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A proposed solution to the millennium problem on the existence and smoothness
of the Navier—Stokes equations.

1. Introduction

The Navier—Stokes equations are thought to govern the motion of a fluid in R?,
see [1,3]. Let u = u(x,7) € R? be the fluid velocity and let p = p(x,t) € R be
the fluid pressure, each dependent on position x € R? and time ¢ > 0. I take the
externally applied force acting on the fluid to be identically zero. The fluid is
assumed to be incompressible with constant viscosity v > 0 and to fill all of R>.
The Navier—Stokes equations can then be written as
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with initial condition
ux,0) =u’ 3)
where u° = u°(x) € R?. In these equations
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is the gradient operator and
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is the Laplacian operator. When v = 0 equations (1), (2), (3) are called the Euler
equations. Solutions of (1), (2), (3) are to be found with

u’(x +e¢) = u’(x) (6)

for 1 < i < 3 where ¢; is the i unit vector in R?. The initial condition u° is a given
C* divergence-free vector field on R*. A solution of (1), (2), (3) is then accepted
to be physically reasonable [3] if

u(x +e;,t) =u(x,t), pxX+e;,t)=pxt) @)
on R? x [0, 00) for 1 < i< 3 and

u, p € C2(R? x [0, 0)). (8)
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2. Solution to the Navier—Stokes problem

I provide a proof of the following theorem, see [2,3,5,6].

Theorem. Take v > 0. Let u® be any smooth, divergence-free vector field satisfy-
ing (6). Then there exist smooth functions u, p on R? x [0, 00) that satisfy (1), (2),
(3), (7), ().

Proof. Let u, p be given by

u= Z uLeikL-X’ (9)
L=-00

p= ), me (10)
L=-c0

respectively. Here uy, = uy (1) € C3, pp = pp() € C,i= V-1,k =2, and Yp°__,
denotes the sum over all L € Z3. The initial condition u° is a Fourier series [2] of
which is convergent for all x € R?. Equation (1) implies

0
uL QikLx Z Z (uy, - kM) e XM=

L=-0c0 L=—c0o M=—

= Z ) Z KL pye>. (11)

L=—c0 L=-0c0

Equating like powers of the exponentials in (11) yields

ou
8tL + Z (u_m - ikM)uy = —vi?[L|Pug, — ikLpy, (12)

on using the Cauchy product type formula [4]

i ax! i b, X" = i i b (13)

I=—00 m=—o0 [=—00 m=—c0
Equation (2) implies
DKL - ug et = 0, (14)
L=—co

Equating like powers of the exponentials in (14) yields

L-u,=0. (15)



Applying L- to (12) and noting (15) leads to

pL=- ) (i y-Lyuy-L) (16)

M=-c0

where py is arbitrary and I. = L/|L| is the unit vector in the direction of L. Then
substituting (16) into (12) gives

8uL

5 =" Z (g, - ikM)uyy — v |LIuy, + Z ikL(up_y - L)(uy - L) (17)

M=—0c0 M=—00

where uy = uy(0). Without loss of generality [2], I take uy = 0. This is due to
the Galilean invariance property of solutions to the Navier—Stokes equations. The
equations for uy, are to be solved for all L € Z*. Here we can find a representation
of the solution u, p and show that u can not have a finite time singularity when
u°(x) is smooth.

First note that the solution u = u(x, ) to

(Z—l;+(u-V)u:0, (18)
ux,0) = u’°(x) (19)
can be represented by
u = u’(X), (20)
X =x + m°(X). 21)

This can be checked as follows via the chain rule.

ou’(X) ou’(X) 0X

ot oX ot
(X)),
)
- X e, (22)
ox

Therefore (18), (19) are satisfied. We see here that this u satisfying (18), (19) can
not have a finite time singularity when u°(x) is smooth.
The solution u = u(x, 1), p = p(x, 1) to (1), (2), (3), (6), (7) can be represented by

u = u’(X), (23)
p=-V¢{Vx - [(@°(X) - V)u (X))} = P(X), (24)
X =x+tu’(X) - u'(X)] (25)
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where u’(X) is a representation of the implicit solution u°(X) to

0w (X)
X

u’(X) = vWxu(X) + Vx P(X). (26)

In these equations Vx, V§, and V;(z denote the gradient, Laplacian, and inverse
Laplacian with respect to the variable X respectively. Note it is true that

1 ou° (X

It is also true that u’*(X) can be represented by

u’(X) - VxP(X)]. (27)

du°(X)
0X

in cases where the nonlinearity is not identically equal to zero. The solution can
be checked as follows via the chain rule.

ou’(X) ou*(X) X

u'(X) = —( ) yVxu(X) + Vx P(X)] (28)

ot oX ot

_ 8u°(X) ° s

= —x v X) —u'(X)]

_ W) e - Ly ) ey

ou°(X ou°(X

= P - Ly R e 4 vl
X v ox

or PV ey - R v - veoon. 29)
X ox

Therefore (1), (3) are satisfied. We also have
p=-V3V-[(u-Vul} (30)

which is obtained by applying V- to (1) of which ensures (2). Due to the form
of the solution we see that u can not have a finite time singularity when u°(x) is
smooth. Therefore the theorem is true. O
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