝛼𝛽
𝜆(−)

=
1

2
𝑔𝜆𝜇(−) (

𝜕𝑔𝜇𝛽
(−)

𝜕𝑥𝛼
+
𝜕𝑔𝛼𝜇

(−)

𝜕𝑥𝛽
−
𝜕𝑔𝛼𝛽

(−)

𝜕𝑥𝜇
) (80) 

 

are the Christoffel symbols of the antisubcont. 
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A feature of the geometrized vacuum physics developed here is to ensure the vacuum balance 

condition 

𝑆 =∭
1

2
(𝑅(+) + 𝑅(−))𝑑𝑥𝑑𝑦𝑑𝑧 = 0, (81) 

it means that “convexity” and “concavity” (or compression and tension) over the entire              

3-dimensional deformed region of the 23-m,n-vacuum, on average, completely compensate each other 

(see Figure 14). 

  

Figure 14. 2D-illustration of a convex-concave two-sided surface with stignatures {+ +} and {– +}. This 

curved surface is such that it is, on average, flat. At the same time, the deformation that looks like a 

convexity from the outside, from the inside it looks like a concavity. At the same time, it should be 

taken into account that if the stignatures of the sides of such a two-sided surface are completely 

opposite {+ +} and {– –}, then the deformations on its two sides are not only mutually opposite, but 

also mutually perpendicular (see §5.2). 

So, in two-sided consideration, the non-zero components of the metric tensors (72) 𝑔𝛼𝛽
(+)

 and 

𝑔𝛼𝛽
(−)

 are interconnected and describe the curvature of the 3-dimensional extension of the two-sided 

23-m,n-vacuum. 

2.6.2. Zero components of the metric tensor 

To clarify the physical meaning of the zero components of the metric tensors (32) and (35) 

𝑔𝑖0
(+)

=

(

  
 

𝑔00
(+)

𝑔10
(+)

𝑔20
(+)

𝑔30
(+)

𝑔01
(+)

. . . . . . . . .

𝑔02
(+)

. . . . . . . . .

𝑔03
(+)

. . . . . . . . . )

  
 

,     𝑔0𝑗
(−)

=

(

  
 

𝑔00
(−)

𝑔10
(−)

𝑔20
(−)

𝑔30
(−)

𝑔01
(−)

. . . . . . . . .

𝑔02
(−)

. . . . . . . . .

𝑔03
(−)

. . . . . . . . . )

  
 

, (82) 

let’s use the kinematics of the layers of the two-sided 23-m,n-vacuum. 

Under the kinematics of vacuum layers is meant such a section of geometrized vacuum physics based 

on the Algebra of Signatures (Alsigna), in which the displacements (movements) of different sides of 

the m,n-vacuum are considered independently of their deformations. With a more consistent 

approach, i.e. during the development of the dynamics of vacuum layers in subsequent articles of this 

cycle, it turns out that any displacement of the local region of one layer of m,n-vacuum is inevitably 

accompanied by its curvature. This, in turn, sets in motion the curvature of other adjacent layers of 

the m,n-vacuum. At the same time, and vice versa, the curvature of the local region of one layer of 

the m,n-vacuum is necessarily accompanied by its displacement (i.e., flow), which leads to a 

disturbance of all adjacent layers. In what follows, interconnected flows and curvatures of local 

sections of different layers of the m,n-vacuum are considered as multidimensional 4-deformations 

using the mathematical apparatus of the general theory of relativity. 

Despite the above shortcomings, kinematic models of the motion of various layers of the 23-m,n-

vacuum make it possible to elucidate the physical meaning of the zero components of metric tensors 

and theoretically predict a number of previously unknown vacuum effects that can be tested in 

practice. 

Let the initial (stationary and non-curved) state of the two-sided 23-m,n-vacuum be given by a 

set of pseudo-Euclidean metrics (36a) and (51a) 
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{
𝑑𝑠0

(+)2 =  𝑐2𝑑𝑡2 − 𝑑𝑥2 − 𝑑𝑦2 − 𝑑𝑧2 = 𝑑𝑠(+)𝑑𝑠(+) =   c𝑑𝑡c𝑑𝑡− 𝑑𝑥𝑑𝑥 − 𝑑𝑦𝑑𝑦 − 𝑑𝑧𝑑𝑧;

𝑑𝑠0
(−)2 = – 𝑐2𝑑𝑡2 + 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 = 𝑑𝑠(−)𝑑𝑠(−) = −c𝑑𝑡c𝑑𝑡+ 𝑑𝑥𝑑𝑥 + 𝑑𝑦𝑑𝑦 + 𝑑𝑧𝑑𝑧,

 (83) 

where the symbols are introduced 

ds(+) =  с dt + idx+ jdy+ kdz    is mask of the subcont; (84) 

ds(+) = с dt+ idx+ jdy+ kdz   is interior of the subcont; (85) 

ds(–) = – с dt+ idx+ jdy+ kdz    is mask of the antisubcont; (86) 

ds(–) = с dt– idx– jdy– kdz   is interior of the antisubcont, (87) 

is affine aggregates, in particular, quaternions with a multiplication table of imaginary units, for 

example, 

 i j k 

i –1 k –j 

j –k –1 i 

k j –i –1 
 

(88) 

 

We consider three kinematic cases: 

1). In the first case, let the mask and the interior of the outer and inner sides of the 23-m,n-vacuum 

move relative to the initial stationary state along the x axis with the same velocity vx,, but in different 

directions. This is formally described by the transformation of coordinates [7]: 

t = t,     x = x + vx t,     y=  y,    z= z    – for the mask; (89) 

t= t,     x = x – vxt,     y= y,     z= z   – for the interior. (90) 

The equality of the modules of the speeds of movement vx of the mask and the interior is due to 

the condition of 23-m,n-vacuum balance, which requires that each movement in the 23-m,n-vacuum 

corresponds to a similar anti-motion. 

We differentiate expressions (89) and (90) taking into account that x is a function of two variables 

x(x,t) and vx = const, and substitute the results of differentiation into metrics (83), as a result we obtain 

a set of metrics 

{
 
 

 
 𝑑𝑠(+)2 =   (1 +

𝑣𝑥
2

𝑐2
) 𝑐2𝑑𝑡2 − 𝑑𝑥2 − 𝑑𝑦2 − 𝑑𝑧2,

𝑑𝑠(−)2 = – (1 +
𝑣𝑥
2

𝑐2
) 𝑐2𝑑𝑡2 + 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2,

 

(91) 

which describe the kinematics of the joint motion of the outer side of the 23-m,n-vacuum (i.e. subcont) 

and its inner side (antisubcont), subject to the vacuum balance condition 

ds(–)2 + ds(+)2 = 0. (92) 

The zero components of the metric tensors (82) in this case are equal to 

𝑔0𝑗
(+)

= (

1 + 𝑣𝑥
2/с2 0 0 0
0 . . . . . . . . .
0 . . . . . . . . .
0 . . . . . . . . .

) ,      𝑔𝑖0
(−)

= (

−1 − 𝑣𝑥
2/с2 0 0 0

0 . . . . . . . . .
0 . . . . . . . . .
0 . . . . . . . . .

) . (93) 

the mask and the interior of the outer and inner sides of the 23-m,n-vacuum. 

2). In the second case, let the mask and the interior of the outer and inner sides of the                         

23-m,n-vacuum (i.e., of the subcont and antisubcont) move relative to their initial stationary state in the 

same direction - along the x axis with the same speed vx. This is formally described by the coordinate 

transformations: 
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t= t,     x = x – vx t,     y=  y,     z= z     – for the mask; (94) 

t= t,     x = x – vxt,     y= y,     z= z     – for the interior. (95) 

We differentiate Exs. (94) and (95) taking into account that x is a function of two variables x(x,t) 

and vx = const, and substitute the results of differentiation into metrics (83), as a result we obtain a set 

of metrics 

{
 
 

 
 𝑑𝑠(+)2 = (1 −

𝑣𝑥
2

𝑐2
) 𝑐2𝑑𝑡2 + 𝑣𝑥𝑑𝑥𝑑𝑡 + 𝑣𝑥𝑑𝑡𝑑𝑥 − 𝑑𝑥

2 − 𝑑𝑦2 − 𝑑𝑧2,

𝑑𝑠(−)2 = – (1 −
𝑣𝑥
2

𝑐2
) 𝑐2𝑑𝑡2 − 𝑣𝑥𝑑𝑥𝑑𝑡 − 𝑣𝑥𝑑𝑡𝑑𝑥 + 𝑑𝑥

2 + 𝑑𝑦2 + 𝑑𝑧2.

 (96) 

In this case, 23-m,n-vacuum balance is also observed, because ds(–)2 + ds(+)2 = 0, but additional cross 

terms vxdxdt are appear. In this case, the zero components of the metric tensors (82) are equal to 

𝑔0𝑗
(+)

= (

1 − 𝑣𝑥
2/с2 𝑣𝑥 0 0

𝑣𝑥 . . . . . . . . .
0 . . . . . . . . .
0 . . . . . . . . .

) ,    𝑔𝑖0
(−)

= (

−1 + 𝑣𝑥
2/с2 −𝑣𝑥 0 0

−𝑣𝑥 . . . . . . . . .
0 . . . . . . . . .
0 . . . . . . . . .

) . (97) 

3) In the third case, let the mask and the interior of the outer and inner sides of the 23-m,n-vacuum 

(i.e., of the subcont and antisubcont) rotate around the z-axis in the same direction with the angular 

velocity . These processes are described by the coordinate transformations [7]: 

t = t,    x = x cos t – y sin t,   z = z,    y= x sin t + y cos t, 

t = t,    x = x cos t – y sin t,  z = z,    y = x sin t + y cos t. 
(98) 

We differentiate Exs. (89) and substitute the results of differentiation into metrics (83), as a result 

we obtain the metrics [7] 

{
 
 

 
 𝑑𝑠(+)2 = [1– 

 2

𝑐2
(𝑥2 + 𝑦2)] 𝑐2𝑑𝑡2 + 2 𝑦𝑑𝑥𝑑𝑡 − 2 𝑥𝑑𝑦𝑑𝑡 − 𝑑𝑥2 − 𝑑𝑥2 − 𝑑𝑧2,

𝑑𝑠(−)2 = −[1– 
 2

𝑐2
(𝑥2 + 𝑦2)] 𝑐2𝑑𝑡2 − 2 𝑦𝑑𝑥𝑑𝑡 + 2 𝑥𝑑𝑦𝑑𝑡 + 𝑑𝑥2 + 𝑑𝑥2 + 𝑑𝑧2.

 (99) 

In this case, the 23-m,n-vacuum balance ds(+)2 + ds(–)2 = 0 is observed, and the zero components of 

the metric tensors (82) are equal to 

𝑔0𝑗
(+)

=

(

 
 
1– 

2

𝑐2
(𝑥2 + 𝑦2) 2 𝑦 0 0

−2 𝑥 . . . . . . . . .
0 . . . . . . . . .
0 . . . . . . . . .)

 
 
,  𝑔0𝑖

(−)
=

(

 
 
−1 + 

2

𝑐2
(𝑥2 + 𝑦2) −2 𝑦 0 0

2 𝑥 . . . . . . . . .
0 . . . . . . . . .
0 . . . . . . . . .)

 
 
 . (100) 

 

It can be seen from the considered kinematic examples that the zero components of the metric 

tensors (82) are associated not with deformations, but with the translational and/or rotational motion 

of various layers of the 23-m,n-vacuum. 

2.7. Predictions of the kinetics of vacuum layers 

2.7.1. The limiting speed of movement of 23-m,n-vacuum layers 

Let’s consider one of the metrics (96) 

ds(+)2 = (1– vx2/с2)c2dt2 + 2vxdxdt – dx2 – dy2– dz2. (101) 

We single out in the metric (101) the full square [7,8] 
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𝑑𝑠(−)2 = 𝑑𝑡2

[
 
 
 

с√1 −
𝑣𝑥
2

𝑐2
−
𝑣𝑥
с𝑑𝑡

𝑑𝑥

√1 −
𝑣𝑥
2

𝑐2]
 
 
 
2

−
𝑑𝑥2

1 −
𝑣𝑥
2

𝑐2

− 𝑑𝑦2 − 𝑑𝑧2, (102) 

and introduce the notation 

с′ = с√1 −
𝑣𝑥
2

𝑐2
−

𝑣𝑥

𝑐𝑑𝑡

𝑥

√1−
𝑣𝑥
2

𝑐2

,    𝑡′ = 𝑡,     𝑥′ =
х

√1−
𝑣𝑥
2

𝑐2

,      𝑦′ = 𝑦,     𝑧′ = 𝑧.         
(103) 

In these notations, metric (102) takes the form [7] 

𝑑𝑠(−)
2
= 𝑐′ 2𝑑𝑡′ 2 − 𝑑𝑥′ 2 − 𝑑𝑦′ 2 − 𝑑𝑧′ 2, (104) 

corresponding to the propagation of a beam of light in the reference system of the observer, which 

moves together with the moving side of the 23-m,n-vacuum. 

In this case, the metric (102) describes the propagation of a light beam in a layer of vacuum, 

which moves with a constant speed vx relative to the reference system of a stationary observer. This 

is similar to how a stationary observer measures the speed of waves propagating along a moving 

surface of water (for example, a river). Such an observer will find that the speed of propagation of 

wave disturbances depends on the speed of the river flow, while relative to the water itself, the speed 

of wave propagation remains unchanged, and depends only on the properties of the water itself (its 

density, temperature, impurities, etc.). 

From the first Ex. (103) 

с′ = с√1 −
𝑣𝑥
2

𝑐2
−
𝑣𝑥
𝑐𝑑𝑡

𝑥

√1 −
𝑣𝑥
2

𝑐2

 . (105) 

it can be seen that in the case of (94) – (96) the speed vx of the outer side of the 23-m,n-vacuum (subcont) 

and its inner side (antisubcontact) cannot exceed the speed of light c (the velocity of propagation of 

wave disturbances along these sides), i.e. vx < c. 

However, for the case (89) – (91) the situation is different. Let’s consider this variant of 

intravacuum processes using the example of subcont movement described by the metric (91) 

ds(–)2 = (1+ vx2/с2)c2dt2– dx2 – dy2 – dz2. (106) 

In this case, the introduction of the notation 

с′ = с√1 +
𝑣𝑥
2

𝑐2
,  .,,,' zzyyxxtt ====  (107) 

reduces the metric (106) to the form (104). At the same time, it can be seen from Еxs. (107) that there 

are no restrictions on the speeds vx of the mask and the interior of the subcont. This circumstance 

requires a separate detailed consideration, since it allows the possibility of organizing superluminal 

intra-vacuum communication channels by controlling the movement of vacuum layers. This is one 

of the possible theoretical predictions of the kinetics of the 23-m,n-vacuum layers. 

2.7.2. Inert properties of layers of 23-m,n-vacuum 

Let's return to the consideration of metrics (83) 

ds(+ – – –)2 = ds(+)2 =  c2dt2 – dx2 – dy2 – dz2 , (108) 

ds(– + + +)2 = ds(–)2 = – c2dt2 + dx2 + dy2 + dz2 . (109) 

Let us take out the value с2dt2 on the right-hand sides of these metrics [7] 
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𝑑𝑠(+)
2
= 𝑐2𝑑𝑡2(1 −

𝑣2

𝑐2
), (110) 

𝑑𝑠(−)
2
= −𝑐2𝑑𝑡2(1 −

𝑣2

𝑐2
),

 

 (111) 

where v = (dx2 +dy2 +dz2)1/2/dt = dl/dt is the 3-dimensional velocity. 

We extract the root of the two sides of Exs. (110) and (111). As a result, according to the symbols 

(84) – (87), we get 

𝑑𝑠(+)' = 𝑐𝑑𝑡√1 −
𝑣2

𝑐2

    

– for mask of the subcont; (112) 

𝑑𝑠(+)'' = −𝑐𝑑𝑡√1 −
𝑣2

𝑐2
  – for interior of the subcont; (113) 

𝑑𝑠(−)
′
= 𝑖𝑐𝑑𝑡√1 −

𝑣2

𝑐2
    – for mask of the antisubcont; (114) 

𝑑𝑠(−)′ = −𝑖𝑐𝑑𝑡√1 −
𝑣2

𝑐2
  – for interior of the antisubcont. (115) 

For example, consider the 4-dimensional velocity vector of the mask of the subcont 

ui(+) = dxi /ds(+)′. (116) 

We substitute the linear form (112) into Ex. (116), as a result, we obtain the components of the   

4-velocity of the mask of the subcont [7,8] 

𝑢𝑖
(+)

=

[
 
 
 

1

√1 −
𝑣2

𝑐2

,
𝑣𝑥

𝑐√1 −
𝑣2

𝑐2

,
𝑣𝑦

𝑐√1 −
𝑣2

𝑐2

,
𝑣𝑧

𝑐√1 −
𝑣2

𝑐2]
 
 
 

. (117) 

Let the mask of the subcont move only in the direction of the x-axis, then its 4-velocity has 

components 

𝑢𝑖
(−)

= [
1

√1−
𝑣х
2

𝑐2

,
𝑣𝑥

𝑐√1−
𝑣х
2

𝑐2

, 0,0]. (118) 

Let’s now define the 4-acceleration of the mask of the subcont [8] 

𝑑𝑢𝑖
(+)

с𝑑𝑡
=

[
 
 
 
𝑑

с𝑑𝑡

(

 
1

√1 −
𝑣х
2

𝑐2)

 ,
𝑑

с𝑑𝑡

(

 
𝑣𝑥

𝑐√1 −
𝑣х
2

𝑐2)

 , 0,0

]
 
 
 

 (119) 

and to simplify, consider only its x-component 4-velocity 

𝑑𝑢𝑥
(+)

с𝑑𝑡
=

𝑑

с𝑑𝑡
(

𝑣𝑥

с√1−
𝑣𝑥
2

𝑐2

), 

(120) 

where the value 

𝑑

𝑑𝑡

(

 
𝑣𝑥

√1 −
𝑣𝑥
2

𝑐2)

 = 𝑎𝑥
(+)

 (121) 

has the dimension of the x-component of the 3-dimensional acceleration of the local section of the 

mask of the subcont. 
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On the left side of Ex. (121), we perform the differentiation operation [8] 

𝑎𝑥
(+)

= (
1

√1−
𝑣𝑥
2

𝑐2

+
𝑣𝑥
2

𝑐2(1−
𝑣𝑥
2

𝑐2
)

3
2

)
𝑑𝑣𝑥

𝑑𝑡
 , (122) 

and introduce the notation 

dvx/dt = аx(+)'. (123) 

In this case, Ex. (122) takes the form 

𝑎𝑥
(+)

= (
1

√1−
𝑣𝑥
2

𝑐2

+
𝑣𝑥
2

𝑐2(1−
𝑣𝑥
2

𝑐2
)

3
2

)𝑎𝑥
(+)
′, (124) 

where  

ax(+) is the actual acceleration section of the mask of the subcont, taking into account its inert properties; 

аx(+)' is the ideal acceleration of the same section of the mask of the subcont, without taking into account 

its inert properties. 

Let’s represent Ex. (124) in the following form 

𝑎𝑥
(+)

= 𝜇𝑥
(+)
𝑎𝑥
(+)
′, (125) 

where 

𝜇𝑥
(+)

= (
1

√1−
𝑣𝑥
2

𝑐2

+
𝑣𝑥
2

𝑐2(1−
𝑣𝑥
2

𝑐2
)

3
2

)  (126) 

is the dimensionless kinematic coefficient of inertia of the local area of the mask of the subcont, which 

relates the actual and ideal accelerations of this 23-m,n-vacuum layer. This coefficient shows, within 

the framework of the kinematic approach, how the inertness (i.e., resistance to a change in the state 

of movement) of this section of the mask of the subcont changes with a change in the speed of its 

movement. 

It follows from Ex. (126) that at vх = 0 the kinematic inertia coefficient х(+) = 1 and 𝑎𝑥
(+)

= 𝑎𝑥
(+)
′. 

This means that the section of the mask of the subcont does not exert any resistance to the beginning 

of its movement (or displacement). As vх approaches the speed of light c, the kinematic inertia 

coefficient х(+) tends to infinity, while further acceleration of this 23-m,n-vacuum layer becomes 

impossible. 

Ex. (126) is a massless analog of Newton's second law 

Fx = max, (127) 

where Fx is the x-component of the force vector; m is body weight; ax is the x-component of its ideal 

acceleration. 

Comparing Exs. (125) and (127), we find that the dimensionless coefficient of inertia х(–) of the 

local area of the mask of the subcont is a dimensionless analogue of the density of the inertial mass of 

a continuous medium. 

Sequentially performing actions (116) – (126) with metrics (113) – (115), we obtain the kinematic 

inertia coefficients х(+), х(–), х(–) for three the remaining layers of the two-sided 23-m,n-vacuum. 

The overall kinetic inertia coefficient of the local two-sided section of the 23-m,n-vacuum is a function 

of all four inertia coefficients 

х(±) = f (х(+) , х(–), х(–), х(–) ). (128) 

The explicit form of this function is determined when describing the dynamics of 23-m,n-vacuum, 

which will be presented in subsequent articles of this project. 
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2.7.3. Kinematics of the rupture of the local section of the 23-m,n-vacuum 

"For in much wisdom is much vexation, and he 

who increases knowledge increases sorrow."  

Kohelet (Ecclesiastes 1:18) 

 

Let’s consider the kinematic aspects of the possibility of a "rupture" of the of the local section of 

the two-sided 23-m,n-vacuum. 

We integrate Ex. (121) [8] 

𝑣𝑥

√1−
𝑣𝑥
2

𝑐2

= 𝑎𝑥𝑡 + 𝑐𝑜𝑛𝑠𝑡. (129) 

Integrating expression (129) once more and setting x0 = 0 at t = 0, we obtain the following change 

in the length of the mask of the subcont of the 23-m,n-vacuum along the x axis during its accelerated 

motion [8]: 

𝑥 − 𝑥0 = 𝛥𝑥 =
𝑐2

𝑎х
(√1 +

𝑎х
2𝑡2

𝑐2
− 1). (130) 

Let the initial (i.e., immobile) state of the local section of the subcont be given by the metric (108) 

222222)( zdydxdtdcds −−−=−
. (131) 

The uniformly accelerated motion of this section along the x axis is formally specified by the 

coordinate transformation [8]: 

𝑡′ = 𝑡,      𝑥′ = 𝑥 + 𝛥𝑥 = 𝑥 +
𝑐2

𝑎х
(√1 +

𝑎𝑥
2𝑡2

𝑐2
− 1) , 𝑦′ = 𝑦,     𝑧′ = 𝑧. (132) 

Differentiating the coordinates (132) and substituting the results of differentiation into the metric 

(131), we obtain the following metric [8] 

𝑑𝑠а
(+)2

=
𝑐2𝑑𝑡2

1 + 
𝑎𝑥

2𝑡2

𝑐2

−
2𝑎𝑥𝑡𝑑𝑡𝑑𝑥

√1 + 
𝑎𝑥

2𝑡2

𝑐2

− 𝑑𝑥2 − 𝑑𝑦2 − 𝑑𝑧2, 
(133) 

which describes the uniformly accelerated motion of the local section of the subcont (i.e., the outer 

side of the 23-m,n-vacuum) in the direction of the x axis. 

If, in the same area of the subcont, an additional flow with uniformly slow motion (i.e., with 

negative acceleration) is created,  

𝑑

𝑑𝑡

(

 
𝑣𝑥

√1 − 
𝑣𝑥
2

𝑐2)

 = −𝑎𝑥 (134) 

then, doing mathematical calculations similar to (130) – (133), we get the metric 

𝑑𝑠𝑏
(+)2

=
𝑐2𝑑𝑡2

1− 
𝑎х
2𝑡2

𝑐2

−
2𝑎х𝑡𝑑𝑡𝑑𝑥

√1− 
𝑎х
2𝑡2

𝑐2

− 𝑑𝑥2 − 𝑑𝑦2 − 𝑑𝑧2. (135) 

In this case, the average metric-dynamic state of the local section of the subcont will be 

characterized by the averaged metric 

 



 26 

 

< 𝑑𝑠(+) >2=
1

2
(𝑑𝑠а

(+)2
+ 𝑑𝑠𝑏

(+)2
) =

𝑐2𝑑𝑡2

1 − 
𝑎𝑥
4𝑡4

𝑐4

−

𝑎𝑥𝑡 (√1 − 
𝑎𝑥
2𝑡2

𝑐2
+ √1 + 

𝑎𝑥
2𝑡2

𝑐2
)𝑑𝑡𝑑𝑥

√1 − 
𝑎𝑥
4𝑡4

𝑐4

− 𝑑𝑥2 − 𝑑𝑦2 − 𝑑𝑧2 

with signature (+ – – –). (136) 

It can be seen from the metric (106) that in the case 

𝑎х
4𝑡4

𝑐4
= 1,  or   |ах|t = c  or  |ах| = c /t, (137) 

the first and second terms in the averaged metric (136) go to infinity. This singularity can be 

interpreted as a "rupture" of the subcont area under study (i.e., a "rupture" of the local region of the 

23-m,n-vacuum outer side). 

Breaking a subcont is an incomplete action. For a complete "rupture" of the local section of the   

23-m,n-vacuum, it is necessary to “break” its inner side, described by the metric (109) with the 

signature (– + + +). To do this, it is necessary to create similar uniformly accelerated and uniformly 

retarded flows in the same region of space in the antisubcont (i.e., in the inner side of the              

23-m,n-vacuum), so that its average state is determined by the averaged metric 

< 𝑑𝑠(−) >2=
1

2
(𝑑𝑠𝑎

(−)2
+ 𝑑𝑠𝑏

(−)2
) = −

𝑐2𝑑𝑡2

1 − 
𝑎𝑥
4𝑡4

𝑐4

+

𝑎𝑥𝑡 (√1 − 
𝑎𝑥
2𝑡2

𝑐2
+ √1 + 

𝑎𝑥
2𝑡2

𝑐2
)𝑑𝑡𝑑𝑥

√1 − 
 𝑎𝑥
4𝑡4

𝑐4

+ 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 ,   (138) 

with a signature (– + + +), which "breaks" under the same conditions 

𝑎х
4𝑡4

𝑐4
= 1, or   |ах|t = c,   or   |ах| = c /t. (139) 

Averaging metrics (136) and (138) leads to the fulfillment of the vacuum condition 

<< 𝑑𝑠 >>𝟐= 1 2⁄ (< 𝑑𝑠(+) >2 + < 𝑑𝑠(−) >2) = 0 (140) 

which in this situation is equivalent to Newton's third law: – "Action is equal to reaction": 

Fx(+) – Fx(–)  =  max(+) – max(–) =  ax(+) – ax(–). (141) 

That is, the process of "rupture" of the local region of the m,n-vacuum is similar to the rupture of 

an ordinary (atomistic) solid body, to which sufficiently large equal forces (more precisely, 

accelerations) are applied from its two sides. 

It is not excluded that the conditions of "rupture" described above  -11, -13 -vacuum are formed in 

the collision of oncoming flows of elementary particles accelerated on the collider. It is possible that 

a strong collision of particles leads to the emergence of a web of vacuum "cracks", while the closed 

cracks scatter in the form of many new "particles" and "antiparticles". 

To obtain "rupture" of the vacuum of large scales, it is necessary to initiate accelerated flows of 

different sides of the 2,3 -vacuum (see §1 in the article [1]). 

Apparently, "ruptures" of vacuum of various scales occur in the nature around us, for example, 

when new particles are born from the void during the collision of atmospheric molecules with cosmic 

radiation, or during lightning flashes in rain clouds. We are here only trying to describe these 

phenomena on the basis of a geometrized vacuum physics based on the Algebra of Signatures. 

However, the development of “zero” (vacuum) technologies is fraught with great dangers. Therefore, 

in parallel with the development of vacuum physics (in particular, the kinetics of vacuum layers), it 

is necessary to rethink the religious and philosophical aspects of modern science, to develop "Vacuum 

Ethics", "Vacuum Aesthetics" and "Vacuum Psychology". Otherwise, this knowledge will not benefit 

our civilization [5,9]. 
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3. Conclusions 

                                               “Whoever fights monsters, you yourself do not 

become a monster.  And when you gaze long  

into an Abyss, the Abyss also gazes into you.” 

Friedrich W. Nietzsche 

“Jenseits Gut und böse” (Beyond Good and evil) 

 

This article is the third part of a unified study under the general title "Geometrized vacuum 

physics based on the Algebra of Signatures". 

In the first two parts of this study, presented in the author's articles [1,2], a method was proposed 

for studying an ideal (i.e., non-curved and stationary) vacuum region by probing it with mutually 

perpendicular light rays with different wavelengths m,n. This method made it possible in the first 

two articles [1,2] to lay the foundations first of the Algebra of Stignatures, and then of the Algebra of 

Signatures. 

This article considers the possibilities of describing the curved state of the same region of the 

vacuum on the basis of further development of the mathematical apparatus of the Algebra of 

Signatures. 

We list the main results obtained in this article: 

1) On the example of one of the m,n-vacuums, it is shown that many levels of consideration of 

its curvatures are possible. The simplest of them is at least double-sided. This level of consideration 

implies that the empty space (vacuum) surrounding us has at least two 4-dimensional sides, which 

can be conditionally called: the outer side with the Minkowski space signature (+ – – –), and the inner 

side with the completely opposite signature of anti-Minkowski space (– + + +). In this case, to describe 

the curvature of the local region of the two-sided 23-m,n-vacuum, not 16 components of the metric 

tensor are required, as in a one-sided theory, for example, in general relativity, but 16 + 16 = 32 = 25 

components of the metric tensor. The next level of consideration is the m,n-vacuum with 16 sides.   

At this level of consideration, to describe the curvature of the local region of the sixteen-sided                    

26-m,n-vacuum, already 16 × 16 = 256 = 28 components of the metric tensor are required. In this case, 

the description of the curvature is much more accurate than with a two-sided description.          

The mathematical apparatus of the Algebra of Stignatures provides for the possibility of increasing 

the number of metric tensor components describing the curvature of the local region of the         

m,n-vacuum to infinity (see §2.9 in [2]). 

2) It is shown that a length element on one side of a two-sided space with completely opposite 

signatures corresponds to a perpendicular element on its other side (see §2.5.2 of this article). This, at 

first glance, simple observation entails very significant consequences. This circumstance is the reason 

why many intra-vacuum and macroscopic processes turn into spirals. 

3) The physical meaning of the zero and non-zero components of the metric tensor is revealed 

in the framework of the proposed "Geometrized vacuum physics" (see §2.6 of this article). 

4) The 4-strain tensor and the components of the relative elongation vector are introduced for 

two-sided and 16-sided consideration of the m,n-vacuum curvatures (see §§2.5.2 and 2.5.3 of this 

article). 

5) Some aspects of the kinematics of the layers of m,n-vacuum are considered (see §2.7 of this 

article). This made it possible to analyze the inert properties of the m,n-vacuum (see §2.7.1), and to 

predict the possibility of displacement of vacuum layers at a speed much higher than the speed of 

light (see §2.7.2). At the same time, it is shown that the longitudinal displacement of the outer and 

inner sides of the m,n-vacuum relative to each other inevitably leads to their twisting into a spiral 

bundle. 

6) A kinematic model of the possibility of a local “rupture” of m,n-vacuum is considered                  

(see §2.7.3). 

The "Geometrized vacuum physics based on the Algebra of Signatures" proposed in articles [1,2] 

and in this article is far from being completed, but already now, within the framework of this research 
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program, the possibility of developing “zero” (i.e., vacuum) technologies. At the same time, it is 

obvious that the development of these technologies requires a significant increase in the 

responsibility of mankind to the Universe [5,9]. 

Acknowledgments: I express my sincere gratitude to R. Gavriil Davydov, David Reid and R. Eliezer Rahman 

for their assistance. The discussion of the article was attended by Academician of the Russian Academy of 

Sciences Shipov G.I., Ph.D. Lukyanov V.A., Lebedev V.A., Prokhorov S.G. and Khramikhin V.P. Also, the author 

is grateful for the support of Salova M.N., Morozova T.S., Przhigodsky S.V., Maslov A.N., Bolotov A.Yu., Ph.D. 

Levi T.S., Musanov S.V., Batanova L.A., Ph.D. Myshelov E.P., Chivikov E.P.  

References 

1. Batanov-Gaukhman, M. (2023) “Geometrized vacuum physics. Part I. Algebra of Stignatures“. 

https://doi.org/10.20944/preprints202306.0765.v1. 

2. Batanov-Gaukhman, M. (2023) “Geometrized vacuum physics. Part II. Algebra of Signatures“. 

https://doi.org/10.20944/preprints202307.0716.v1. 

3. Sedov, L.I. (1994) ”Continuum mechanics. T1”, – Moscow: Nauka, [in Russian]. (Available in English "A 

course in continuum mechanics", translation from the Russian, ed. by J. R. M. Radok). 

4. Shipov, G. (1998) ”A Theory of Physical Vacuum”, – Moscow ST-Center, Russia ISBN 5 7273-0011-8. 

(available in English). 

5. Gaukhman, M.Kh. (2007) "Algebra of Signatures "Void" (yellow Alsigna), – Moscow: URSS, p. 308, ISBN 

978-5-382-00580-5, (available at www.alsigna.ru). 

6. Gaukhman, M.Kh. (2017) "Algebra of Signatures "Massless physics" (purple Alsigna). – Moscow: Filin, 

ISBN 978-5-9216-0104-8 (available in English http://metraphysics.ru/). 

7. Landau, L.D. & Lifshits, E.M. (1988) "Field theory". Vol. 2. – Moscow: Nauka, p. 509, ISBN 5-02-014420-7 

[in Russian]. (available in English "The Classical theory of fields", Vol. 2. fourth English edition). 

8. Logunov, A.A. (1987) "Lectures on the theory of relativity and gravity", – Moscow: Nauka, p. 271 [in 

Russian]. 

9. Gaukhman, M.Kh. (2007) "Algebra of Signatures "NAMES" (orange Alsigna), – Moscow: LKI, p.228, ISBN 

978-5-382-00077-0 (available on site www.alsigna.ru) [in Russian].  

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those 

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) 

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or 

products referred to in the content. 

https://doi.org/10.20944/preprints202306.0765.v1
https://doi.org/10.20944/preprints202307.0716.v1
http://www.alsigna.ru/
http://metraphysics.ru/
http://www.alsigna.ru/

