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This study seeks to unveil groundbreaking concepts challenging conventional ideas, providing a fresh outlook
on the underpinnings of classical physics and relativity. Employing a meticulous and systematic analytical ap-
proach, this work unearths innovative understandings that transcend the traditional constraints associated with
these domains. The findings not only enrich the theoretical framework of classical physics and relativity but also
carry practical implications. Embracing these novel ideas is poised to trigger a paradigm shift in the compre-
hension of classical physics and relativity, unlocking new avenues for exploration and advancement.
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I. INTRODUCTION

Scientific breakthroughs often stem from the inspiration
drawn from well-established basic ideas. The paper com-
mences by examining the rotating unbalance, uncovering
novel aspects of classical mechanics [1, 2]. A mathematical
proof is presented that anticipates motion induced by non-
collinear internal forces, leading to a more profound under-
standing of the action-reaction principle. The gravitational
redshift phenomenon from general relativity serves as a dis-
tinctive departure point for the remainder of this work, which
introduces a novel concept—the varying propagation speed of
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light [3–14]—while maintaining the original gravitational red-
shift equation. This insight has a significant impact on other
disciplines, including general [15] and special relativity [16],
which are essential parts of a broader conceptual framework.
The study advances by widening its scope to include the elec-
trostatic forces governing charged particles. By deriving the
Casimir force [17] from the non-Coulomb component of the
total electrostatic force, a link to the gravitational force [1, 2]
is established, enabling the deduction of the universe’s prop-
erties [18–20] without relying on Hubble’s constant [21]. Ex-
amining charged particles helps uncover the intricate prop-
erties of the electromagnetic field, unveiling the mysterious
magnetic monopole [22] and clarifying its definition and lo-
cation. Furthermore, additional forms of charges are incorpo-
rated into the standard boundaries of an electric charge. These
include magnetic, gravitational, and inertial charges, as well as
gravitational permittivity and inertial permeability, leading to
the unification [23–28] of electromagnetism [29, 30] with the
forces of gravity and inertia [31–34]. Exploring the unknown
realms of electrogravity and magnetoinertia, we propose a ba-
sic experimental setup to demonstrate the magnetoinertia phe-
nomenon, opening up new avenues for controlling gravity and
inertia. The intellectual journey expands to special relativity
[16, 35–44], pushing boundaries and transcending the conven-
tional constraints of the speed of light. This paper includes
an extension of the Lorentz transformation, allowing object
speeds that could cross or even exceed the established light-
speed barrier [39, 42, 44–60]. This scientific study is notable
for its seamless integration of ideas, aimed at challenging ac-
cepted paradigms, sparking debate, and promoting more re-
search.

II. CLASSICAL MECHANICS

Contents

A. Strong Law of Action-Reaction

Newton’s Third Law, also referred to as the strong law of ac-
tion and reaction, states that every action will produce a reac-
tion of equal magnitude and opposite direction along the same
line joining the objects involved. Let us examine the inter-
action between two objects, A and B. According to Newton’s
Third Law, the force exerted by object A on object B is equal
in magnitude and opposite in direction to the force exerted by
object B on object A, thus

∑ 𝐹𝑒𝑥𝑡 ⇒ 𝐹𝐴→𝐵 = −𝐹𝐵→𝐴, (1)
𝐹𝐴→𝐵 ⋅ Δ𝑡 = −𝐹𝐵→𝐴 ⋅ Δ𝑡, (2)

Δ𝑝𝐴 = −Δ𝑝𝐵 , (3)
𝑚𝐴 = 𝑀 and 𝑚𝐵 = 2𝑚, (4)
𝑀 ⋅ Δ𝑢𝐴 = −2𝑚 ⋅ Δ𝑢𝐵 , (5)

Δ𝑢𝐴 ≠ Δ𝑢𝐵 ⇒ 𝑀 ⋅ Δ𝑢𝐴 = −2𝑚 ⋅ Δ𝑢𝐵 (6)
The above scenario pertains to external forces applied to two

objects that are interacting, leading to the exchange of momen-
tum between them. Now, let’s examine the scenario in which

one of the objects involved is a component of a larger system.
Here, we are going to address internal forces

∑ 𝐹𝑖𝑛𝑡 ⇒ 𝐹𝐴→𝐵 = −𝐹𝐵→𝐴, (7)
𝐹𝐴→𝐵 ⋅ Δ𝑡 = −𝐹𝐵→𝐴 ⋅ Δ𝑡, (8)

Δ𝑝𝐴 = −Δ𝑝𝐵 , (9)
𝑚𝐴 = 𝑀 − 2𝑚 and 𝑚𝐵 = 2𝑚, (10)

(𝑀 − 2𝑚) ⋅ Δ𝑢𝐴 = −2𝑚 ⋅ Δ𝑢𝐵 , (11)
Δ𝑢𝐴 = Δ𝑢𝐵 ⇒ 𝑀 ⋅ Δ𝑢𝐴 = 0 (12)

The action-reaction principle asserts that collinear internal
forces within an isolated system do not induce any acceleration
in the system. Does this also apply to forces that are not in the
same line? The following section shows that this is not the
case.

B. Rotating Unbalance

The graph in FIG. (1) illustrates rotational unbalance,
caused by an unequal distribution of mass in a rotating part re-
sulting in vibrations throughout the system. The analysis that
follows emphasizes the critical fact that no external forces are
acting on the system, such as gravity, and instead, the system
depends solely on internal forces manifested by the angular
momentum of the rotational components. In simple terms, the
system can be considered isolated in terms of excitation. The
differential equation governing the system along the y-axis is
as follows

𝜃 = 𝜔𝑡, (13)
0 ≤ 𝜃 ≤ 𝜋/2 ⇒ 0 ≤ 2𝜃 ≤ 𝜋, (14)

(𝑀 − 2𝑚) d2𝑦
d𝑡2 + (15)

𝑚 (
d2𝑦
d𝑡2 − 𝑟𝜔2𝑠𝑖𝑛(𝜋 − 𝜔𝑡)) +

𝑚 (
d2𝑦
d𝑡2 − 𝑟𝜔2𝑠𝑖𝑛(𝜔𝑡)) = −𝑐 d𝑦

d𝑡 − 𝑘𝑦

Assuming the same stiffness (𝑘) and damping coefficient (𝑐)
on the x-axis as in the y-axis, the system’s differential equation
along the x-axis is

(𝑀 − 2𝑚) d2𝑥
d𝑡2 + (16)

𝑚 (
d2𝑥
d𝑡2 − 𝑟𝜔2𝑐𝑜𝑠(𝜋 − 𝜔𝑡)) +

𝑚 (
d2𝑥
d𝑡2 − 𝑟𝜔2𝑐𝑜𝑠(𝜔𝑡)) = −𝑐 d𝑥

d𝑡 − 𝑘𝑥,

𝑀 d2𝑥
d𝑡2 + 𝑐 d𝑥

d𝑡 + 𝑘𝑥 = 0 ⇒ 𝑀 d2𝑥
d𝑡2 = 0 (17)

Eq. (17) shows that there is no acceleration along the x-axis
because the excitation forces from the counter-rotating com-
ponents cancel each other out, leading to the absence of vibra-
tions. Vibrations arise along the y-axis due to the constructive
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influence of excitation forces. Using Eq. (15), we obtain

𝑀 d2𝑦
d𝑡2 + 𝑐 d𝑦

d𝑡 + 𝑘𝑦 = 2𝑚𝑟𝜔2𝑠𝑖𝑛(𝜔𝑡) (18)

Setting the amplitude 2𝑚𝑟𝜔2 to equal 𝐹𝑜 results in

𝐹𝑜 = 2𝑚𝑟𝜔2 ⇒ 𝐹𝑒𝑥𝑡 = 𝐹𝑜𝑠𝑖𝑛(𝜔𝑡), (19)

𝑀 d2𝑦
d𝑡2 + 𝑐 d𝑦

d𝑡 + 𝑘𝑦 = 𝐹𝑜𝑠𝑖𝑛(𝜔𝑡) = 𝐹𝑒𝑥𝑡 (20)

Eqs. (18) and (20) are equivalent and depict the motion of
the system, demonstrating the influence of external forces on
it. The centrifugal force generated by an unbalanced mass acts
radially outward from the rotation axis. In the equation of mo-
tion (vibration model), this force can be described as an ex-
ternal force (𝐹𝑒𝑥𝑡) with a positive sign. When our goal is not
on modeling vibrations but on studying the system’s response
based on the action-reaction principle, Eq. (20) simplifies to
a system stimulated by an external force. This statement chal-
lenges the idea of an isolated system since there are no external
forces present in our configuration. Thus,

𝑀 d2𝑦
d𝑡2 = 2𝑚 ⋅ 𝑟𝜔2𝑠𝑖𝑛(𝜔𝑡) = 𝐹𝑒𝑥𝑡 (21)

By considering the excitation force as an internal force
directed towards the center (centripetal force), the equation
given can be interpreted based on the action-reaction princi-
ple

𝑀 d2𝑦
d𝑡2 = −2𝑚 ⋅ 𝑟𝜔2𝑠𝑖𝑛(𝜔𝑡) = 𝐹𝑖𝑛𝑡, (22)

−2𝑚 ⋅ 𝑟𝜔2𝑠𝑖𝑛(𝜔𝑡) < 0 ⇒ 𝑀 d2𝑦
d𝑡2 > 0, (23)

2𝑚 ⋅ 𝑟𝜔2𝑠𝑖𝑛(𝜔𝑡) > 0 ⇒ −𝑀 d2𝑦
d𝑡2 < 0 (24)

Both equations demonstrate that the second derivative of the
position leads to a nonzero acceleration of the system. New-
ton’s third law states that in an isolated system (with no exter-
nal forces), internal forces do not cause any acceleration of the
system. Given the assumption we made before (no restoring
and damping force), how does Eq. (22) leads to a different re-
sult? Wemay justify this by describing the forces acting on the
isolated system in terms of action-reaction pairs, both collinear
and non-collinear. With respect to the mass 𝑀 , the net force
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FIG. 1. Rotating Unbalance-Primal Mechanical Inertial Drive. It
refers to an asymmetrical distribution of mass in a spinning compo-
nent, causing vibrations and disturbances in the entire system. The
graph depicts a rotating unbalance characterized by a specific con-
figuration, including two counter-rotating masses intentionally posi-
tioned to neutralize vibrations solely along the x-axis. Without the
𝑘 and 𝑐 components, the illustrated rotating unbalance turns into a
primal mechanical inertial drive.

acting along the y-axis is

∑ 𝐹𝑦 = (𝑀 − 2𝑚) d2𝑦𝑅
d𝑡2 , (25)

(𝑀 − 2𝑚) d2𝑦𝑅
d𝑡2 = −𝑚

d2𝑦𝐴1

d𝑡2 − 𝑚
d2𝑦𝐴2

d𝑡2 , (26)

𝑦𝑅 = 𝑦 ± 𝑟𝑜 ⋅ 𝑠𝑖𝑛(𝜔𝑜𝑡), (27)
𝑦𝐴1 = 𝑦 ± 𝑟 ⋅ 𝑠𝑖𝑛(𝜋 − 𝜔𝑡), (28)

𝑦𝐴2 = 𝑦 ± 𝑟 ⋅ 𝑠𝑖𝑛(𝜔𝑡), (29)

(𝑀 − 2𝑚) d2𝑦
d𝑡2 ∓ (𝑀 − 2𝑚) 𝑟𝑜𝜔2

𝑜𝑠𝑖𝑛(𝜔𝑜𝑡) = (30)

−𝑚d2𝑦
d𝑡2 ± 𝑚𝑟 ⋅ 𝜔2𝑠𝑖𝑛(𝜋 − 𝜔𝑡)

−𝑚d2𝑦
d𝑡2 ± 𝑚𝑟 ⋅ 𝜔2𝑠𝑖𝑛(𝜔𝑡)

(𝑀 − 2𝑚) d2𝑦
d𝑡2 ∓ (𝑀 − 2𝑚) 𝑟𝑜𝜔2

𝑜𝑠𝑖𝑛(𝜔𝑜𝑡) = (31)

−2𝑚d2𝑦
d𝑡2 ± 2𝑚𝑟 ⋅ 𝜔2𝑠𝑖𝑛(𝜔𝑡)

When the excitation force is regarded as internal complying
with the definition of the isolated system, the ∓ on the left-
hand side of Eq. (31) changes to +, while the right-hand side
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± changes to −, thus

(𝑀 − 2𝑚) d2𝑦
d𝑡2 + (𝑀 − 2𝑚) 𝑟𝑜𝜔2

𝑜𝑠𝑖𝑛(𝜔𝑜𝑡) = (32)

−2𝑚d2𝑦
d𝑡2 − 2𝑚𝑟 ⋅ 𝜔2𝑠𝑖𝑛(𝜔𝑡)

C. Weak Law of Action-Reaction

Eq. (32) can be restated in terms of the weak law of action-
reaction (some forces do not act along the line joining the ob-
jects involved), by incorporating the overall angular momen-
tum of the system along with the angular momentum of the
intrinsic components caused by the internal excitation forces
(isolated system). Therefore,

𝐹𝑅 + 1
𝑟𝑜

𝑑𝐿𝑅
𝑑𝑡 = − (𝐹𝐴 + 1

𝑟
𝑑𝐿𝐴
𝑑𝑡 ) , (33)

𝐹𝑅 = (𝑀 − 2𝑚) d2𝑦
d𝑡2 , (34)

1
𝑟𝑜

𝑑𝐿𝑅
𝑑𝑡 = (𝑀 − 2𝑚) 𝑟𝑜𝜔2

𝑜𝑠𝑖𝑛(𝜔𝑜𝑡), (35)

𝐹𝐴 = 2𝑚d2𝑦
d𝑡2 , (36)

1
𝑟

𝑑𝐿𝐴
𝑑𝑡 = 2𝑚𝑟 ⋅ 𝜔2𝑠𝑖𝑛(𝜔𝑡) (37)

Considering the Eqs. (33), (34) and (35), the total angu-
lar momentum induced in the system by the rotating intrinsic
components, is

𝑟A1 = [−𝑟𝑥, 𝑟𝑦, 0] and𝑟A2 = [𝑟𝑥, 𝑟𝑦, 0], (38)
𝐹A1 = [−𝐹𝑥, −𝐹𝑦, 0] and𝐹A2 = [𝐹𝑥, −𝐹𝑦, 0], (39)

1
𝑟𝑜

𝑑𝐿𝑅
𝑑𝑡 = 1

|𝑟𝑜| |(⃗𝑟A1 ×𝐹A1) + (⃗𝑟A2 ×𝐹A2)| = (40)

1
|𝑟𝑜|

|
|
||

̂𝑖 ̂𝑗 �̂�
−𝑟𝑥 𝑟𝑦 0
−𝐹𝑥 −𝐹𝑦 0

|
|
||

+ 1
|𝑟𝑜|

|
|
||

̂𝑖 ̂𝑗 �̂�
𝑟𝑥 𝑟𝑦 0
𝐹𝑥 −𝐹𝑦 0

|
|
||

= |0⃗| (41)

Consequently, Eq. (33) becomes

1
𝑟𝑜

𝑑𝐿𝑅
𝑑𝑡 = 0, (42)

𝐹𝑅 = − (𝐹𝐴 + 1
𝑟

𝑑𝐿𝐴
𝑑𝑡 ) (43)

Eq. (43) states that the system’s collinear reaction force is
equal to the total of rotating components’ collinear and non-
collinear (as projected on the y-axis) actions, but in the oppo-
site direction. Assuming the components move solely along
the y-axis, Eq. (43) turns into Newton’s strong form of action-
reaction principle

1
𝑟

𝑑𝐿𝐴
𝑑𝑡 = 0 ⇒ 𝐹𝑅 = −𝐹𝐴 (44)

D. Mechanical Inertial Drive

Employing Eqs. (42) and (43), Eq. (32) transforms to

𝑀 d2𝑦
d𝑡2 = −2𝑚𝑟 ⋅ 𝜔2𝑠𝑖𝑛(𝜔𝑡) (45)

Eq. (45) shows that an isolated system can accelerate by
using internal non-collinear forces. In contrast, an external
observer with no understanding of the isolated system’s un-
derlying mechanics can only rely on Newton’s second law of
motion. As we know Newton’s second law of motion is re-
lated to an external force, and for one to justify the motion of
an isolated system, one has only one alternative, to postulate
the existence of the system’s inertia manipulation, therefore

𝐹𝑒𝑥𝑡 = 𝑀 ⋅ 𝑎 ⇒ 𝐹𝑖𝑛𝑡 = −𝑑𝑀
𝑑𝑡 𝑢𝑚𝑎𝑥 = −𝑑𝑀 ⋅ 𝑎𝑚𝑎𝑥, (46)

𝑎𝑚𝑎𝑥 ∫
𝑀𝑖

𝑀
𝑑𝑀 = − ∫ 𝑑(𝐹𝑖𝑛𝑡), (47)

𝑀𝑖 = 𝑀 (1 − 𝐹𝑖𝑛𝑡
𝑀 ⋅ 𝑎𝑚𝑎𝑥 ) = (48)

Similarly, Eq. (45) can be transformed into an expression
that is independent of time as follows

𝑀 d2𝑦
d𝑡2 = 𝑑𝑀 ⋅ 𝑎𝑚𝑎𝑥 = −2𝑚𝑟 ⋅ 𝜔2𝑠𝑖𝑛(𝜔𝑡) = (49)

−2𝑚𝑟 ⋅ 𝜔𝑑𝜔

𝑎𝑚𝑎𝑥 ∫
𝑀𝑖

𝑀
𝑑𝑀 = −2𝑚𝑟 ∫

𝜔

0
𝜔𝑑𝜔, (50)

𝑀𝑖 = 𝑀 (1 − 𝑚
𝑀

𝑟𝜔2

𝑎𝑚𝑎𝑥 ) = 𝑀 (1 − 𝑚
𝑀

𝜔2

𝜔2
𝑐 ) , (51)

0 ≤ Δ𝜃 ≤ 𝜋 ⇒ 𝜔
𝜔𝑐

= Δ𝜃
𝜋 , (52)

𝑀𝑖 = 𝑀 (1 − 𝑚
𝑀 (

Δ𝜃
𝜋 )

2

) (53)

Eq. (53) describes the change in the system’s inertia when
Δ𝜃 is not zero, which causes the system to accelerate. In other
words, Eq. (53) is the fundamental equation that describes a
primal mechanical inertial drive as depicted in FIG. (1) leaving
out the 𝑘 and 𝑐 elements.

E. Aristotle’s Law of Inertia

The author claims that the concept of the inertial drive
should have been discovered much earlier. FIG. (1) illustrates
a wing motion resembling that of a bird or indicates the fun-
damental principle by which propellers generate thrust. Put
plainly, without angular momentum in the wings of birds or
the propellers of a ship, thrust force cannot be generated. The
force produced by an inertial drive is more closely related to
Aristotle’s than Newton’s law of inertia. When dealing with
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finite quantities, Eq. (49) simplifies to

Δ𝑀 ⋅ 𝑎𝑚𝑎𝑥 = −2𝑚𝑟 ⋅ 𝜔Δ𝜔 = −2𝑚 ⋅ 𝑢𝑚𝑎𝑥
Δ𝜔
2𝜋 , (54)

𝑢𝑚𝑎𝑥
Δ𝜔
𝜋 = 𝑢𝑚𝑎𝑥

Δ𝜃
𝜋 ⋅ 𝑡𝑜

= 𝑢
𝑡𝑜

⇒ 𝑡𝑜 = 𝑐𝑜𝑛𝑠𝑡, (55)

0 ≤ Δ𝜃 ≤ 𝜋, (56)

𝐹𝐴𝑟𝑖𝑠𝑡𝑜𝑡𝑙𝑒 = Δ𝑀 ⋅ 𝑎𝑚𝑎𝑥 = −𝑚
𝑡𝑜

𝑢 = −𝑚
𝑡𝑜

𝑢𝑚𝑎𝑥
Δ𝜃
𝜋 (57)

Eq. (57) confirms Aristotle’s law of inertia, which states
that an object can only be set in motion when a force is exerted
on it, and this force is directly proportional to a speed. When
the speed is zero, the resultant force becomes zero, resulting
in the absence of any motion. But how might this work? We
will use the following example to test the behavior of the sys-
tem according to Aristotle’s law of inertia which essentially
describes the behavior of the primal inertial drive, thus

0 ≤ 𝑡 ≤ 𝑡𝑜/2 ⇒ Δ𝜃 = 𝜋
𝑡𝑜

Δ𝑡 ⇒ (58)

𝑢 = 𝑢𝑚𝑎𝑥
Δ𝜃
𝜋 = 𝑢𝑚𝑎𝑥/2 ⇒ (59)

Δ𝑝 = 𝑚 ⋅ 𝑢𝑚𝑎𝑥
Δ𝜃
𝜋 = 𝑚 ⋅ 𝑢𝑚𝑎𝑥/2 ⇒

Δ𝑝𝑀 = Δ𝑀 ⋅ 𝑎𝑚𝑎𝑥𝑡𝑜 = −𝑚 ⋅ 𝑢𝑚𝑎𝑥/2,
𝑡𝑜/2 ≤ 𝑡 ≤ 𝑡𝑜 ⇒ Δ𝜃 = 𝜋

2 − 𝜋
𝑡𝑜

Δ𝑡 ⇒ (60)

𝑢 = 𝑢𝑚𝑎𝑥
Δ𝜃
𝜋 = 0 ⇒

Δ𝑝 = 𝑚 ⋅ 𝑢𝑚𝑎𝑥
Δ𝜃
𝜋 = 0 ⇒

Δ𝑝𝑀 = Δ𝑀 ⋅ 𝑎𝑚𝑎𝑥𝑡𝑜 = 0

During the time interval of 𝑡𝑜/2, we progressively raise (e.g.
through a variable resistor) the angle, and on the next time
interval of 𝑡𝑜/2 gradually come to a stop (we stop varying the
resistor value). The outcome in terms of the alteration in the
system’s momentum and the distance traveled by the system
during the time interval denoted as 𝑡𝑜, is

Δ𝑡 = 𝑡𝑜 ⇒ Δ𝑝 = 0 ⇒ Δ𝑝𝑀 = 0 ⇒ 𝑝𝑀 = 𝑝′
𝑀 = 0 (61)

The above conclusion proves the principle of inertia as pos-
tulated by Aristotle, which states that in the absence of any
force (internal, in this context), an object (or system, in this
context) would remain at rest. With respect to the distance
(𝑑𝑡𝑜𝑡𝑎𝑙) covered by the system, we have

0 ≤ 𝑡 ≤ 𝑡𝑜/2 ⇒ 𝑑𝑎 = 𝑢𝑚𝑎𝑥
𝑡𝑜 ∫

𝑡𝑜/2

0
𝑡𝑑𝑡 = 𝑢𝑚𝑎𝑥

𝑡𝑜

𝑡2
𝑜
8 , (62)

𝑡𝑜/2 ≤ 𝑡 ≤ 𝑡𝑜 ⇒ 𝑑𝑑 = 𝑢𝑚𝑎𝑥
𝑡𝑜 ∫

𝑡𝑜

𝑡𝑜/2
𝑡𝑑𝑡 = (63)

𝑢𝑚𝑎𝑥
𝑡𝑜
2 − 𝑢𝑚𝑎𝑥

𝑡𝑜

𝑡2
𝑜
8

𝑑𝑡𝑜𝑡𝑎𝑙 = 𝑑𝑎 + 𝑑𝑑 = 𝑢𝑚𝑎𝑥
𝑡𝑜
2 (64)

Does Newton’s law of inertia anticipate identical outcomes?
According to Newton’s law of inertia, it is possible to not have
a deceleration phase, allowing the system to reach its maxi-
mum speed within the same total interval (𝑡𝑜). Then, in the
absence of any further external force, the system will maintain
its maximum speed. Conversely, according to Aristotle’s law
of inertia and in alignment with the principle of the primal in-
ertial drive we have just demonstrated, maintaining the angle
of the rotating components unchanged leads to an abrupt halt
of the system.

III. VARYING PROPAGATION SPEED OF LIGHT

Contents

The speed at which light travels, denoted by the symbol c,
is a constant value that remains the same in both special and
general relativity as also in electromagnetism. The constancy
mentioned in special relativity is a fundamental principle that
results in time dilation and length contraction when objects
move at high speeds. In general relativity, the constancy of
the speed of light is integrated into the curvature of space-
time, substantially altering the gravitational behavior of large
objects.

A. Gravitational Field

The gravitational redshift effect describes how photons lose
energy as they go from a region of higher gravitational poten-
tial to a region of lower (or null) gravitational potential. The
non-relativistic manifestation of this effect can be derived in
the following manner

𝑑𝑈 = −𝑚𝑑𝑉𝐺 = 𝑊𝐹𝑟→∞ , (65)

ℎ ∫
𝑓

𝑓𝑜
𝑑𝑓 = −𝑚 ∫

+∞

𝑟

𝐺𝑀
𝑟2 𝑑𝑟, (66)

𝑚 = ℎ𝑓𝑜/𝑐2 ⇒ ℎ (𝑓 − 𝑓𝑜) = −𝐺𝑀 ⋅ ℎ𝑓𝑜
𝑟𝑐2 , (67)

𝑟 >> 2𝐺𝑀
𝑐2 ⇒ ℎ𝑓 = ℎ𝑓𝑜 (1 − 𝐺𝑀

𝑟𝑐2 ) (68)

Instead of employing difficult mathematical concepts like
metric tensors and geodesics to establish the relativistic ver-
sion of Eq. (68), we will utilize a reverse-like approach based
on the Taylor series expansion. This involves proposing a
function F(r) and then determining its weak field approxima-
tion, thus

𝐹 (𝑟) = 1
√1 − 𝑓(𝑟)2

(1 − 𝑓(𝑟)2) = √1 − 𝑓(𝑟)2 = (69)

∞

∑
𝑛=0

(2𝑛)!
4𝑛(𝑛!)2(1 − 2𝑛)

𝑓(𝑟)2𝑛 =

1 − 1
2𝑓(𝑟)2 − 1

8𝑓(𝑟)4 − 1
16𝑓(𝑟)6



6

− 5
128𝑓(𝑟)8 − 7

256𝑓(𝑟)10 − ... =

1 − 1
2𝑓(𝑟)2 + 𝑅(𝑟)

𝑓(𝑟) = √2𝐺𝑀/𝑟/𝑐,

ℎ𝑓 = ℎ𝑓𝑜√1 − 2𝐺𝑀
𝑟𝑐2 = ℎ𝑓𝑜 (1 − 2𝐺𝑀

2𝑟𝑐2 + 𝑅(𝑟)) , (70)

𝑟 >> 2𝐺𝑀
𝑐2 ⇒ 𝑅(𝑟) → 0 ⇒ ℎ𝑓 = ℎ𝑓𝑜 (1 − 𝐺𝑀

𝑟𝑐2 ) (71)

When light passes through a region of stronger gravitational
field, such as near a massive object like a planet or star, its fre-
quency decreases creating a shift toward the red end of the
electromagnetic spectrum. The constancy of the propagation
speed of light suggests that while the frequency of light may
be altered by gravitational redshift, the speed at which light
propagates remains unchanged. This concept is a key aspect of
Einstein’s theory of general relativity. Eq. (70) can be rewrit-
ten as

ℎ𝑓 = ℎ𝑓𝑜
1

√1 − 2𝐺𝑀/𝑟𝑐2
(1 − 2𝐺𝑀/𝑟𝑐2) ⋅ 𝑐

𝑐 (72)

Let’s explore the idea of light traveling at different speeds
as it moves through a gravitational field

𝑢𝑐 = 𝑐 (1 − 2𝐺𝑀
𝑟𝑐2 ) , (73)

ℎ𝑓 = 𝑢𝑐
𝑐

ℎ𝑓𝑜

√1 − 2𝐺𝑀/𝑟𝑐2
(74)

According to the above expressions, an alternative interpre-
tation of the gravitational redshift effect suggests that the pho-
ton’s propagation speed changes while passing through a grav-
itational field, and then on exit it returns to the known speed
of light value 𝑐 (in vacuum), but with altered frequency and
wavelength values.

B. Electrostatic Field

While classical electrodynamics does not have a direct
equivalent to gravitational redshift, we will attempt to create
an analogy by applying the same derivation techniques as pre-
viously discussed. Referring to Eq. (65) and the electrostatic
potential energy definition, two photons are required, hence

𝑑𝑈 = −𝑞1𝑑𝑉𝐸 = 𝑊𝐹𝑟→∞ , (75)

2ℎ ∫
𝑓

𝑓𝑜
𝑑𝑓 = −𝑞1 ∫

+∞

𝑟

𝑞2
4𝜋𝜖𝑜𝑟2 𝑑𝑟, (76)

ℎ (𝑓 − 𝑓𝑜) = −1
2

|𝑞1𝑞2|
4𝜋𝜖𝑜𝑟 , (77)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

u
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FIG. 2. Varying Propagation Speed of Light. This graph demon-
strates how the propagation speed of light changes (GR+) with vary-
ing Earth radii while keeping the mass constant at the Earth’s mass.
While the conventional understanding posits a constant speed of light
(GR), this graph showcases how the propagation speed changes with
distance. At Earth’s accepted radius of 5.9736 ⋅ 106𝑚, the speed
of light aligns with the widely accepted measured value. However,
when Earth’s radius decreases to 8.87189 ⋅ 10−3𝑚, the propagation
speed of light approaches zero, challenging our conventional notions
of this fundamental constant.

(𝑚1 + 𝑚2) = ℎ𝑓𝑜/𝑐2 ⇒ 𝜆 = ℎ/ (𝑚1 + 𝑚2) 𝑐, (78)

𝑟 >> |𝑞1𝑞2|
4𝜋𝜖𝑜 (𝑚1 + 𝑚2) 𝑐2

⇒ ℎ𝑓 = (79)

ℎ𝑓𝑜 (
1 − |𝑞1𝑞2|

8𝜋𝜖𝑜𝑟 ⋅ (𝑚1 + 𝑚2) 𝑐2 )

By defining a specific function for the subfunction 𝑓(𝑟), we
can derive the relativistic equation, which includes its weak
field approximation, following the principle of Eq. (69)

𝑓(𝑟) = 1
𝑐 √2|𝑞1𝑞2|/8𝜋𝜖𝑜𝑟 ⋅ (𝑚1 + 𝑚2), (80)

ℎ𝑓 = ℎ𝑓𝑜√
1 − 2|𝑞1𝑞2|

8𝜋𝜖𝑜𝑟 ⋅ (𝑚1 + 𝑚2) 𝑐2
= (81)

ℎ𝑓𝑜 (
1 − 2|𝑞1𝑞2|

2 ⋅ 8𝜋𝜖𝑜𝑟 ⋅ (𝑚1 + 𝑚2) 𝑐2
+ 𝑅(𝑟)

)
,

𝑟 >> |𝑞1𝑞2|
4𝜋𝜖𝑜 (𝑚1 + 𝑚2) 𝑐2

⇒ 𝑅(𝑟) → 0 (82)
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𝑅(𝑟) → 0 ⇒ ℎ𝑓 = (83)

ℎ𝑓𝑜 (
1 − |𝑞1𝑞2|

8𝜋𝜖𝑜𝑟 ⋅ (𝑚1 + 𝑚2) 𝑐2 )

Similarly to Eqs. (72), (73), and (74), we can get the fol-
lowing equations for the electric field, hence

ℎ𝑓 = ℎ𝑓𝑜 ⋅ 𝑐
𝑐 ⋅ (84)

1

√1 − 2|𝑞1𝑞2|
8𝜋𝜖𝑜𝑟⋅(𝑚1+𝑚2)𝑐2

(
1 − 2|𝑞1𝑞2|

8𝜋𝜖𝑜𝑟 ⋅ (𝑚1 + 𝑚2) 𝑐2 )
,

𝑢𝑐 = 𝑐
(

1 − 2|𝑞1𝑞2|
8𝜋𝜖𝑜𝑟 ⋅ (𝑚1 + 𝑚2) 𝑐2 )

, (85)

ℎ𝑓 = 𝑢𝑐
𝑐

ℎ𝑓𝑜

√1 − 2|𝑞1𝑞2|/8𝜋𝜖𝑜𝑟 ⋅ (𝑚1 + 𝑚2) 𝑐2
(86)

According to Eq. (85), the propagation speed of light de-
creases when stationary charges 𝑞1 and 𝑞2 with masses 𝑚1 and
𝑚2 respectively, move closer to one another, eventually reach-
ing zero at the charges’ surface.

C. Inertial Field (Acceleration)

Another speculative hypothesis proposes that instead of at-
tributing the alteration in photon energy to a variation in ex-
ternal field potential, we could ascribe it to an alteration in
photon kinetic energy. How exactly? Photons do not acceler-
ate, but a standing wave with a controllable phase shift may.
Let’s consider a standing wave that has stored energy, which
can be measured by its total electric field

𝐸(𝑥, 𝑡) = 2𝐸 ⋅ 𝑠𝑖𝑛(𝑘𝑥 − 𝜙) ⋅ 𝑐𝑜𝑠(𝜔𝑡), (87)

𝐼𝐸(𝑥, 𝑡) = 1
2𝑐𝜀𝑜𝐸(𝑥, 𝑡)2, (88)

𝑃 = 𝑑𝑈
𝑑𝑡 = ∫

𝜋/𝑘

0 ∫
2𝜋/𝜔

0
𝐼𝐸(𝑥, 𝑡)𝑑𝑡𝑑𝑥 (89)

We may determine the number of photons denoted as 𝑁 in
the standing wave based on its total power, the frequency of
the standing wave, and Planck’s constant as follows

𝑃 = 𝑑𝑈
𝑑𝑡 = 𝑑 (𝑁 ⋅ ℎ ⋅ 2𝑓)

𝑑𝑡 (90)

According to Y. N. Ivanov’s new mechanism of motion, a
phase shift (Δ𝜙) causes the standing wave to gain speed, re-
sulting in the acquisition of kinetic energy. When no external
forces are acting on the standing wave, the emerging force is
internal because the phase is an inherent property of the stand-
ing wave itself. As a result, the amount of energy or work done
(𝑊𝐹𝑖𝑛𝑡 ) by the internal force for the standing wave to move

-3

-2

-1

0

1

2

3

E
E
(x
,t
)/
E

E

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

ϕ/π

ϕ = 0
ϕ ̸= 0

FIG. 3. EM Standing Wave Phase Shift. According to Y. N. Ivanov’s
new mechanism of motion, the introduction of a phase 𝜙 upon the
standing wave forces the nodes to shift that results in the entire stand-
ing wave pattern to move in one direction. The contribution of this
work to a broader understanding is that it demonstrates the necessity
of reducing the standing wave stored energy when extracting and con-
verting it into translational kinetic energy.

must be subtracted from the standing wave oscillation energy.
In other words, the change in standing wave stored energy 𝑑𝑈
must be equal to the change in its translational kinetic energy
𝑑𝑈𝑘, thus

𝑑𝑈 = −𝑑𝑈𝑘 = 𝑊𝐹𝑖𝑛𝑡 , (91)
𝑑 (𝑁 ⋅ ℎ ⋅ 2𝑓) = −𝑑𝑈𝑘, (92)

𝑚 = 𝑁 ⋅ 2ℎ𝑓𝑜/𝑐2 ⇒ 𝑁 ⋅ 2ℎ ∫
𝑓

𝑓𝑜
𝑑𝑓 = −𝑚 ∫

𝑢

0
𝑢𝑑𝑢, (93)

𝑁 ⋅ 2ℎ (𝑓 − 𝑓𝑜) = −𝑁 ⋅ 2ℎ𝑓𝑜
𝑢2

2𝑐2 , (94)

𝑢 << 𝑐 ⇒ 𝑁 ⋅ 2ℎ𝑓 = 𝑁 ⋅ 2ℎ𝑓𝑜 (1 − 𝑢2

2𝑐2 ) (95)

Again, by giving a specific function to the subfunction 𝑓(𝑟),
we may construct the relativistic equation, including its weak
field approximation, following the principle of Eq. (69)

𝑓(𝑟) = 𝑓(𝑢) = 𝑢/𝑐, (96)

𝑁 ⋅ 2ℎ𝑓 = 𝑁 ⋅ 2ℎ𝑓𝑜√1 − 𝑢2

𝑐2 = (97)

𝑁 ⋅ 2ℎ𝑓𝑜 (1 − 𝑢2

2𝑐2 + 𝑅(𝑟)) ,
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FIG. 4. Varying Propagation Speed of Light. This graph illustrates
the intriguing relationship between the local propagation speed of
light and the phase shift (Δ𝜙) applied to a standing wave. The x-axis
represents the normalized phase shift, ranging from 0 to 1, while the
y-axis denotes the corresponding normalized local propagation speed
of light.

𝑢 << 𝑐 ⇒ 𝑅(𝑟) → 0 ⇒ 𝑁 ⋅ 2ℎ𝑓 = (98)

𝑁 ⋅ 2ℎ𝑓𝑜 (1 − 𝑢2

2𝑐2 )

By employing Eqs. (72), (73), and (74), we may derive the
subsequent formulations for the inertial acceleration

𝑁 ⋅ 2ℎ𝑓 = 𝑁 ⋅ 2ℎ𝑓𝑜
1

√1 − 𝑢2

𝑐2
(1 − 𝑢2

𝑐2 ) ⋅ 𝑐
𝑐 , (99)

𝑢𝑐 = 𝑐 (1 − 𝑢2

𝑐2 ) , (100)

𝑁 ⋅ 2ℎ𝑓 = 𝑢𝑐
𝑐

𝑁 ⋅ 2ℎ𝑓𝑜

√1 − 𝑢2

𝑐2

(101)

The physics of mechanical standing waves was extensively
investigated by Y. N. Ivanov [61], who made an important dis-
covery by uncovering a novel mechanism of motion known as
moving standing wave (see FIG. (3)). By introducing a phase
𝜙, the nodes of the standing wave will be redeployed, result-
ing inmoving the entire standingwave pattern in one direction.
The position of the nodes of the standing wave (see Eq. (87))
is given by the well-known expression

𝑠𝑖𝑛(𝑘𝑥 − 𝜙) = 𝑠𝑖𝑛(𝑛𝜋) ⇒ 𝑘𝑥 − 𝜙 = 𝑛𝜋, (102)

0 ≤ 𝑥 ≤ 𝜆/2 ⇒ 𝑛 = 0 ⇒ 𝑥 = 𝜆
2

𝜙
𝜋 , (103)

Δ𝑡 = 1
2𝑓 ⇒ 𝑢 = Δ𝑥

Δ𝑡 = 𝑎 ⋅ Δ𝑡 = 𝑐 Δ𝜙
𝜋 = 𝑐 Δ𝑓

2𝑓 (104)

As a result of Eq. (104), Eqs. (100) and (101) transform
into

0 ≤ 𝑢 ≤ 𝑐 ⇒ 0 ≤ Δ𝜙 ≤ 𝜋, (105)

𝑢𝑐 = 𝑐
(

1 − (
Δ𝜙
𝜋 )

2

)
, (106)

𝑁 ⋅ 2ℎ𝑓 = 𝑢𝑐
𝑐

𝑁 ⋅ 2ℎ𝑓𝑜

√1 − (Δ𝜙/𝜋)2
(107)

And the internal force 𝐹𝑖𝑛𝑡 is given by

𝑚 = 𝑁 ⋅ 2ℎ𝑓𝑜/𝑐2, (108)
𝑎 = 𝑐Δ𝑓 ⇒ 𝐹𝑖𝑛𝑡 = −𝑚 ⋅ 𝑎 = −𝑁 ⋅ 2ℎ𝑓𝑜Δ𝑓/𝑐 (109)

Eq. (106) shows that increasing the phase shift Δ𝜙 of the
standing wave due to the internal force (𝐹𝑖𝑛𝑡) leads to a de-
crease (see FIG. (4)) in the local propagation speed of light.

IV. ELECTROSTATIC FORCE AND FIELD

Contents

The total electrostatic potential energy of a charge in the pres-
ence of another charge can now be calculated by multiplying
the ratio of propagation speeds with Coulomb’s electrostatic
potential energy, thus

𝑈𝐸𝑀 = 𝑞1𝑞2
4𝜋𝜖𝑜𝑟

𝑢𝑐
𝑐 , (110)

𝑈𝐸𝑀 = 𝑞1𝑞2
4𝜋𝜖𝑜𝑟 (

1 − 2|𝑞1𝑞2|
8𝜋𝜖𝑜𝑟 ⋅ (𝑚1 + 𝑚2) 𝑐2 )

(111)

Subsequently, the negative gradient of the potential energy
with respect to position gives the total electric force

𝐹 EM = −∇𝑈𝐸𝑀 , (112)

𝐹 EM = 𝑞1𝑞2
4𝜋𝜖𝑜

𝑟
|𝑟|3 −

𝑞2
1𝑞2

2
8𝜋2𝜖2

𝑜 (𝑚1 + 𝑚2) 𝑐2
𝑟

|𝑟|4 (113)

A. Total Force Between Two Electrons

The vector form and amplitude of the force between two
electrons is obtained by setting

𝑚1 = 𝑚2 = 𝑚𝑒, (114)
𝑞1 = 𝑞2 = 𝑞𝑒, (115)

𝐹 EM = 𝑞2
𝑒

4𝜋𝜖𝑜

𝑟
|𝑟|3 − 𝑞4

𝑒
16𝜋2𝜖2

𝑜 𝑚𝑒𝑐2
𝑟

|𝑟|4 , (116)
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FIG. 5. Total Electric Force. The illustration comprises three distinct
graphs representing the total force (𝐹𝐸𝑀 ), the repulsive (Coulomb)
force (𝐹𝐸), and the attractive force (𝐹𝑀 ) between two electrons. For
distances beyond 10−12 meters, the total force aligns closely with the
Coulomb force. The x-axis of each graph corresponds to the distance
(𝑟) between the electrons, measured in meters, while the y-axis de-
notes the magnitude of the respective forces in newtons.

|𝐹 EM| = |𝐹 E| + |𝐹M|, (117)

|𝐹 EM| = 𝑞2
𝑒

4𝜋𝜖𝑜𝑟2 − 𝑞4
𝑒

16𝜋2𝜖2
𝑜 𝑚𝑒𝑐2𝑟3

, (118)

𝑟 >> 10−12𝑚 ⇒ |𝐹 EM| ≈ |𝐹 E| = 𝑞2
𝑒

4𝜋𝜖𝑜𝑟2 (119)

B. Electron’s Total Field

The electric field of an electron is the negative gradient of
the electrostatic potential. By considering the Eqs. (114) and
(115), yields

𝑉𝐸𝑀 = 𝑈𝐸𝑀
𝑞𝑒

= 𝑞𝑒
4𝜋𝜖𝑜𝑟 (

1 − 𝑞2
𝑒

8𝜋𝜖𝑜𝑟 ⋅ 𝑚𝑒𝑐2 )
, (120)

�⃗�EM = −∇𝑉𝐸𝑀 , (121)

�⃗�EM = 𝑞𝑒
4𝜋𝜖𝑜

𝑟
|𝑟|3 − 𝑞3

𝑒
16𝜋2𝜖2

𝑜 𝑚𝑒𝑐2
𝑟

|𝑟|4 , (122)

|�⃗�EM| = |�⃗�E| + |�⃗�M|, (123)

|�⃗�EM| = 𝑞𝑒
4𝜋𝜖𝑜𝑟2 − 𝑞3

𝑒
16𝜋2𝜖2

𝑜 𝑚𝑒𝑐2𝑟3
(124)

𝑟 >> 10−12𝑚 ⇒ |�⃗�EM| ≈ |�⃗�E| = 𝑞𝑒/4𝜋𝜖𝑜𝑟2 (125)
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-6e+19

-4e+19

-2e+19

0

2e+19

4e+19

6e+19

8e+19

1e+20

[V
/m

]

0.0 1e-14 2e-14 3e-14 4e-14 5e-14

r [m]

EEM

EE

EM

FIG. 6. Total Electric Field. The illustration consists of three sepa-
rate graphs depicting the total field (𝐸𝐸𝑀 ), the Coulomb field (𝐸𝐸),
and the counter-Coulomb field (𝐸𝑀 ) of the electron. For distances
beyond 10−12 meters, the total field aligns closely with the Coulomb
field. The x-axis of each graph corresponds to the distance (𝑟) from
the electron center, measured in meters, while the y-axis denotes the
magnitude of the respective field in volts per meter.

V. CASIMIR EFFECT

Contents

The established understanding of the Casimir effect comes
from the quantum field theory that claims the phenomenon is
caused by vacuum fluctuations of the electromagnetic field be-
tween closely spaced conducting plates or objects.

A. Casimir Effect Paradigm Shift

A different interpretation for the Casimir effect may come
from the total force between two electrons (see Eq. (118))
where the latter consists of two parts, the repulsive Coulomb
𝐹 E and an attractive force𝐹M

𝐹 EM =𝐹 E +𝐹M, (126)

𝐹M = − 𝑞4
𝑒

16𝜋2𝜖2
𝑜 𝑚𝑒𝑐2

𝑟
|𝑟|4 , (127)

|𝐹M| = − 𝑞4
𝑒

16𝜋2𝜖2
𝑜 𝑚𝑒𝑐2𝑟3

(128)
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The attractive force 𝐹𝑀 can also be written as

𝑞2
𝑒

4𝜋𝜖𝑜ℏ𝑐 = 2𝜋𝑟𝑒
𝜆𝑐𝑒

= 𝛼, (129)

𝑚𝑒𝑐 = ℎ/𝜆𝑐𝑒, (130)

|𝐹M| = −4𝜋𝑟2
𝑒

ℏ𝑐
2𝜆𝑐𝑒𝑟3 (131)

B. Casimir Force Derivation

The original Casimir Force expression can be obtained from
the attractive force 𝐹𝑀 (see Eq. (131)) as follows

|𝐹M| = −4𝜋𝑟2
𝑒

ℏ𝑐
2𝜆𝑐𝑒𝑟3

2𝑛
2𝑛

𝜋2

𝜋2 , (132)

𝐴 = 𝑛 ⋅ 4𝜋𝑟2
𝑒 , (133)

𝜆 = 𝜆𝑐𝑒/2 ⇒ 𝑛𝜆 = 2𝜋𝑟, (134)

|𝐹Casimir| = |𝐹M| = −𝐴 ℏ𝑐𝜋2

248.0502𝑟4 ≈ −𝐴 ℏ𝑐𝜋2

248𝑟4 (135)

VI. UNIVERSE PROPERTIES

Contents

The estimated age of the observable universe, with a value of
around 13.787 billion years, is determined by the analysis of
the cosmic microwave background (CMB), the oldest known
light in the universe, together with other astronomical obser-
vations. The age of the observable universe corresponds to a
radius

𝑟𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒 = 4.4 ⋅ 1026𝑚 (136)

Equating Newtonian gravitational attraction with the attrac-
tive force 𝐹𝑀 between two electrons leads to an unexpected
discovery, so

|𝐹G| = |𝐹M|, (137)

−𝐺 𝑚𝑒 ⋅ 𝑚𝑒
𝑟2 = −4𝜋𝑟2

𝑒
ℏ𝑐

2𝜆𝑐𝑒𝑟3 , (138)

−𝐺 ℎ2

𝜆𝑐𝑒2𝑟2𝑐2 = −𝑟2
𝑒

ℎ𝑐
𝜆𝑐𝑒𝑟3 (139)

A. Universe Radius

We obtain the radius of the universe

𝑟 = 𝑟𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑒 = 𝑟𝑢 = 𝑟2
𝑒

𝜆𝑐𝑒𝑐3

ℎ𝐺 = 1.17381 ⋅ 1028𝑚, (140)

𝑟𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒/𝑟𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑒 = 3.748% (141)

B. Universe Deceleration

The gravitational force (𝐹𝐺) and the force 𝐹𝑀 are both
attractive forces. Assuming a small-scale big bang occurs,
which causes electrons to expand in space. The electrons will
then begin to decelerate as a result of the gravitational force
(or attraction force), hence

𝑎𝑢 = −𝑐2

𝑟𝑢
= − ℎ𝐺

𝑟2
𝑒𝜆𝑐𝑒𝑐

= −7.6567 ⋅ 10−12𝑚/𝑠2 (142)

C. Universe Period

𝑡𝑢 = 2𝜋𝑟𝑢
𝑐 = 2𝜋 ⋅ 𝑟2

𝑒
𝜆𝑐𝑒𝑐2

ℎ𝐺 = 2.4601 ⋅ 1020𝑠 (143)

D. Universe Mass

𝑀𝑢 = 𝑎𝑢𝑟2
𝑢

𝐺 = 𝑟2
𝑒𝑐5

𝐺2
𝜆𝑐𝑒
ℎ = 1.5806 ⋅ 1055 𝑘𝑔 (144)

E. Universe Energy

𝐸𝑢 = 𝑀𝑢𝑐2 = 𝑟2
𝑒𝑐7

𝐺2
𝜆𝑐𝑒
ℎ = 1.4206 ⋅ 1072𝐽 (145)

F. Universe Thermodynamic Temperature

The thermodynamic temperature of the universe (CMB)
[20] can be determined as follows

𝑆𝑢 = 4𝜋𝑟2
𝑢 = 1.7314 ⋅ 1057𝑚2, (146)

𝜎 = 5.6704 ⋅ 10−8𝐽/𝑠2𝑚2𝐾4, (147)

𝐷𝑢 = 𝐸𝑢
𝑡𝑢𝑆𝑢

= 𝐸𝑢
𝑡𝑢4𝜋𝑟2

𝑢
= 𝜎𝑇 4, (148)

𝑇 = 𝑇𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑒 = (
𝐸𝑢

𝜎 ⋅ 𝑡𝑢𝑆𝑢 )
1/4

= 2.769𝐾, (149)

𝑇 = 𝑇𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑒 ≈ 𝑇𝐶𝑀𝐵 = 2.726𝐾 (150)

G. Quantum Length and Time

By performing a dimensional analysis on the equation for
the radius of the universe, we obtain the quantum length [18]
and time

ScienceDaily 2011-Quantum Graininess Link

https://www.sciencedaily.com/releases/2011/06/110630111540.htm
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𝑟𝑞 = ℎ𝐺
𝜆𝑐𝑒𝑐3 = 6.7648 ⋅ 10−58𝑚, (151)

𝑡𝑞 = 𝑟𝑞/𝑐 = ℎ𝐺
𝜆𝑐𝑒𝑐4 = 2.2565 ⋅ 10−66𝑠 (152)

H. Fine Structure Constant

𝑟𝑢𝑟𝑞 = 𝑟2
𝑒 , (153)

𝛼 = 2𝜋𝑟𝑒
𝜆𝑐𝑒

= 𝑞2
𝑒

4𝜋𝜖ℏ𝑐 =
2𝜋√𝑟𝑢𝑟𝑞

𝜆𝑐𝑒
(154)

The properties of the universe mentioned, except quantum
length, time, and fine structure constant, align with the find-
ings in LaersWahlin’s work ”The Deadbeat Universe” without
relying on Hubble’s constant.

VII. ELECTROMAGNETIC FIELD

Contents

The electron’s total field, as shown in Eq. (122), is com-
posed of a Coulomb field and an opposing field, denoted as
�⃗�M, which may be further analyzed

�⃗�M = − 𝑞3
𝑒

16𝜋2𝜖2
𝑜 𝑚𝑒𝑐2

𝑟
|𝑟|4 , (155)

�⃗�M = − 𝑞2
𝑒

4𝜋𝜖𝑜|𝑟| ⋅ 𝑚𝑒𝑐
𝑞𝑒

4𝜋𝜖𝑜𝑐
𝑟

|𝑟|3 , (156)

𝜖𝑜𝜇𝑜 = 1/𝑐2 ⇒�⃗�M = − 𝑞2
𝑒

4𝜋𝜖𝑜|𝑟| ⋅ 𝑚𝑒𝑐 𝜇𝑜
𝑞𝑒𝑐
4𝜋

𝑟
|𝑟|3 (157)

A. Electromagnetic Field of a Charged Particle

Eq. (157) states that �⃗�M is a vector obtained by multiply-
ing a tangential speed scalar with a magnetic induction vector
using the cross product operation, thus

�⃗�M = −(𝑢𝑡𝑎𝑛 × �⃗�), (158)

𝑢𝑡𝑎𝑛 = 𝑞2
𝑒

4𝜋𝜖𝑜|𝑟| ⋅ 𝑚𝑒𝑐 , (159)

�⃗�M = 𝜇𝑜
𝑞𝑒𝑐
4𝜋

𝑟
|𝑟|3 = 𝜇𝑜

𝑞𝑚
4𝜋

𝑟
|𝑟|3 (160)

The negative gradient of the Coulomb electrostatic poten-
tial, plus the cross product of the tangential speed scalar with
the magnetic induction vector, results in the electromagnetic
field of a charged particle as that of an electron

�⃗�EM = −∇𝑉𝐸 − (𝑢𝑡𝑎𝑛 ×�⃗�M), (161)

−∇𝑉𝐸 = 𝑞𝑒
4𝜋𝜖𝑜

𝑟
|𝑟|3 (162)

The cross-product was used to derive a force expression
like the Lorentz force equation. What is the physical mean-
ing of the symbol 𝑢𝑡𝑎𝑛? When addressing the overall field of a
charged particle, we are referring to a situation in which there
is only one particle and no external fields are present. Eq.
(159) suggests that the tangential speed 𝑢𝑡𝑎𝑛 is related to the
tangential speed of electric field lines, which decreases as the
distance from the charge’s center increases. At a distance of
one electron radius (re) from its center, the electron’s total field
is zero, while the tangential speed is equal to the speed of light
𝑐, hence

𝑟 = 10−10𝑚 ⇒ 𝑢𝑡𝑎𝑛 ≈ 8.45 ⋅ 103𝑚/𝑠, (163)

𝑟 = 𝑟𝑒 ⇒ 𝑢𝑡𝑎𝑛 = 𝑞2
𝑒

4𝜋𝜖𝑜𝑟𝑒 ⋅ 𝑚𝑒𝑐 = 𝑐 (164)

B. Magnetic Monopole

P. Dirac proposed the concept of magnetic monopoles
within the framework of quantum theory. In 1931, Dirac intro-
duced a theoretical framework [22] that integrated the concept
of magnetic monopoles into electromagnetism by introducing
the notion of quantizing magnetic charge, similar to the quan-
tization of electric charge in electrons and protons

𝑔 = ℏ
2𝑞𝑒

, (165)

�⃗�M = 𝜇𝑜𝑔 𝑟
|𝑟|3 ⇒ |�⃗�M| = 𝜇𝑜

𝑔
𝑟2 (166)

A dimensional analysis suggests that 𝑔 should have units of
𝐴 ⋅ 𝑚, whereas Dirac’s monopole looks to have units of 𝑉 ⋅ 𝑠
or 𝐽/𝐴. The proposed concept is demonstrated in Eq. (160),
where 𝑞𝑚 is a magnetic dipole, thus a magnetic monopole is
half the dipole and may take generally the following values

𝑞𝑚 = ±𝑞𝑒𝑐 = ±4.8032 ⋅ 10−11𝐴 ⋅ 𝑚, (167)
𝑞𝑚𝑚 = ±𝑞𝑚/2 = (168)

±𝑞𝑒 ⋅ 𝑐/2 = ±2.4016 ⋅ 10−11𝐴 ⋅ 𝑚

The magnetic induction of an electron can be theoretically
defined as the result of two indivisible magnetic monopoles
generated by the rotation (see 𝑢𝑡𝑎𝑛) of the electron or any
charged particle

�⃗�M = 𝜇𝑜
𝑞𝑚
4𝜋

𝑟
|𝑟|3 = 𝜇𝑜

2𝑞𝑚𝑚

4𝜋
𝑟

|𝑟|3 (169)
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C. Lorentz Force

The total force between two electrons is similar to the
Lorentz force, with the sole distinction being the scalar 𝑢𝑡𝑎𝑛

�⃗�E = −𝑞𝑒∇𝑉𝐸 , (170)

𝑢𝑡𝑎𝑛 ×�⃗�M = − 𝑞2
𝑒

4𝜋𝜖𝑜|𝑟| ⋅ 𝑚𝑒𝑐 𝜇𝑜
𝑞𝑚
4𝜋

𝑟
|𝑟|3 , (171)

𝐹 EM = 𝑞𝑒 (�⃗�E + 𝑢𝑡𝑎𝑛 ×�⃗�M) , (172)

𝐹 EM = 𝑞𝑒�⃗�E + 𝑞𝑚
𝑢𝑡𝑎𝑛

𝑐 ×�⃗�M (173)

VIII. GRAVITOINERTIAL FIELD

Contents

As shown thus far, the magnetic monopoles (or as magnetic
dipoles), exist within charges and are formed as a result of
their rotation (see 𝑢𝑡𝑎𝑛). Similarly, we could hypothesize that
because the charge has mass and intrinsic rotational motion, it
should exhibit gravitational and inertial effects. Studying such
small-scale phenomena requires the creation of a new way of
thinking. The approach being suggested aims to use the con-
cept of charge to encompass both gravitational and inertia phe-
nomena.

A. Gravitational and Inertial Charges

Starting from Eq. (167) the magnetic charge is defined
through the following expression

𝑞𝑚 = ±𝑞𝑒𝑐 ⇒ 𝑞2
𝑚

𝑞2
𝑒

= 𝑐2 = 1
𝜖𝑜𝜇𝑜

, (174)

𝑞2
𝑒

𝜖𝑜
= 𝜇𝑜𝑞2

𝑚 (175)

Similarly, the gravitational and inertial charges are related
in the following manner

𝑞𝑖 = ±𝑞𝑔𝑐 ⇒
𝑞2

𝑖
𝑞2

𝑔
= 𝑐2 = 1

𝜖𝑔𝑜𝜇𝑖𝑜
, (176)

𝑞2
𝑔

𝜖𝑔𝑜

= 𝜇𝑖𝑜𝑞2
𝑖 (177)

We have four unknown variables: two newly introduced
charges and two newly introduced constants. What is the next
step? The concept posits that all types of charge originate
from a single electric charge. We found that the spinning of
an electric charge generates a magnetic field. Therefore, when
an electric charge is associated with a mass, the electric field
is responsible for creating a gravitational field. The mass’s in-
herent rotation should lead to the creation of an inertial field.
By equating Eqs. (175) and (177), may comprehend the pre-
viously stated assertions, thus

B. Charge Types Relation

𝑞2
𝑒

𝜖𝑜
=

𝑞2
𝑔

𝜖𝑔𝑜

and 𝜇𝑖𝑜𝑞2
𝑖 = 𝜇𝑜𝑞2

𝑚 (178)

C. Gravitational Permittivity and Inertial Permeability

Setting the gravitational permittivity 𝜖𝑔𝑜 equals to 𝐺, yields

𝜖𝑔𝑜 = 𝐺 = 6.67384 ⋅ 10−11𝑁𝑚2/𝑘𝑔2 (179)

Therefore, the inertial permeability is

𝜇𝑖𝑜 = 1
𝜖𝑔𝑜𝑐2 = 1.6671 ⋅ 10−7𝑘𝑔2𝑠2/𝑁𝑚4 (180)

Knowing the gravitational permittivity and inertial perme-
ability enables us to calculate the gravitational and inertial
charges through Eq. (178), thus

𝑞𝑔 = ±𝑞𝑒√
𝐺
𝜖𝑜

= ±4.3988 ⋅ 10−19𝐽/𝑘𝑔 ⋅ 𝑚−1, (181)

𝑞𝑖 = ±𝑞𝑚√
𝜇𝑜
𝜇𝑖𝑜

= ±1.3187 ⋅ 10−10𝐽 ⋅ 𝑚/𝑘𝑔 ⋅ 𝑚−1𝑠 (182)

D. Electrogravity and Magnetoinertia Coupling Constants

Apparently, the square root next to the charges corresponds
to the electrogravity and magnetoinertia coupling constant re-
spectively

𝑔𝑒 = √
𝐺
𝜖𝑜

= 2.745573 𝑉 /𝑘𝑔 ⋅ 𝑚−1, (183)

𝑔𝑚 =
√

𝜇𝑜
𝜇𝑖𝑜

= 2.745573 𝑉 /𝑘𝑔 ⋅ 𝑚−1 (184)

E. Gravitoinertial Field of a Charged Particle

The gravitoinertial field of a charged particle, like an elec-
tron, is similar to its electromagnetic field, thus

�⃗�GI =
𝑞𝑔

4𝜋𝜖𝑔𝑜

𝑟
|𝑟|3 −

𝑞3
𝑔

16𝜋2𝜖2
𝑔𝑜𝑚𝑒𝑐2

𝑟
|𝑟|4 , (185)

�⃗�GI =
𝑞𝑔

4𝜋𝜖𝑔𝑜

𝑟
|𝑟|3 −

𝑞3
𝑔

16𝜋2𝜖2
𝑔𝑜𝑚𝑒𝑐2

𝑟
|𝑟|4 , (186)
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�⃗�GI = −∇𝑉𝐺 − (𝑢𝑡𝑎𝑛 ×�⃗�I), (187)

𝑢𝑡𝑎𝑛 =
𝑞2

𝑔
4𝜋𝜖𝑔𝑜 |𝑟| ⋅ 𝑚𝑒𝑐 , (188)

�⃗�I = 𝜇𝑖𝑜
𝑞𝑔𝑐
4𝜋

𝑟
|𝑟|3 = 𝜇𝑖𝑜

𝑞𝑖
4𝜋

𝑟
|𝑟|3 , (189)

−∇𝑉𝐺 =
𝑞𝑞

4𝜋𝜖𝑔𝑜

𝑟
|𝑟|3 , (190)

−(𝑢𝑡𝑎𝑛 ×�⃗�I) = −
𝑞2

𝑔
4𝜋𝜖𝑔𝑜 |𝑟| ⋅ 𝑚𝑒𝑐 𝜇𝑖𝑜

𝑞𝑖
4𝜋

𝑟
|𝑟|3 , (191)

[𝐸𝐺𝐼 ] = [𝑘𝑔 ⋅ 𝑚−1/𝑚] (192)

F. Gravitational Displacement (Acceleration) Field

The gravitational displacement field can be defined as the
multiplication of the gravitational permittivity and the gravi-
tational field strength in direct proportion to the electric dis-
placement field, in which the former is essentially the gravita-
tional acceleration measured in 𝑁/𝑘𝑔 = 𝑚/𝑠2, thus

�⃗�GI = 𝜖𝑔𝑜�⃗�GI, (193)

�⃗�GI =
𝑞𝑔
4𝜋

𝑟
|𝑟|3 −

𝑞3
𝑔

16𝜋2𝜖𝑔𝑜𝑚𝑒𝑐2
𝑟

|𝑟|4 , (194)

|�⃗�G| =
𝑞𝑔

4𝜋𝑟2 , (195)

|�⃗�I| = −
𝑞3

𝑔
16𝜋2𝜖𝑔𝑜𝑚𝑒𝑐2𝑟3 , (196)

|�⃗�GI| = |�⃗�G| + |�⃗�I|, (197)
[𝐷𝐺𝐼 ] = [𝑁/𝑘𝑔] = [𝑚/𝑠2] (198)

G. Inertial Monopole

The inertia dipole, like the magnetic dipole, is introduced
in Eq. (191). An inertial monopole is half the dipole and may
take generally the following values

𝑞𝑖 = ±𝑞𝑔𝑐 = ±1.3187 ⋅ 10−10𝐽 ⋅ 𝑚/𝑘𝑔 ⋅ 𝑚−1𝑠, (199)
𝑞𝑖𝑚 = 𝑞𝑖/2 = ±0.65935 ⋅ 10−10𝐽 ⋅ 𝑚/𝑘𝑔 ⋅ 𝑚−1𝑠 (200)

The inertial induction of an electron can be theoretically de-
fined as the result of two indivisible inertial monopoles gener-
ated by the rotation of the electron or any charged particle

�⃗�I = 𝜇𝑖𝑜
𝑞𝑖
4𝜋

𝑟
|𝑟|3 = 𝜇𝑖𝑜

2𝑞𝑖𝑚
4𝜋

𝑟
|𝑟|3 (201)
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FIG. 7. Total Gravitational Displacement (Gravitational Accelera-
tion) Field. The illustration consists of three separate graphs depict-
ing the total gravitational displacement field (𝐷𝐺𝐼 ), the gravitational
displacement field (𝐷𝐺), and the counter-gravitational (inertial) dis-
placement (𝐷𝐼 ) of the electron. For distances beyond 10−12 meters,
the total field aligns closely with the gravitational displacement field
(𝐷𝐺). The x-axis of each graph corresponds to the distance (𝑟) from
the electron center, measured in meters, while the y-axis denotes the
magnitude of the respective field in meters per second squared.

H. Electrogravity

According to the charge types hypothesis, the electric
charge is the causal factor in the generation of the gravitational
field associated with the charge, thus from the definition of the
gravitational charge (Eq. (181)) yields

𝑞𝑔 = ±𝑞𝑒√
𝐺
𝜖𝑜

⇒
𝑞𝑔

4𝜋𝑟2 = ± 𝑞𝑒
4𝜋𝑟2 √

𝐺
𝜖𝑜

, (202)

𝑎𝐺 = 𝐷𝐺 = 𝐺 ⋅ 𝐸𝐺 = 𝜖𝑜𝐸𝐸√
𝐺
𝜖𝑜

, (203)

𝑎𝐺 = 𝐷𝐺 = 𝐸𝐸√𝜖𝑜𝐺, (204)
𝐸𝐸 = 𝑎𝐺/√𝜖𝑜𝐺 (205)

The required electric field or electric displacement field
strength to create or confront Earth’s gravitational displace-
ment (acceleration) field, is

𝑎𝐺 = 9.81 𝑁/𝑘𝑔, (206)
𝐸𝐸 = 4.0355 ⋅ 1011 𝑉 /𝑚, (207)

𝐷𝐸 = 𝜖𝑜𝐸 = 3.573 𝐶𝑏/𝑚2 (208)
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I. Magnetoinertia

Similarly, by considering the notion of the inertial charge as
stated in Eq. (182), we may establish a connection between
the inertial displacement (acceleration) field and the magnetic
induction of an electric charge

𝑞𝑖 = ±𝑞𝑚√
𝜇𝑜
𝜇𝑖𝑜

⇒ 𝑞𝑖
4𝜋𝑟2 = ± 𝑞𝑚

4𝜋𝑟2 √
𝜇𝑜
𝜇𝑖𝑜

, (209)

𝑎𝐼 = 𝐷𝐼 = 𝐵𝐼
𝑐𝜇𝑖𝑜

= 𝐵𝑀
𝑐𝜇𝑜 √

𝜇𝑜
𝜇𝑖𝑜

, (210)

𝑎𝐼 = 𝐷𝐼 = 𝐵𝑀 /√𝜇𝑜/𝐺, (211)
𝐵𝑀 = 𝑎𝐼 ⋅ 𝑐√𝜇𝑜𝜇𝑖𝑜 = 𝑎𝐼 √𝜇𝑜/𝐺 (212)

The required magnetic field induction strength to create
or confront Earth’s gravitational displacement (acceleration)
field, is

𝑎𝐼 = 9.81 𝑚/𝑠2, (213)
𝐵𝑀 = 1.3461 ⋅ 103 𝑇 = 1.3461 ⋅ 103 𝑘𝑔/𝐴 ⋅ 𝑠2 (214)

J. Electrogravity and Magnetoinertia Tests

Assume we have no knowledge of the charge types relation
(Eq. (178)) and want to establish a link between the electric
field and gravitational acceleration. Let us start by looking at
the energy density of the electric field, and then construct the
proper equation for the gravitational field’s acceleration. Thus,

𝐸𝐸 = 𝐾𝐸𝑞𝑒/𝑟2, (215)
𝐾𝐸 = 1/4𝜋𝜖𝑜, (216)

𝑢𝐸 = 1
2𝜖𝑜𝐸2

𝐸 =
𝐸2

𝐸
8𝜋𝐾𝐸

, (217)

[𝑢𝐸] = [𝐽 /𝑚3] (218)

Similarly, the energy density of the gravitational field is de-
rived as follows

𝑎𝐺 = 𝐺𝑀/𝑟2, (219)

𝑢𝐺 =
𝑎2

𝐺
8𝜋𝐺 , (220)

[𝑢𝐺] = [𝑁/𝑚2] = [𝑁 ⋅ 𝑚/𝑚2 ⋅ 𝑚] = [𝐽 /𝑚3], (221)
𝑎𝐺 = 9.81𝑚/𝑠2 ⇒ 𝑢𝐺 = 5.7371 ⋅ 1010𝐽/𝑚3 (222)

The final stage entails defining the problem. What is the re-
quired electric energy density or electric field strength to coun-
teract the gravitational energy density (or gravitational field
acceleration) of Earth? The value of energy density is already
provided by Eq. (222). Simply equating the electric energy
density with that of the gravitational field establishes a con-

nection between the two. Therefore,

𝑢𝐸 = 𝑢𝐺 ⇒
𝐸2

𝐸
8𝜋𝐾𝐸

=
𝑎2

𝐺
8𝜋𝐺 ⇒

𝐸2
𝐸

𝐾𝐸
=

𝑎2
𝐺

𝐺 , (223)

𝑎𝐺 = 𝐸𝐸 /√
𝐾𝐸
𝐺 = 𝐸𝐸√4𝜋𝜖𝑜𝐺, (224)

𝐸𝐸 = 𝑎𝐺√
𝐾𝐸
𝐺 = 𝑎𝐺/√4𝜋𝜖𝑜𝐺 (225)

Following that, the connection between the acceleration of
the gravitational field and the induction of the magnetic field
is obtained using the same approach

𝑢𝑀 =
𝐵2

𝑀
2𝜇𝑜

, (226)

𝑢𝑀 = 𝑢𝐺 ⇒
𝐵2

𝑀
2𝜇𝑜

=
𝑎2

𝐼
8𝜋𝐺 ⇒

𝐵2
𝑀

𝜇𝑜
=

𝑎2
𝐼

4𝜋𝐺 , (227)

𝑎𝐼 = 𝐵𝑀 /√𝜇𝑜/4𝜋𝐺, (228)
𝐵𝑀 = 𝑎𝐼 √𝜇𝑜/4𝜋𝐺 (229)

This finding is very important since the equations of electro-
gravity andmagnetoinertia were derived fromwell-established
principles of physics without explicitly taking into account the
existence of gravitational and inertial charges. The sole dis-
tinction lies in the fact that the later equations incorporate a
factor of 4𝜋, which arises due to the absence of a defined rela-
tionship between the gravitational constant (𝐺) and another
constant, such as 𝑒𝑔𝑜 , similar to the constant 𝐾𝐸 . In other
words, the foregoing tests demonstrate that our hypothesis is,
at the very least, theoretically correct.

K. Gravitational Charge’s Equivalent Mass

The current problem lies in reconciling the gravitational dis-
placement (acceleration) related to gravitational charges with
Newtonian gravitational acceleration. Consider a scenario
with a set of 𝑛 gravitational charges uniformly spread across a
spherical surface with a mean radius equivalent to the Earth’s
radius (𝑟𝐸), thus

𝑎𝐺 = 𝐷𝐺 = 𝐺 ⋅ 𝐸𝐺 = 𝑛 ⋅ 𝑞𝑔/4𝜋𝑟2
𝐸 , (230)

𝐹𝑁 = 𝐺𝑀𝐸𝑚/𝑟2
𝐸 ⇒ 𝑎𝑁 = 𝐹𝑁 /𝑚 = 𝐺𝑀𝐸 /𝑟2

𝐸 , (231)
𝑎𝐺 = 𝑎𝑁 ⇒ 𝑛 ⋅ 𝑞𝑔/4𝜋𝑟2

𝐸 = 𝐺𝑀𝐸 /𝑟2
𝐸 , (232)

𝑛 = 4𝜋𝐺𝑀𝐸 /𝑞𝑔 ⇒ if 𝑞𝑔 > 0 ⇒ 𝑚𝑔 = |𝑞𝑔|/4𝜋𝐺, (233)
𝑚𝑔 = |𝑞𝑒|/4𝜋√𝜖𝑜𝐺 = 5.244788 ⋅ 10−10𝑘𝑔 (234)

The preceding results are understood as the Earth’s mass be-
ing made up of an average number 𝑛 of gravitational charges,
each with corresponds to an equivalent mass 𝑚𝑔 , which to-
gether constitute the Earth’s gravitational field.

IX. UNIFIED FIELD

Contents
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The unified field can be defined by two equivalent expressions,
one of which is a general form representing the total field of
a charge. In this equation, the charges are substituted by the
selected charge types, as well as the appropriate permittivity
and permeability constants. In contrast, the integrated form
reveals all field types in a single equation.

A. General Form

�⃗�TT’ = 𝑞𝑇
4𝜋𝜖𝑇𝑜

𝑟
|𝑟|3 −

𝑞3
𝑇

16𝜋2𝜖2
𝑇𝑜

𝑚𝑐2
𝑟

|𝑟|4 , (235)

�⃗�TT’ = −∇𝑉𝑇 − (𝑢𝑡𝑎𝑛 ×�⃗�𝑇 ′ ), (236)

𝑢𝑡𝑎𝑛 =
𝑞2

𝑇
4𝜋𝜖𝑇𝑜 |𝑟| ⋅ 𝑚𝑐 , (237)

�⃗�𝑇 ′ = 𝜇𝑇 ′
𝑜

𝑞𝑇 𝑐
4𝜋

𝑟
|𝑟|3 = 𝜇𝑇 ′

𝑜

𝑞𝑇 ′

4𝜋
𝑟

|𝑟|3 , (238)

−∇𝑉𝑇 = 𝑞𝑇
4𝜋𝜖𝑇𝑜

𝑟
|𝑟|3 , (239)

−(𝑢𝑡𝑎𝑛 ×�⃗�𝑇 ′ ) = −
𝑞2

𝑇
4𝜋𝜖𝑇𝑜 |𝑟| ⋅ 𝑚𝑐 𝜇𝑇 ′

𝑜

𝑞𝑇 ′

4𝜋
𝑟

|𝑟|3 (240)

𝑇 𝑇 ′ = 𝐸𝑀
⎧⎪
⎨
⎪⎩

𝑞𝑇 = 𝑞𝑒, 𝑞𝑇 ′ = 𝑞𝑚,
𝜖𝑇𝑜 = 𝜖𝑜, 𝜇𝑇 ′

𝑜 = 𝜇𝑜,
𝑉𝑇 = 𝑉𝐸 , 𝐵𝑇 ′ = 𝐵𝑀

(241)

𝑇 𝑇 ′ = 𝐺𝐼
⎧⎪
⎨
⎪⎩

𝑞𝑇 = 𝑞𝑔 , 𝑞𝑇 ′ = 𝑞𝑖,
𝜖𝑇𝑜 = 𝜖𝑔𝑜 , 𝜇𝑇 ′

𝑜 = 𝜇𝑖𝑜 ,
𝑉𝑇 = 𝑉𝐺, 𝐵𝑇 ′ = 𝐵𝐼

(242)

B. Integrated Form

The unified field equation can also be represented by merg-
ing the notions of electrogravity andmagnetoinertia, in the fol-
lowing simple and integrated form

𝑎𝐺𝐼 = 𝐷𝐺𝐼 = 𝐷𝐺 − 𝐷𝐼 , (243)
𝑎𝐺𝐼 = 𝐺 ⋅ 𝐸𝐺𝐼 = 𝐸𝐸√𝜖𝑜𝐺 − (𝑢𝑡𝑎𝑛/𝑐) 𝐵𝑀 /√𝜇𝑜/𝐺, (244)

𝑎𝐺𝐼 = 0 ⇒ 𝑢𝑡𝑎𝑛 = 𝑐 (245)

X. MEASUREMENT UNITS

Contents

Electric Magnetic
[𝐸𝐸] = [

𝑉
𝑚 ] [𝐻𝑀 ] = [

𝐴⋅𝑚
𝑚2 ] = [

𝐴
𝑚 ]

[𝐷𝐸 = 𝜖𝑜𝐸𝐸] = [
𝑁⋅𝑚
𝑉 ⋅𝑚2 ] [𝐵𝑀 = 𝜇𝑜𝐻𝑀 ] = [

𝑉 ⋅𝑠
𝑚2 ]

[𝜖𝑜] = [
𝐹
𝑚 ] = [

𝐽
𝑉 2⋅𝑚 ] [𝜇𝑜] = [

𝐻
𝑚 ] = [

𝐽
𝐴2⋅𝑚 ]

[𝑞𝑒] = [𝐶𝑏] = [
𝐽
𝑉 ] [𝑞𝑚] = [

𝐽
𝑉

𝑚
𝑠 ] = [𝐴 ⋅ 𝑚]

Gravitational Inertial
[𝐸𝐺] = [

𝑘𝑔⋅𝑚−1

𝑚 ] [𝐻𝐼 ] = [
𝐽

𝑘𝑔⋅𝑚−1
𝑚
𝑠 ⋅ 1

𝑚2 ]

[𝐷𝐺 = 𝜖𝑔𝑜𝐸𝐺] = [
𝑁⋅𝑚

𝑘𝑔⋅𝑚−1⋅𝑚2 ] [𝐵𝐼 = 𝜇𝑖𝑜𝐻𝐼 ] = [
𝑘𝑔⋅𝑚−1⋅𝑠

𝑚2 ]

[𝜖𝑔𝑜 ] = [
𝐽

(𝑘𝑔⋅𝑚−1)
2⋅𝑚 ] [𝜇𝑖𝑜 ] = [(

𝑘𝑔⋅𝑚−1⋅𝑠
𝐽 )

2 𝐽
𝑚 ]

[𝑞𝑔] = [
𝐽

𝑘𝑔⋅𝑚−1 ] [𝑞𝑖] = [
𝐽

𝑘𝑔⋅𝑚−1
𝑚
𝑠 ]

XI. SPECIAL AND GENERAL RELATIVITY

Contents

Special relativity and general relativity are two foundational
theories in theoretical physics, both developed by A. Ein-
stein during the early 20th century. Special relativity, pub-
lished in 1905, transformed our understanding of space and
time by demonstrating that they are interwoven in a four-
dimensional spacetime fabric. It presented notions like time
dilation and length contraction, which demonstrated that the
laws of physics apply to all observers in uniform motion. Gen-
eral relativity, introduced in 1915, expands upon these con-
cepts to incorporate the force of gravity. Gravity is described
not as a force, as in Newtonian physics, but as the bending
of spacetime caused by mass and energy. General relativity
has been empirically validated by different experiments, and
its predictions, such as gravitational time dilation and the de-
flection of light by heavy objects, have been directly witnessed.
Both theories have emerged as fundamental principles in mod-
ern physics, offering a deep comprehension of the fundamental
properties of space, time, and gravity.

A. Beyond Relativity

In both special and general relativity, one of the ground-
breaking principles is the constancy of the propagation speed
of light 𝑐. Nevertheless, exploring the boundaries of theoret-
ical physics has resulted in fascinating conjectures regarding
the potential existence of a varying propagation speed of light,
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as demonstrated at the outset of this study

𝑢𝑐 = 𝑐 (1 − 𝑢2

𝑐2 ) = 𝑐
(

1 − (
Δ𝜙
𝜋 )

2

)
, (246)

𝑢𝑐 = 𝑐 (1 − 2𝐺𝑀
𝑟𝑐2 ) (247)

Although the aforementioned equations may seem compa-
rable, there is a distinct difference in the origin of the potential
existence of the varying propagation speed of light. In the con-
text of general relativity, the photons lose energy as they climb
out of the gravitational well where the latter is external (see ex-
ternal force) to the photon entity and responsible for the drop
in 𝑢𝑐 . Eq. (246) was constructed to address a phenomenon that
does not exist in the literature, the inertial redshift. Before we
analyze this hypothetical new possibility, we set Eqs. (246)
and (247) to be equal

𝑐
(

1 − (
Δ𝜙
𝜋 )

2

)
= 𝑐 (1 − 2𝐺𝑀

𝑟𝑐2 ) , (248)

Δ𝜙
𝜋 = 2𝐺𝑀

𝑟𝑐2 (249)

Eq. (249) suggests that the gravitational field acts as an
imperceptible force that permeates the structure of photons
to control their phase shift. This type of description causes
the external gravitational force to function as an internal force.
Given these assumptions, it is possible to describe the photon
energy (see Eq. (70)) and the resulting gravitational redshift
effect in an alternative way while preserving the original for-
mulation

𝑢𝑐 = 𝑐 (1 − 2𝐺𝑀
𝑟𝑐2 ) , (250)

ℎ𝑓 = 𝑢𝑐
𝑐

ℎ𝑓𝑜

√1 − 2𝐺𝑀/𝑟𝑐2
(251)

Two significant observations can be made regarding the
equation mentioned above. The energy of a photon can be cal-
culated by multiplying the ratio of propagation speeds with the
relativistic energy of a photon under a gravitational potential,
which is similar to the relativistic energy of a mass moving at
speed 𝑢 in special relativity. The second observation is that,
having modified nothing from the original redshift equation,
if 𝑢𝑐 is always constant 𝑐 according to the postulates of spe-
cial and general relativity, the photon would never lose energy
while climbing a gravitational well. A thought-provoking in-
quiry arises from Eq. (251). Can a particle, like an electron,
exhibit the properties of both a particle and a wave? Does the
phenomenon of wave-particle duality exhibit gravitational or
inertial redshift characteristics? Quantummechanics accounts
for the coexistence of particle-like and wave-like character-
istics in particles, but it does not provide a direct prediction
or explanation for the gravitational or inertial redshift. Parti-
cles can have wave-like behaviors in various situations, such
as passing through closely spaced slits (interference), encoun-
tering obstacles (diffraction), or encountering electrical poten-
tial barriers (quantum tunneling). The presence or absence of

wave-like behavior in particles is determined by the surround-
ing environment. Is it possible to establish an environment
that accompanies the particle as a cohesive unit, allowing it to
display wave-like characteristics at any given moment, even
without the presence of spaced slits, obstacles, or potential
barriers? In the next subsections, we will investigate an en-
tity that results from the coupling of a particle to an artificial
standingwave. The energy storedwithin the standingwave can
be equal to or more than the rest energy of the particle coupled
to the standing wave. An additional need is that the standing
wave must be able to turn its unmanifested stored energy into
system kinetic energy (standing wave-particle) by altering the
standing wave’s phase shift on demand.

B. Inertial Redshift

The earlier sections showed that it is feasible to get equiv-
alent results whereby altering the phase of a standing wave
eventually leads to acquiring a speed 𝑢𝑠𝑤 without the presence
of external forces e.g. gravitational, thus

𝛽 = 𝑢
𝑐 , (252)

𝑢𝑠𝑤 = 𝑢 ⇒ 𝑢𝑐 = 𝑐 (1 − 𝑢2
𝑠𝑤/𝑐2) , (253)

𝑁 ⋅ 2ℎ𝑓 = 𝑢𝑐
𝑐

𝑁 ⋅ 2ℎ𝑓𝑜

√1 − 𝛽2
(254)

Eq. (254) reveals the twin phenomenon of the gravitational
redshift, called inertial redshift, with the latter likely being an
artificial rather than a natural phenomenon. It is important to
note that we retained the original equation for the gravitational
redshift and only substituted the gravitational potential with
the square of the speed (𝑢2). Assuming that the stored energy
of the standing wave is equal to the rest energy of a charged
particle coupled to the standing wave, Eq. (254) may turn into

𝑚𝑐2 = 𝑁 ⋅ 2ℎ𝑓𝑜, (255)
𝑚𝑖𝑐2 = 𝑁 ⋅ 2ℎ𝑓, (256)

𝑢𝑠𝑤 = 𝑢 ⇒ 𝑚𝑖𝑐2 = 𝑢𝑐
𝑐

𝑚𝑐2

√1 − 𝛽2
(257)

Does Eq. (257) have a physical interpretation? Based on ac-
cepted physics, there are no experimental findings that could
confirm it. However, in the case of bare particles (not coupled
to a standing wave and not driven by internal forces), experi-
ments and special relativity theory confirm

𝑢𝑠𝑤 = 0 ⇒ 𝑢𝑐 = 𝑐 ⇒ 𝑢 ≠ 𝑢𝑠𝑤 ⇒ (258)

𝛽 = 𝑢
𝑐 ⇒ 𝑚𝑖𝑐2 = 𝑚𝑐2

√1 − 𝛽2

We have just shown that special relativity can be consid-
ered as a part of a broader framework, which is derived from
the gravitational and subsequently similar inertial redshift phe-
nomenon. This was accomplished without the need to intro-
duce new mathematical ideas, but instead by employing alter-
nate interpretations of well-established physics.
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C. Relativistic Inertia and Momentum

The scenario where a particle is coupled to a standing wave
where the latter has a greater amount of unmanifested stored
energy than the particle’s rest energy; can be developed using
the help of Eq. (91) as follows

𝑛𝑠 ≥ 1 ⇒ 𝑈𝑠𝑡𝑜𝑟𝑒𝑑 = 𝑁 ⋅ ℎ ⋅ 2𝑓𝑜 = 𝑛2
𝑠𝑚𝑐2, (259)

𝑑𝑈𝑠 = 𝑑 (𝑁 ⋅ ℎ ⋅ 2𝑓) = 𝑛2
𝑠𝑑𝑈 = −𝑑𝑈𝑘 = 𝑊𝐹𝑖𝑛𝑡 , (260)

𝑛2
𝑠𝑑𝑈 = −𝑑𝑈𝑘 ⇒ 𝑛2

𝑠𝑐2
∫

𝑚𝑖

𝑚
𝑑𝑚 = −𝑚 ∫

𝑢

0
𝑢𝑑𝑢, (261)

𝑢 << 𝑐 ⇒ 𝑚𝑖𝑐2 = 𝑚𝑐2
(1 − 𝑢2

2𝑛2
𝑠𝑐2 ) (262)

The above equation represents the non-relativistic energy
of the standing wave-particle. In line with Eq. (69), we will
employ the Taylor series expansion by postulating a function
𝐹 (𝑢) to find its relativistic counterpart (𝐹 (𝑢)) through its weak
field approximation, thus

𝐹 (𝑢) = 1
√1 − 𝑓(𝑢)2

(1 − 𝑓(𝑢)2) = √1 − 𝑓(𝑢)2 = (263)

∞

∑
𝑛=0

(2𝑛)!
4𝑛(𝑛!)2(1 − 2𝑛)

𝑓(𝑢)2𝑛 =

1 − 1
2𝑓(𝑢)2 − 1

8𝑓(𝑢)4 − 1
16𝑓(𝑢)6

− 5
128𝑓(𝑢)8 − 7

256𝑓(𝑢)10 − ... =

1 − 1
2𝑓(𝑢)2 + 𝑅(𝑟)

𝑓(𝑢) = 𝛽𝑠 = 𝑢/𝑛𝑠𝑐, (264)

𝑚𝑖𝑐2 = 𝑚𝑐2
√

1 − 𝑢2

𝑛2
𝑠𝑐2

= 𝑚𝑐2√1 − 𝛽2
𝑠 = (265)

𝑚𝑐2
(1 − 𝑢2

2𝑛2
𝑠𝑐2

+ 𝑅(𝑢)) ,

𝑢 << 𝑐 ⇒ 𝑅(𝑢) → 0 ⇒ 𝑚𝑖𝑐2 = 𝑚𝑐2
(1 − 𝑢2

2𝑛2
𝑠𝑐2 ) (266)

According to Eq. (263), Eq. (265) can be expressed in a
way that displays the varying propagation speed of light, as
discussed in previous sections. Thus, for 𝑢𝑠𝑤 = 𝑢

𝑢𝑐 = 𝑐
(

1 − 𝑢2
𝑠𝑤

𝑛2
𝑠𝑐2 )

⇒ 𝑚𝑖𝑐2 = 𝑢𝑐
𝑐

𝑚𝑐2

√1 − 𝑢2

𝑛2
𝑠 𝑐2

(267)

Likewise, for 𝑢𝑠𝑤 = 𝑢 the relativistic momentum is

𝑢𝑐 = 𝑐
(

1 − 𝑢2
𝑠𝑤

𝑛2
𝑠𝑐2 )

⇒ 𝑝 = 𝑢𝑐
𝑐

𝑚 ⋅ 𝑢

√1 − 𝑢2

𝑛2
𝑠 𝑐2

(268)
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FIG. 8. Relativistic Inertia. Einstein’s equation (SR) reveals an on-
going and consistent rise in relativistic mass (inertia). Conversely,
the red curves portray the novel relativistic mass (inertia) formula for
different upper speed limits introduced in this study. With increasing
speed, relativistic mass (inertia) diminishes, eventually reaching its
minimum value of zero, even at speeds surpassing the speed of light.

The new relativistic expressions (see FIG. (8) and FIG.
(9)) emerged from the idea of the inertial redshift phe-
nomenon, which is considered artificial rather than a natural
phenomenon. R. Carezani [37, 38] was the first to derive the
above expressions (for 𝑛𝑠 = 1) in his preliminary work, com-
bining the idea of frame reduction in Lorentz transformation
with the concept of a ”decaying particle”, which should not be
confused with radioactive decay. As we can see the weak field
approximation of the new relativistic inertia has a resemblance
to the formulation for inertia manipulation in the concept of
mechanical inertial drive, as both employ internal forces (𝐹𝑖𝑛𝑡)
for propulsion. This result serves as the primary starting point
for the broader framework in which Einstein’s special rela-
tivity is viewed as a special case in which particles acceler-
ate solely through the application of an external force (𝐹𝑒𝑥𝑡).
Therefore, the broader framework of special relativity encom-
passes two separate approaches based on the mechanism of
motion (through 𝐹𝑖𝑛𝑡 or 𝐹𝑒𝑥𝑡)

𝐹𝑖𝑛𝑡 ⇒ 𝑢𝑠𝑤 = 𝑢 = 𝑛𝑠𝑐 ⋅ Δ𝜙/𝜋 = 𝑛𝑠𝑐 ⋅ Δ𝑓/2𝑓 , (269)
𝛽𝑠 = 𝑢/𝑛𝑠𝑐 = 𝑢𝑠𝑤/𝑛𝑠𝑐 = Δ𝜙/𝜋 ⇒ 𝑢𝑐 /𝑐 = (1 − 𝛽2

𝑠 ) , (270)

𝐹𝑖𝑛𝑡 ⇒ 𝑢𝑐 < 𝑐 ⇒ 𝑛𝑠 ≥ 1 ⇒ 𝑚𝑖𝑐2 = 𝑢𝑐
𝑐

𝑚𝑐2

√1 − 𝛽2
𝑠

, (271)

𝐹𝑖𝑛𝑡 ⇒ 𝑢𝑐 < 𝑐 ⇒ 𝑛𝑠 ≥ 1 ⇒ 𝑝 = 𝑢𝑐
𝑐

𝑚 ⋅ 𝑢

√1 − 𝛽2
𝑠

, (272)
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FIG. 9. Relativistic Momentum. The black curve (SR) depicts Ein-
stein’s relativistic momentumwith a steady increase relative to speed.
Notably, the red curves exhibit a deviation from this pattern, reaching
a maximum momentum (𝑛𝑠 ⋅ 𝑚𝑐/2) before gradually diminishing to
zero, even at speeds surpassing the speed of light.

𝐹𝑒𝑥𝑡 ⇒ 𝑢𝑠𝑤 = 0 ⇒ 𝑢𝑐 = 𝑐 ⇒ 𝑛𝑠 = 1 ⇒ 𝑢 ≠ 𝑢𝑠𝑤, (273)

𝐹𝑒𝑥𝑡 ⇒ 𝑛𝑠 = 1 ⇒ 𝛽𝑠 = 𝛽 = 𝑢/𝑐 ⇒ 𝑚𝑖𝑐2 = 𝑚𝑐2

√1 − 𝛽2
, (274)

𝐹𝑒𝑥𝑡 ⇒ 𝑢𝑐 = 𝑐 ⇒ 𝑛𝑠 = 1 ⇒ 𝑝 = 𝑚 ⋅ 𝑢
√1 − 𝛽2

(275)

D. Relativistic Speed - Crossing the Light Speed Barrier

The relativistic speed is calculated based on the kinetic en-
ergy, which is influenced by the method of motion through
either internal (𝐹𝑖𝑛𝑡) or external (𝐹𝑒𝑥𝑡) forces. Additionally, it
is important to note that the broader framework acknowledges
only positive energies, meaning that kinetic energy and rela-
tivistic energy are always positive or zero, and never imaginary
or negative. Therefore

𝐹𝑖𝑛𝑡 ⇒ 𝑢𝑐 < 𝑐 ⇒ 𝑛𝑠 ≥ 1 ⇒ −𝐸𝑘 = 𝑚𝑖𝑐2 − 𝑚𝑐2, (276)

𝐹𝑖𝑛𝑡 ⇒ 𝑢 = 𝑛𝑠𝑐√1 − (1 − 𝐸𝑘
𝑚𝑐2 )

2
(277)

𝐹𝑒𝑥𝑡 ⇒ 𝑢𝑐 = 𝑐 ⇒ 𝑛𝑠 = 1 ⇒ 𝐸𝑘 = 𝑚𝑖𝑐2 − 𝑚𝑐2, (278)

𝐹𝑒𝑥𝑡 ⇒ 𝑢 = 𝑐
√√√
⎷

1 − 1

(1 + 𝐸𝑘
𝑚𝑐2 )

2 (279)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

u
/c

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Ek/mc2

SR
ns = 1
ns = 2
ns = 3
ns = 4

FIG. 10. Relativistic Speed. In Einstein’s special relativity (SR),
there is an unbreakable upper-speed limit c, which serves as a basic
limitation on the motion of objects in our universe. The red curves
represent the new relativistic speed expression introduced in this pa-
per. In this case, we are presented with a disruptive insight that chal-
lenges the existing paradigm: the lack of a maximum speed limit.

Two surprising discoveries (see FIG. (10)) have been re-
vealed within the broader framework of relativity that chal-
lenge the constraints of Einstein’s special relativity. One in-
volves the absence of an upper-speed limit, while the other
involves the potential of crossing the light speed barrier.

E. Constraints

Mathematical expressions, especially those with physical
significance, must include limitations to avoid misinterpreta-
tions. To clarify the applicability range of the new relativistic
equations, we introduce the variables 𝐸𝑠𝑤 and 𝐸𝑠𝑡𝑜𝑟𝑒𝑑 , which
indicate the system’s conversion to kinetic and stored energy,
respectively. Therefore, it is impossible to convert energy in
quantities beyond the available or stored amount, implying that

𝑚𝑖𝑐2 − 𝑚𝑐2 = 𝑚𝑐2
√

1 − 𝑢2

𝑛2
𝑠𝑐2

− 𝑚𝑐2 = −𝐸𝑘, (280)

𝑢2

𝑛2
𝑠𝑐2

∝ 𝐸𝑠𝑤
𝐸𝑠𝑡𝑜𝑟𝑒𝑑

⇒ 𝑚𝑐2
√1 − 𝐸𝑠𝑤

𝐸𝑠𝑡𝑜𝑟𝑒𝑑
− 𝑚𝑐2 = −𝐸𝑘, (281)

𝐸𝑠𝑤 ≤ 𝐸𝑠𝑡𝑜𝑟𝑒𝑑 ⇒ 𝑛𝑠 ≥ 1, (282)
0 ≤ 𝑢 ≤ 𝑛𝑠 ⋅ 𝑐, (283)

0 ≤ Δ𝜙 ≤ 𝜋, (284)
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0 ≤ 𝑚𝑖 ≤ 𝑚, (285)
0 ≤ 𝑚𝑖𝑐2 ≤ 𝑚𝑐2, (286)

0 ≤ 𝑝 ≤ 𝑛𝑠 ⋅ 𝑚𝑐/2, (287)
0 ≤ 𝐸𝑘 ≤ 𝑚𝑐2 (288)

F. Extended Energy-Momentum Relation

The energy-momentum relation for a free particle is given
by the well-known equation, where 𝑝𝑆𝑅 and 𝐸𝑆𝑅 denote rela-
tivistic (Einstein’s special relativity) momentum and energy,
respectively. To obtain the extended form of the energy-
momentum equation, we insert a new element, denoted as
𝑛𝑠. In the framework of Einstein’s special relativity (𝐸𝑆𝑅 and
𝑝𝑆𝑅), this factor continuously takes a solitary value of unity.
Therefore,

𝑝𝑆𝑅 = 𝑚𝑢 (1 − 𝑢2/𝑛2
𝑠𝑐2)

−1/2 , (289)

𝐸𝑆𝑅 = 𝑚𝑐2 (1 − 𝑢2/𝑛2
𝑠𝑐2)

−1/2 , (290)
𝑚2𝑐4 + 𝑝2

𝑆𝑅𝑐2 = 𝐸2
𝑆𝑅 (291)

Multiplying both sides of Eq. (291) by the ratio of the prop-
agation speeds squared, we obtain the extended form of the
energy-momentum relation, thus

(
𝑢𝑐
𝑐 )

2
(𝑚2𝑐4 + 𝑝2

𝑆𝑅𝑐2) = (
𝑢𝑐
𝑐 )

2
𝐸2

𝑆𝑅, (292)

(
𝑢𝑐
𝑐 )

2
𝑚2𝑐4 + 𝑝2 = 𝐸2, (293)

𝑝 = 𝑢𝑐
𝑐 𝑚𝑢 (1 − 𝑢2/𝑛2

𝑠𝑐2)
−1/2 , (294)

𝐸 = 𝑢𝑐
𝑐 𝑚𝑐2 (1 − 𝑢2/𝑛2

𝑠𝑐2)
−1/2 (295)

G. Extended Klein-Gordon Equation

The quantized version of the extended energy-momentum
relation is developed as follows

̂𝑝 = −𝑖ℏ∇, (296)
̂𝐸 = 𝑖ℏ 𝜕

𝜕𝑡 , (297)

((
𝑢𝑐
𝑐 )

2
𝑚2𝑐4 + ̂𝑝2𝑐2

) 𝜓 = ̂𝐸2𝜓, (298)

((
𝑢𝑐
𝑐 )

2
𝑚2𝑐4 + (−𝑖ℏ∇)2𝑐2

) 𝜓 = (𝑖ℏ 𝜕
𝜕𝑡)

2
𝜓 (299)

Thus, the extended version of the Klein-Gordon equation
becomes

(𝑢𝑐 /𝑐)
2 𝑚2𝑐2

ℏ2 𝜓 − ∇2𝜓 + 1
𝑐2

𝜕2

𝜕𝑡2 𝜓 = 0 (300)

In the realm of relativistic quantum mechanics, the Klein-
Gordon equation stands as a foundational framework for de-
scribing the behavior of particles with spin 0, such as mesons.
In exploring the possible solutions to this equation, we intro-
duce a new entity, a traveling standing wave-particle (consist-
ing of two counter-propagating waves) propelled by an emerg-
ing force resulting from phase changes based on Y. N. Ivanov’s
[61] new mechanism of motion. In one spatial dimension (x-
axis), the candidate wave function is given by the following
expression

𝜓(𝑥, 𝑡) = 𝐴 sin(
𝑝 ⋅ 𝑥

ℏ + 𝐸 ⋅ 𝑡
ℏ − 𝜙) + (301)

𝐴 sin(
𝑝 ⋅ 𝑥

ℏ − 𝐸 ⋅ 𝑡
ℏ − 𝜙)

We will now assess if the provided wave function meets the
requirements of the extended Klein-Gordon equation. Hence

(𝑢𝑐 /𝑐)
2 𝑚2𝑐2

ℏ2 𝜓(𝑥, 𝑡) = (302)

𝐴(𝑢𝑐 /𝑐)
2 𝑚2𝑐2

ℏ2 sin(
𝑝 ⋅ 𝑥

ℏ + 𝐸 ⋅ 𝑡
ℏ − 𝜙)

+𝐴(𝑢𝑐 /𝑐)
2 𝑚2𝑐2

ℏ2 sin(
𝑝 ⋅ 𝑥

ℏ − 𝐸 ⋅ 𝑡
ℏ − 𝜙) ,

∇2𝜓(𝑥, 𝑡) = (303)

−𝐴 ⋅ 𝑝2

ℏ2 sin(
𝑝 ⋅ 𝑥

ℏ + 𝐸 ⋅ 𝑡
ℏ − 𝜙)

−𝐴 ⋅ 𝑝2

ℏ2 sin(
𝑝 ⋅ 𝑥

ℏ − 𝐸 ⋅ 𝑡
ℏ − 𝜙) ,

1
𝑐2

𝜕2

𝜕𝑡2 𝜓(𝑥, 𝑡) = (304)

−𝐴 ⋅ 𝐸2

𝑐2ℏ2 sin(
𝑝 ⋅ 𝑥

ℏ + 𝐸 ⋅ 𝑡
ℏ − 𝜙)

−𝐴 ⋅ 𝐸2

𝑐2ℏ2 sin(
𝑝 ⋅ 𝑥

ℏ − 𝐸 ⋅ 𝑡
ℏ − 𝜙)

Inserting the above calculations into Eq. (300), yields

𝐴
(

(𝑢𝑐 /𝑐)
2 𝑚2𝑐2

ℏ2 + 𝑝2

ℏ2 − 𝐸2

𝑐2ℏ2 )
⋅ (305)

sin(
𝑝 ⋅ 𝑥

ℏ + 𝐸 ⋅ 𝑡
ℏ − 𝜙) +

𝐴
(

(𝑢𝑐 /𝑐)
2 𝑚2𝑐2

ℏ2 + 𝑝2

ℏ2 − 𝐸2

𝑐2ℏ2 )
⋅

sin(
𝑝 ⋅ 𝑥

ℏ − 𝐸 ⋅ 𝑡
ℏ − 𝜙) = 0

The equation shown above can be equal to zero, when

(𝑢𝑐 /𝑐)
2 𝑚2𝑐2

ℏ2 + 𝑝2

ℏ2 − 𝐸2

𝑐2ℏ2 = 0 (306)

By multiplying both sides of the equation by 𝑐2, we get the
abstract form of the new energy-momentum relation, thereby
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satisfying the extended form of the Klein-Gordon equation

((𝑢𝑐 /𝑐)
2 𝑚2𝑐4 + 𝑝2𝑐2

) − 𝐸2 = 0 (307)

The standing wave-particle function (see Eq. (301) is a spe-
cific solution to the extended Klein-Gordon equation that may
alternatively be expressed as

𝜓(𝑥, 𝑡) = 2𝐴 sin(
𝑝 ⋅ 𝑥

ℏ − 𝜙) cos(
𝐸 ⋅ 𝑡

ℏ ) (308)

The standard interpretation of quantum mechanics (see
Copenhagen Interpretation) sees the wave function as a math-
ematical tool that provides probabilities for various outcomes.
The wave function does not represent an objective reality, but
rather our knowledge or information about the system and its
relationship with the observations. Furthermore, it is a wave
in the sense that it can exhibit interference and diffraction ef-
fects, just like classical waves, but it is also a probability distri-
bution, capturing particle-like behavior. As we can see, more
than one wave functions may represent a specific solution to
the extended form of the Klein-Gordon equation. In our case,
we chose a standing wave-particle as a solution because it has
the unique attribute of storing energy that could be utilized.
However, the utilization of this characteristic becomes chal-
lenging due to the wave function’s inherent nature as a mathe-
matical tool that cannot accurately depict physical phenomena,
such as the motion of particles. What we propose here is an
improved interpretation of quantum mechanics in which any
plausible specific solution to the Klein-Gordon equation or its
modifications is potentially genuine engineering real-world so-
lutions such as the one that defines a particle’s mechanism of
motion. This means that for the wave function (Eq. (308)) to
manifest itself, it is necessary to couple a real standing wave
to the particle wave function, where all of its properties will be
locked/coupled one by one.

As the above equation indicates, any change in the real-
world standing wave influences the particle’s wave function
(Eq. (308)). According to Y. N. Ivanov’s [61] newmechanism
of motion, by introducing a phase 𝜙 to the standing wave, the
nodes of the wave are compelled to move, causing the entire
pattern of the standing wave-particle to shift in a given direc-
tion. A continual shift in phase or frequency leads the standing
wave to accelerate. As a result, the wave function (Eq. (308))
is affected by the phase shift 𝜙 and the 𝑛𝑠 component as follows

sin(
𝑝 ⋅ 𝑥

ℏ − 𝜙) = sin (𝑛𝜋) , (309)
𝑝 ⋅ 𝑥

ℏ − 𝜙 = 𝑛𝜋, (310)

0 ≤ 𝑥 ≤ 𝜆/2 ⇒ 𝑛 = 0 ⇒ 𝑥 = 𝜆
2

𝜙
𝜋 = 𝜙ℏ

𝑝 , (311)

Δ𝑡 = 1
2𝑓 ⇒ 𝑛𝑠 ≥ 1 ⇒ 𝑢 = 𝑛𝑠

Δ𝑥
Δ𝑡 = 𝑛𝑠 ⋅ 𝑎 ⋅ Δ𝑡 (312)

𝑢 = 𝑛𝑠 ⋅ 𝑐 Δ𝜙
𝜋 = 𝑛𝑠 ⋅ 𝑐 Δ𝑓

2𝑓 = 𝑛𝑠
ℏ𝜔
𝑝

Δ𝜙
𝜋 (313)

The variables 𝑥, 𝑢, and 𝑎 correspond to the position, speed,
and acceleration of a node within the wave function, which
encompasses the entirety of the standingwave-particle pattern,
as indicated in Eq. (308).

H. Lorentz Transformation

The Lorentz transformation is a key concept in special rel-
ativity, explaining how event coordinates change while tran-
sitioning between two observers in relative motion due to a
change in inertial frame. It describes how the coordinates of
an event, in terms of both space and time, are related when
observed in one inertial reference frame compared to another
frame travelling at a constant speed relative to the first. The
Galilean transformations in classical mechanics are replaced
by these transformations, which accurately consider the con-
stant speed of light and the relativity of simultaneity. When
working with Lorentz transformations, we are dealing with the
conversion of Cartesian coordinates and temporal coordinates
across different inertial frames of reference. As a result, for
the Lorentz transformation to be compatible with the broader
framework of special relativity, which allows particle config-
urations to cross the light-speed barrier, two things must be
considered. The one is the local varying propagation speed of
light 𝑢𝑐 that occurs within the system; it is not reliant on the
system’s Cartesian and temporary coordinates, and hence can-
not be included in the set of Lorentz transformation equations.
The second point is that the local varying propagation speed of
light 𝑢𝑐 must be consideredwithin the proper time, which is the
time the system experiences on its own. The Lorentz transfor-
mation equations for motion along the x-axis, accounting for
internal forces in the motion mechanism, are

𝐹𝑖𝑛𝑡 ⇒ 𝛽𝑠 = 𝑢/𝑛𝑠𝑐 ⇒ 𝛾𝑠 = 1/√1 − 𝛽2
𝑠 , (314)

𝑐 ⋅ 𝑡′ = 𝛾𝑠 (𝑐 ⋅ 𝑡 − 𝛽𝑠 ⋅ 𝑥) , (315)
𝑥′ = 𝛾𝑠 (𝑥 − 𝛽𝑠 ⋅ 𝑐 ⋅ 𝑡) , (316)

𝑦′ = 𝑦, (317)
𝑧′ = 𝑧 (318)

For motion resulting from the application of external forces,
we obtain

𝐹𝑒𝑥𝑡 ⇒ 𝑛𝑠 = 1 ⇒ 𝛽𝑠 = 𝛽 = 𝑢/𝑐 ⇒ 𝛾 = 1/√1 − 𝛽2, (319)
𝑐 ⋅ 𝑡′ = 𝛾 (𝑐 ⋅ 𝑡 − 𝛽 ⋅ 𝑥) , (320)

𝑥′ = 𝛾 (𝑥 − 𝛽 ⋅ 𝑐 ⋅ 𝑡) , (321)
𝑦′ = 𝑦, (322)
𝑧′ = 𝑧 (323)

I. Proper Time and Length

In special relativity, proper time is the time measured by
an observer moving alongside a clock or object in space. It
refers to the time as measured by a clock unaffected by ac-
celeration or gravitational forces. As an object accelerates to-
wards the speed of light, time dilation causes time to pass more
slowly for an observer at rest (object in motion). Neverthe-
less, its proper time remains constant for the object in motion.
The broader framework of special relativity introduces a lo-
cal varying propagation speed of light (𝑢𝑐), which results in
proper time changes for the moving object. The proper time
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(𝑑𝑡𝜏 ) is defined as the time measured in the rest frame of the
system (standing wave-particle). From Eqs. (315) and (316)
we obtain

𝐹𝑖𝑛𝑡 ⇒ 𝑑𝑥′ = 0 ⇒ 𝑑𝑥 = (𝑢/𝑛𝑠) 𝑑𝑡 = 𝑐 ⋅ 𝛽𝑠𝑑𝑡, (324)
𝑢𝑐
𝑐 𝑑𝑡𝜏 = (1 − 𝛽2

𝑠 ) 𝑑𝑡𝜏 = 𝑑𝑡′ = (325)

𝛾𝑠𝑑𝑡 − 𝛾𝑠 ⋅ (𝛽𝑠/𝑐) ⋅ 𝑑𝑥 = 𝛾𝑠𝑑𝑡 − 𝛾𝑠 ⋅ 𝛽2
𝑠 𝑑𝑡,

(1 − 𝛽2
𝑠 ) 𝑑𝑡𝜏 = 𝛾𝑠 (1 − 𝛽2

𝑠 ) 𝑑𝑡, (326)

𝑑𝑡𝜏 = 𝛾𝑠𝑑𝑡 = (1/√1 − 𝛽2
𝑠 ) 𝑑𝑡, (327)

𝑑𝑡 = (√1 − 𝛽2
𝑠 ) 𝑑𝑡𝜏 = (1 − 𝛽2

𝑠 )

√1 − 𝛽2
𝑠

𝑑𝑡𝜏 =
𝑑𝑡𝜏𝑐

√1 − 𝛽2
𝑠

, (328)

𝑑𝑡𝜏𝑐 = (1 − 𝑢2/𝑛2
𝑠𝑐2) 𝑑𝑡𝜏 , (329)

𝑑𝑡 =
𝑑𝑡𝜏𝑐

√1 − 𝑢2/𝑛2
𝑠𝑐2

(330)

For a constant local propagation speed of light, yields

𝐹𝑒𝑥𝑡 ⇒ 𝑢𝑐 = 𝑐 ⇒ 𝑛𝑠 = 1 ⇒ 𝛾𝑠 = 𝛾 ⇒ 𝑑𝑥′ = 0, (331)
𝑑𝑥 = 𝑢𝑑𝑡 = 𝑐 ⋅ 𝛽𝑑𝑡, (332)

𝑑𝑡𝜏 = 𝑑𝑡′ = 𝛾 (1 − 𝛽2) 𝑑𝑡 = (√1 − 𝑢2/𝑐2) 𝑑𝑡, (333)

𝑑𝑡 = (1/√1 − 𝑢2/𝑐2) 𝑑𝑡𝜏 (334)

Similarly, the proper length is

𝐹𝑖𝑛𝑡 ⇒ 𝑑𝑡 = 0 ⇒ 𝑑𝑥𝜏
𝑢𝑐 /𝑐 = 𝑑𝑥′ = 𝛾𝑠𝑑𝑥, (335)

𝑑𝑥𝜏 = 𝑢𝑐
𝑐 𝛾𝑠𝑑𝑥 = (1 − 𝛽2

𝑠 ) 𝛾𝑠𝑑𝑥, (336)

𝑑𝑥𝜏 = (√1 − 𝛽2
𝑠 ) 𝑑𝑥, (337)

𝑑𝑥 = (1/√1 − 𝛽2
𝑠 ) 𝑑𝑥𝜏 , (338)

𝑑𝑥 =
(√1 − 𝛽2

𝑠 ) 𝑑𝑥𝜏

1 − 𝛽2
𝑠

, (339)

𝑑𝑥𝜏𝑐 = 𝑑𝑥𝜏
1 − 𝛽2

𝑠
= 𝑑𝑥𝜏

1 − 𝑢2/𝑛2
𝑠𝑐2

, (340)

𝑑𝑥 = (√1 − 𝑢2/𝑛2
𝑠𝑐2

) 𝑑𝑥𝜏𝑐 (341)

Considering a constant local propagation speed of light, the
proper length is given by

𝐹𝑒𝑥𝑡 ⇒ 𝑢𝑐 = 𝑐 ⇒ 𝑛𝑠 = 1 ⇒ 𝛾𝑠 = 𝛾 ⇒ 𝑑𝑡 = 0, (342)
𝑑𝑥𝜏 = 𝑑𝑥′ = 𝛾𝑑𝑥, (343)

𝑑𝑥𝜏 = (1/√1 − 𝑢2/𝑐2) 𝑑𝑥, (344)

𝑑𝑥 = (√1 − 𝑢2/𝑐2) 𝑑𝑥𝜏 (345)

The new relativistic momentum and energy can be obtained
by using the proper time as follows

𝐹𝑖𝑛𝑡 ⇒ 𝑝 = 𝑚𝑢 𝑑𝑡
𝑑𝑡𝜏

= 𝑚𝑢√1 − 𝑢2/𝑛2
𝑠𝑐2, (346)

𝐹𝑖𝑛𝑡 ⇒ 𝑚𝑖𝑐2 = 𝑚𝑐2 𝑑𝑡
𝑑𝑡𝜏

= 𝑚𝑐2√1 − 𝑢2/𝑛2
𝑠𝑐2 (347)

Now, let’s examine an example related to time dilation. As-
suming two objects are propelled by internal forces, one ap-
proaches the speed of light, while the other exceeds it by a
factor of 10. Hence,

𝑢1 = 0.999𝑐 and 𝑢2 = 10 ⋅ 𝑢1 = 9.99𝑐, (348)
𝑢1 ⇒ 𝑛𝑠 = 1 ⇒ 𝑑𝑡𝜏𝑐 = (1 − 𝑢2

1/𝑛2
𝑠𝑐2) 𝑑𝑡𝜏 , (349)

𝑢1 ⇒ 𝑛𝑠 = 1 ⇒ 𝑑𝑡𝜏𝑐 = 0.0019999 ⋅ 𝑑𝑡𝜏 , (350)

𝑢1 ⇒ 𝑛𝑠 = 1 ⇒ 𝑑𝑡 =
𝑑𝑡𝜏𝑐

√1 − 𝑢2
1/𝑛2

𝑠𝑐2
, (351)

𝑢1 ⇒ 𝑛𝑠 = 1 ⇒ 𝑑𝑡 = 22.366272 ⋅ 𝑑𝑡𝜏𝑐 , (352)
𝑢2 ⇒ 𝑛𝑠 = 10 ⇒ 𝑑𝑡𝜏𝑐 = (1 − 𝑢2

2/𝑛2
𝑠𝑐2) 𝑑𝑡𝜏 , (353)

𝑢2 ⇒ 𝑛𝑠 = 10 ⇒ 𝑑𝑡𝜏𝑐 = 0.0019999 ⋅ 𝑑𝑡𝜏 , (354)

𝑢2 ⇒ 𝑛𝑠 = 10 ⇒ 𝑑𝑡 =
𝑑𝑡𝜏𝑐

√1 − 𝑢2
2/𝑛2

𝑠𝑐2
, (355)

𝑢2 ⇒ 𝑛𝑠 = 10 ⇒ 𝑑𝑡 = 22.366272 ⋅ 𝑑𝑡𝜏𝑐 , (356)

In special relativity, the time interval 𝑑𝑡 measured by a mov-
ing observer is viewed as a spacetime phenomenon as it entails
comparing time measurements taken at various spatial loca-
tions and distinct time instances. It explains how the move-
ment of observers relative to each other impacts their experi-
ence of time. Proper time interval 𝑑𝜏𝑐 is a local phenomenon
within the frame of the moving object or observer. It denotes
the time as measured by a stationary clock about the observer
or object, representing the local time perceived by that ob-
server or object. Given these considerations, the time dilation
for both moving objects or observers (𝑢1 and 𝑢2) in the exam-
ple remains identical despite the second itemmoving at a speed
10 times greater than the first. Therefore,

𝑑𝑡 = 22.366272 ⋅ 𝑑𝑡𝜏𝑐 (357)

The expression indicates that the time interval 𝑑𝑡 observed
by the moving observer is 22.366272 times the time interval
𝑑𝑡𝜏𝑐 (proper time) in the rest frame of the moving object. Re-
garding the proper time of both objects, we note they are again
the same, therefore

𝑑𝑡𝜏𝑐 = 0.0019999 ⋅ 𝑑𝑡𝜏 (358)

How can we understand the outcome of the expression
above? Consider the time interval 𝑑𝑡𝜏 of the ticking of a clock
in an environment (rest frame of the moving object) where the
propagation speed of light is constant 𝑐. The time interval 𝑑𝑡𝜏𝑐represents a reduced time interval when the clock ticks within
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an environment (rest frame of the moving object) where the
propagation speed of light is below 𝑐. In special relativity, the
proper time 𝑑𝑡𝜏 remains constant at e.g. 1𝑠. In the above case,
the broader framework predicts that for an object driven by in-
ternal forces, the proper time is 0.0019999 times that of one
second. It means, that when the propagation speed is less than
the speed of light 𝑐, the experienced time (proper time) within
the rest frame of the moving object is equal to 0.0019999 of
a second, which is a fraction of a second. In theory, traveling
at a speed of 1020 times the speed of light would allow us to
reach the edge of the universe and come back within a second.

XII. EM INERTIAL DRIVE

Contents

In 2009, the author accidentally observed an unusual phe-
nomenon in a ferrite (MnZn) ring when subjected to currents
of different frequencies and amplitudes. As a result, the ring
(see FIG. (11)), which weighed around 0.2𝑘𝑔, began to travel
in a specified direction. Because of the ferromagnetic mate-
rial’s properties, the setup was extremely sensitive to electric
current changes and frequencies, making it difficult to recreate
the phenomenon of motion. Therefore, the experimental setup
cannot be considered for real-world applications but just for
demonstration purposes. Three separate experimental setups
were recorded and uploaded on the author’s YouTube channel.
The author of this work claims that these tests could be seen as
the world’s earliest attempts to demonstrate a primal electro-
magnetic inertial drive while sounding like an exaggeration.
The experiments are available at the following link:

YouTube -EM Inertial Drive Link

The toroidal inductor comprises the following characteris-
tics [62]

T87/56/13 3E6 Grade, (359)
𝜌 = 4900 𝑘𝑔/𝑚3,

𝑉𝑒 = 42133𝑚𝑚3 = 42.133 ⋅ 10−6𝑚3, ,
𝐼𝑒 = 217.5𝑚𝑚 = 217.5 ⋅ 10−3𝑚,
𝐴𝑒 = 194𝑚𝑚2 = 1.94 ⋅ 10−4𝑚2,

𝜇𝑟 = 10000,
𝑚𝑇 87 = 0.2 𝑘𝑔,

𝜎 = 10𝑆/𝑚,
𝐿 = 1𝑚𝐻 (inductance) and f = 5694 Hz

The series resistance 𝑅𝑠, the impedance 𝑍𝐿 of the inductor,
the propagation resistance 𝑅𝑒𝑚, and radiation resistance 𝑅𝑟 are
determined as follows

𝑅𝑠 ≈ 0 Ohm, (360)
𝑍𝐿 = 𝐿 ⋅ 2𝜋𝑓 = 35.75 Ohm (361)

The computation of the radiation resistance 𝑅𝑟 requires
knowing the propagation speed of the electromagnetic waves

FIG. 11. Toroidal Inductor-Primal EM Inertial Drive. A ferromag-
netic toroidal inductor is a closed-loop structure that allows an in-
duced electromagnetic wave to interact with itself, creating a stand-
ing wave that captures the ferromagnetic toroid material. Applying
a phase or frequency shift to the standing wave will cause the toroid
inductor to rotate in the same direction as the shift. The toroidal in-
ductor can transform into a primal electromagnetic inertial drive un-
der specific conditions.

𝑣𝑒𝑚 through the ferromagnetic medium as also the propagation
resistance (ferrite loop) of the ferromagnetic medium 𝑅𝑒𝑚 it-
self, so

𝑣𝑒𝑚 = 1/
√√√
⎷

𝜖𝜇
2 [√1 + (

𝜎
𝜔𝜖 )

2
− 1

]
, (362)

𝜎 >> 𝜔𝜖 ⇒ √1 + (
𝜎

𝜔𝜖 )
2

− 1 ≈ 𝜎/𝜔𝜖, (363)

𝜎 >> 𝜔𝜖 ⇒ 𝑣𝑒𝑚 = √
4𝜋𝑓
𝜇𝜎 = 754𝑚/𝑠, (364)

𝜆𝑒𝑚 = 𝑣𝑒𝑚/𝑓 = 0.132𝑚 = 0.6𝐼𝑒, (365)

𝑅𝑒𝑚 = 𝜇𝑜𝜇𝑟𝑣𝑒𝑚 = 9.48 Ohm, (366)

𝑁 = 3 ⇒ 𝑅𝑟 = 𝑅𝑒𝑚
8
3𝜋3

(𝑁 𝐴𝑒
𝜆2

𝑒𝑚 )
2

≈ 0.86 𝑂ℎ𝑚 (367)

Sincewe are dealingwith relative small energy densities, we
are going to use the relativistic inertia expression that applies
for 𝑛𝑠 equals to 1, hence

𝑛𝑠 = 1 ⇒ 𝑚𝑖 = 𝑚√1 − (
𝑢2

𝑐2 )
2

= 𝑚√1 − (
𝑝𝑒𝑚
𝑚𝑐 )

2
(368)

The momentum (𝑝𝑒𝑚) of the electromagnetic energy carried
by 𝑛 photons traveling through the ferromagnetic material is
expressed as

𝑛𝑟 = 𝑐
𝑣𝑒𝑚

⇒ 𝑝𝑒𝑚 = 𝑛ℏ𝜔/(𝜔/𝑘) = 𝑈𝑒𝑚
𝑑𝑧/𝑑𝑡 , (369)

𝑝𝑒𝑚 = 𝑈𝑒𝑚
𝑣𝑒𝑚

= 𝑈𝑒𝑚
𝑐 𝑛𝑟

https://www.youtube.com/channel/UCyHiYTj88O2ylGEXcq3am4w
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FIG. 12. Experimental Configuration. The circuit has an AC power
generator connected to an external resistance of 4.7 Ohm and induc-
tance 𝐿. The model of the inductance is made up of four resistors in
series: the 𝑎𝑐 impedance 𝑍𝐿, the series resistance 𝑅𝑠, which is con-
sidered negligible in this context, the propagation resistance 𝑅𝑒𝑚, and
the radiation resistance 𝑅𝑟.

Eq. (368) turns into

𝑚𝑖 = 𝑚√1 − (
𝑈𝑒𝑚
𝑚𝑐2 𝑛𝑟)

2
= 𝑚√1 − (

𝑛ℎ𝑓
𝑚𝑐2 𝑛𝑟)

2
, (370)

𝑚𝑖 = 𝑚√1 − (
𝑛ℎ𝑓 2

𝑚𝑐𝑣𝑒𝑚𝑓 )
2
, (371)

𝑛ℎ𝑓 2 = 𝑎𝐷 ⇒ 𝑚𝑖 = 𝑚√1 − (
𝑎𝐷

𝑚𝑐𝑣𝑒𝑚𝑓 )
2

(372)

Where 𝑎 represents the average surface area of a particle in
the ferromagnetic medium with an average mass of 𝑚, and 𝐷
denotes the power density of the incident radiation. The power
density 𝐷 is calculated by dividing the power of the incident
radiation by the cross-section 𝐴𝑒 of the ferrite 𝑇 87/56/13, thus

𝐷 = 𝐼2
𝑎𝑐𝑅𝑟/𝐴𝑒, (373)

𝑚𝑖 = 𝑚
√√√
⎷

1 −
(

𝑎
𝐴𝑒

𝐼2
𝑎𝑐𝑅𝑟

𝑚𝑐𝑣𝑒𝑚𝑓 )

2

, (374)

𝐼2
𝑎𝑐𝑅𝑟/𝐴𝑒

𝑚𝑐𝑣𝑒𝑚𝑓/𝑎 = 𝑣𝑒𝑚𝐵2/2𝜇𝑜𝜇𝑟
𝑣𝑒𝑚𝐵2

𝑐 /2𝜇𝑜𝜇𝑟
= Δ𝜙

𝜋 = Δ𝑓
2𝑓 (375)

The mean particle mass 𝑚 and the particle mean surface
area 𝑎 of theManganese-Zinc composite material are currently
unknown. To simplify our calculations, we will utilize the
Titanium element, which has a comparable mass density of
4506 𝑘𝑔/𝑚3. Therefore, the mean particle mass and surface

area are borrowed from the Titanium atom properties, thus

𝜌 = 4506 𝑘𝑔/𝑚3 ⇒ 𝑚 = 7.94 ⋅ 10−26𝑘𝑔, (376)
𝜌 = 4506 𝑘𝑔/𝑚3 ⇒ 𝑟𝑎𝑡𝑜𝑚 = 1.47 ⋅ 10−10𝑚, (377)

𝑟𝑎𝑡𝑜𝑚 ⇒ 𝑎 = 4𝜋𝑟2
𝑎𝑡𝑜𝑚 = 2.7155 ⋅ 10−19𝑚2 (378)

Substituting the corresponding values in Eq. (374), yields

𝑚𝑖 = 𝑚√1 − 4.49 ⋅ 10−3𝐼4
𝑎𝑐 = 𝑚√1 − 0.82 ⋅ 𝐵4 (379)

Setting the electric current 𝐼𝑎𝑐 to a value equal to 0.39𝐴, we
obtain

𝐼𝑎𝑐 ≈ 0.39𝐴 ⇒ 𝐵 ≈ 0.106𝑇 ⇒ Δ𝑓 ≈ 116𝐻𝑧, (380)
𝑚𝑖 = 0.999948𝑚 ⇒ Δ𝑚 = 1.04 ⋅ 10−5𝑚, (381)

𝑚 = 𝑚𝑇 87 ⇒ 𝑚𝑖 = 0.199989 𝑘𝑔, (382)
Δ𝑚 = 1.04 ⋅ 10−5 𝑘𝑔

Let us apply the above calculations to the experimental setup
where the ferrite ring rotates (see above YouTube Link) clock-
wise or counter-clockwise based on the direction of the fre-
quency shift. Assuming the ferrite ring has overcome static
friction and is rotating at a constant tangential speed, then the
internal equals the average kinetic friction force, thus

𝑔 = 9.81𝑚/𝑠2, (383)
𝜇𝑘 = 0.5 (wood) ⇒ 𝐹𝑘 = 𝜇𝑘𝑚 ⋅ 𝑔 = 0.981𝑁, (384)

𝐹𝑖𝑛𝑡 − 𝐹𝑘 = ∑ 𝐹 = 0 ⇒ 𝐹𝑖𝑛𝑡 = 𝐹𝑘 ⇒ 𝑢 = 𝑐𝑜𝑛𝑠𝑡, (385)
𝐹𝑖𝑛𝑡 = 0.981𝑁 = Δ𝑚 ⋅ 𝑎Δ𝑚, (386)

𝑎Δ𝑚 = 94.32 ⋅ 103𝑚/𝑠2, (387)
Δ𝑓Δ𝑚 = 𝑎Δ𝑚/𝑣𝑒𝑚 ≈ 125𝐻𝑧 ≈ Δ𝑓 (388)

The variables 𝑚 and Δ𝑚 denote the mass of the ferrite ring
and the redistributed mass affecting inertia in the system, re-
spectively. The redistributed mass creates an internal inertial
force that propels the system forward, by the primal mechani-
cal inertial drive principle. Moreover, the frequency shift Δ𝑓
occurs continuously, similar to a frequency shift within a time
range. When the frequency shift is forced to zero by the user
(by simply halting altering the frequency), the ring stops ro-
tating. The reverse frequency shift causes the ring to rotate in
the opposite direction.

XIII. CONCLUSIONS

In conclusion, this paper embarks on a journey beyond the
confines of classical physics and relativity, presenting a se-
ries of innovative concepts and analyses that challenge long-
held conventions. From the elucidation of rotational unbal-
ance in classical mechanics to the revelation of a varying prop-
agation speed of light within the framework of general rela-
tivity. By bridging classical mechanics with electromagnetic,
gravitational, and inertial phenomena, we have uncovered con-
nections that not only enrich theoretical frameworks but also
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have practical implications. The introduction and study of new
types of charges, has led to the unification of electromagnetism
with gravity and inertia, opening up new avenues for control-
ling these fundamental forces. Furthermore, the extension
of special relativity, which allows for particle configuration
speeds equal to or faster than light, challenges long-held as-
sumptions and stimulates additional investigation into the na-
ture of spacetime and relativistic phenomena. In essence, this
work acts as a catalyst for a paradigm change in our compre-
hension of classical physics and relativity, expanding the lim-
its of scientific investigation and encouraging interdisciplinary
collaboration.
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