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A proposed solution to the millennium problem on the existence and smoothness
of the Navier–Stokes equations.

1. Introduction

The Navier–Stokes equations are thought to govern the motion of a fluid in R3,
see [1,3]. Let u = u(x, t) ∈ R3 be the fluid velocity and let p = p(x, t) ∈ R be
the fluid pressure, each dependent on position x ∈ R3 and time t > 0. I take the
externally applied force acting on the fluid to be identically zero. The fluid is
assumed to be incompressible with constant viscosity ν > 0 and to fill all of R3.
The Navier–Stokes equations can then be written as

∂u
∂t

+ (u · ∇)u = ν∇2u − ∇p, (1)

∇ · u = 0 (2)

with initial condition
u(x, 0) = u◦ (3)

where u◦ = u◦(x) ∈ R3. In these equations

∇ = (
∂

∂x1
,
∂

∂x2
,
∂

∂x3
) (4)

is the gradient operator and

∇2 =

3∑
i=1

∂2

∂xi
2 (5)

is the Laplacian operator. When ν = 0 equations (1), (2), (3) are called the Euler
equations. Solutions of (1), (2), (3) are to be found with

u◦(x + ei) = u◦(x) (6)

for 1 6 i 6 3 where ei is the ith unit vector in R3. The initial condition u◦ is a given
C∞ divergence-free vector field on R3. A solution of (1), (2), (3) is then accepted
to be physically reasonable [3] if

u(x + ei, t) = u(x, t), p(x + ei, t) = p(x, t) (7)

on R3 × [0,∞) for 1 6 i 6 3 and

u, p ∈ C∞(R3 × [0,∞)). (8)
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2. Solution to the Navier–Stokes problem

I provide a proof of the following theorem, see [2,3,5,6].
Theorem. Take ν > 0. Let u◦ be any smooth, divergence-free vector field satisfy-
ing (6). Then there exist smooth functions u, p on R3 × [0,∞) that satisfy (1), (2),
(3), (7), (8).
Proof. Let u, p be given by

u =

∞∑
L=−∞

uLeikL·x, (9)

p =

∞∑
L=−∞

pLeikL·x (10)

respectively. Here uL = uL(t) ∈ C3, pL = pL(t) ∈ C, i =
√
−1, k = 2π, and

∑∞
L=−∞

denotes the sum over all L ∈ Z3. The initial condition u◦ is a Fourier series [2] of
which is convergent for all x ∈ R3. Equation (1) implies

∞∑
L=−∞

∂uL

∂t
eikL·x +

∞∑
L=−∞

∞∑
M=−∞

(uL · ikM)uMeik(L+M)·x

= −

∞∑
L=−∞

νk2|L|2uLeikL·x −

∞∑
L=−∞

ikLpLeikL·x. (11)

Equating like powers of the exponentials in (11) yields

∂uL

∂t
+

∞∑
M=−∞

(uL−M · ikM)uM = −νk2|L|2uL − ikLpL (12)

on using the Cauchy product type formula [4]

∞∑
l=−∞

alxl
∞∑

m=−∞

bmxm =

∞∑
l=−∞

∞∑
m=−∞

al−mbmxl. (13)

Equation (2) implies
∞∑

L=−∞

ikL · uLeikL·x = 0. (14)

Equating like powers of the exponentials in (14) yields

L · uL = 0. (15)
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Applying L· to (12) and noting (15) leads to

pL = −

∞∑
M=−∞

(uL−M · L̂)(uM · L̂) (16)

where p0 is arbitrary and L̂ = L/|L| is the unit vector in the direction of L. Then
substituting (16) into (12) gives

∂uL

∂t
= −

∞∑
M=−∞

(uL−M · ikM)uM − νk2|L|2uL +

∞∑
M=−∞

ikL(uL−M · L̂)(uM · L̂) (17)

where u0 = u0(0). Without loss of generality [2], I take u0 = 0. This is due to
the Galilean invariance property of solutions to the Navier–Stokes equations. The
equations for uL are to be solved for all L ∈ Z3. Here we can find a representation
of the solution u, p and show that u can not have a finite time singularity when
u◦(x) is smooth.
First note that the solution u = u(x, t) to

∂u
∂t

+ (u · ∇)u = 0, (18)

u(x, 0) = u◦(x) (19)

can be represented by
u = u◦(X), (20)

X = x + tu◦(X). (21)

This can be checked as follows via the chain rule.

∂u◦(X)
∂t

=
∂u◦(X)
∂X

∂X
∂t

=
∂u◦(X)
∂X

u◦(X)

= −
∂u◦(X)
∂x

u◦(X). (22)

Therefore (18), (19) are satisfied. We see here that this u satisfying (18), (19) can
not have a finite time singularity when u◦(x) is smooth.
The solution u = u(x, t), p = p(x, t) to (1), (2), (3), (6), (7) can be represented by

u = u◦(X), (23)

p = −∇−2
X {∇X · [(u◦(X) · ∇X)u◦(X)]} = P(X), (24)

X = x + t[u◦(X) − us(X)] (25)
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where us(X) is a representation of the implicit solution u◦(X) to

−
∂u◦(X)
∂X

u◦(X) = ν∇2
Xu◦(X) + ∇XP(X). (26)

In these equations ∇X, ∇2
X, and ∇−2

X denote the gradient, Laplacian, and inverse
Laplacian with respect to the variable X respectively. Note it is true that

us(X) =
1
ν
∇−2

X [−
∂u◦(X)
∂X

u◦(X) − ∇XP(X)]. (27)

It is also true that us(X) can be represented by

us(X) = −(
∂u◦(X)
∂X

)−1[ν∇2
Xu◦(X) + ∇XP(X)] (28)

in cases where the nonlinearity is not identically equal to zero. The solution can
be checked as follows via the chain rule.

∂u◦(X)
∂t

=
∂u◦(X)
∂X

∂X
∂t

=
∂u◦(X)
∂X

[u◦(X) − us(X)]

=
∂u◦(X)
∂X

{u◦(X) −
1
ν
∇−2

X [−
∂u◦(X)
∂X

u◦(X) − ∇XP(X)]}

or
∂u◦(X)
∂X

{u◦(X) + (
∂u◦(X)
∂X

)−1[ν∇2
Xu◦(X) + ∇XP(X)]}

= −
∂u◦(x)
∂x
{u◦(X) −

1
ν
∇−2[

∂u◦(X)
∂x

u◦(X) + ∇P(X)]}

or −
∂u◦(X)
∂x

{u◦(X) − (
∂u◦(X)
∂x

)−1[ν∇2u◦(X) − ∇P(X)]}. (29)

Therefore (1), (3) are satisfied. We also have

p = −∇−2{∇ · [(u · ∇)u]} (30)

which is obtained by applying ∇· to (1) of which ensures (2). Due to the form
of the solution we see that u can not have a finite time singularity when u◦(x) is
smooth. Therefore the theorem is true. �
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