No blowup for the Navier-Stokes equations

Daniel Thomas Hayes

March 18, 2024

A proposed solution to the millennium problem on the existence and smoothness of the Navier–Stokes equations.

1. Introduction

The Navier–Stokes equations are thought to govern the motion of a fluid in \mathbb{R}^3 , see [1,3]. Let $\mathbf{u} = \mathbf{u}(\mathbf{x},t) \in \mathbb{R}^3$ be the fluid velocity and let $p = p(\mathbf{x},t) \in \mathbb{R}$ be the fluid pressure, each dependent on position $\mathbf{x} \in \mathbb{R}^3$ and time $t \ge 0$. I take the externally applied force acting on the fluid to be identically zero. The fluid is assumed to be incompressible with constant viscosity v > 0 and to fill all of \mathbb{R}^3 . The Navier–Stokes equations can then be written as

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = \nu \nabla^2 \mathbf{u} - \nabla p, \tag{1}$$

$$\nabla \cdot \mathbf{u} = 0 \tag{2}$$

with initial condition

$$\mathbf{u}(\mathbf{x},0) = \mathbf{u}^{\circ} \tag{3}$$

where $\mathbf{u}^{\circ} = \mathbf{u}^{\circ}(\mathbf{x}) \in \mathbb{R}^{3}$. In these equations

$$\nabla = (\frac{\partial}{\partial \mathbf{x}_1}, \frac{\partial}{\partial \mathbf{x}_2}, \frac{\partial}{\partial \mathbf{x}_3}) \tag{4}$$

is the gradient operator and

$$\nabla^2 = \sum_{i=1}^3 \frac{\partial^2}{\partial \mathbf{x}_i^2} \tag{5}$$

is the Laplacian operator. When $\nu = 0$ equations (1), (2), (3) are called the Euler equations. Solutions of (1), (2), (3) are to be found with

$$\mathbf{u}^{\circ}(\mathbf{x} + e_i) = \mathbf{u}^{\circ}(\mathbf{x}) \tag{6}$$

for $1 \le i \le 3$ where e_i is the i^{th} unit vector in \mathbb{R}^3 . The initial condition \mathbf{u}° is a given C^{∞} divergence-free vector field on \mathbb{R}^3 . A solution of (1), (2), (3) is then accepted to be physically reasonable [3] if

$$\mathbf{u}(\mathbf{x} + e_i, t) = \mathbf{u}(\mathbf{x}, t), \quad p(\mathbf{x} + e_i, t) = p(\mathbf{x}, t) \tag{7}$$

on $\mathbb{R}^3 \times [0, \infty)$ for $1 \le i \le 3$ and

$$\mathbf{u}, p \in C^{\infty}(\mathbb{R}^3 \times [0, \infty)). \tag{8}$$

2. Solution to the Navier-Stokes problem

I provide a proof of the following theorem, see [2,3,5,6].

Theorem. Take $\nu > 0$. Let \mathbf{u}° be any smooth, divergence-free vector field satisfying (6). Then there exist smooth functions \mathbf{u} , p on $\mathbb{R}^3 \times [0, \infty)$ that satisfy (1), (2), (3), (7), (8).

Proof. Let **u**, *p* be given by

$$\mathbf{u} = \sum_{\mathbf{L} = -\infty}^{\infty} \mathbf{u}_{\mathbf{L}} e^{ik\mathbf{L} \cdot \mathbf{x}},\tag{9}$$

$$p = \sum_{L=-\infty}^{\infty} p_L e^{ikL \cdot x}$$
 (10)

respectively. Here $\mathbf{u}_{\mathbf{L}} = \mathbf{u}_{\mathbf{L}}(t) \in \mathbb{C}^3$, $p_{\mathbf{L}} = p_{\mathbf{L}}(t) \in \mathbb{C}$, $\mathbf{i} = \sqrt{-1}$, $k = 2\pi$, and $\sum_{\mathbf{L} = -\infty}^{\infty}$ denotes the sum over all $\mathbf{L} \in \mathbb{Z}^3$. The initial condition \mathbf{u}° is a Fourier series [2] of which is convergent for all $\mathbf{x} \in \mathbb{R}^3$. Equation (1) implies

$$\sum_{\mathbf{L}=-\infty}^{\infty} \frac{\partial \mathbf{u}_{\mathbf{L}}}{\partial t} e^{ik\mathbf{L}\cdot\mathbf{x}} + \sum_{\mathbf{L}=-\infty}^{\infty} \sum_{\mathbf{M}=-\infty}^{\infty} (\mathbf{u}_{\mathbf{L}} \cdot ik\mathbf{M}) \mathbf{u}_{\mathbf{M}} e^{ik(\mathbf{L}+\mathbf{M})\cdot\mathbf{x}}$$

$$= -\sum_{\mathbf{L}=-\infty}^{\infty} vk^{2} |\mathbf{L}|^{2} \mathbf{u}_{\mathbf{L}} e^{ik\mathbf{L}\cdot\mathbf{x}} - \sum_{\mathbf{L}=-\infty}^{\infty} ik\mathbf{L} p_{\mathbf{L}} e^{ik\mathbf{L}\cdot\mathbf{x}}.$$
(11)

Equating like powers of the exponentials in (11) yields

$$\frac{\partial \mathbf{u}_{\mathbf{L}}}{\partial t} + \sum_{\mathbf{M}=-\infty}^{\infty} (\mathbf{u}_{\mathbf{L}-\mathbf{M}} \cdot ik\mathbf{M}) \mathbf{u}_{\mathbf{M}} = -\nu k^2 |\mathbf{L}|^2 \mathbf{u}_{\mathbf{L}} - ik\mathbf{L}p_{\mathbf{L}}$$
(12)

on using the Cauchy product type formula [4]

$$\sum_{l=-\infty}^{\infty} a_l x^l \sum_{m=-\infty}^{\infty} b_m x^m = \sum_{l=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} a_{l-m} b_m x^l.$$
 (13)

Equation (2) implies

$$\sum_{\mathbf{L}=-\infty}^{\infty} ik \mathbf{L} \cdot \mathbf{u}_{\mathbf{L}} e^{ik \mathbf{L} \cdot \mathbf{x}} = 0.$$
 (14)

Equating like powers of the exponentials in (14) yields

$$\mathbf{L} \cdot \mathbf{u}_{\mathbf{L}} = 0. \tag{15}$$

Applying L \cdot to (12) and noting (15) leads to

$$p_{\mathbf{L}} = -\sum_{\mathbf{M} = -\infty}^{\infty} (\mathbf{u}_{\mathbf{L} - \mathbf{M}} \cdot \hat{\mathbf{L}}) (\mathbf{u}_{\mathbf{M}} \cdot \hat{\mathbf{L}})$$
(16)

where p_0 is arbitrary and $\hat{\mathbf{L}} = \mathbf{L}/|\mathbf{L}|$ is the unit vector in the direction of \mathbf{L} . Then substituting (16) into (12) gives

$$\frac{\partial \mathbf{u}_{\mathbf{L}}}{\partial t} = -\sum_{\mathbf{M}=-\infty}^{\infty} (\mathbf{u}_{\mathbf{L}-\mathbf{M}} \cdot ik\mathbf{M})\mathbf{u}_{\mathbf{M}} - \nu k^{2}|\mathbf{L}|^{2}\mathbf{u}_{\mathbf{L}} + \sum_{\mathbf{M}=-\infty}^{\infty} ik\mathbf{L}(\mathbf{u}_{\mathbf{L}-\mathbf{M}} \cdot \hat{\mathbf{L}})(\mathbf{u}_{\mathbf{M}} \cdot \hat{\mathbf{L}}) \quad (17)$$

where $\mathbf{u_0} = \mathbf{u_0}(0)$. Without loss of generality [2], I take $\mathbf{u_0} = \mathbf{0}$. This is due to the Galilean invariance property of solutions to the Navier–Stokes equations. The equations for $\mathbf{u_L}$ are to be solved for all $\mathbf{L} \in \mathbb{Z}^3$. Here we can find a representation of the solution \mathbf{u} , p and show that \mathbf{u} can not have a finite time singularity when $\mathbf{u}^{\circ}(\mathbf{x})$ is smooth.

First note that the solution $\mathbf{u} = \mathbf{u}(\mathbf{x}, t)$ to

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = \mathbf{0},\tag{18}$$

$$\mathbf{u}(\mathbf{x},0) = \mathbf{u}^{\circ}(\mathbf{x}) \tag{19}$$

can be represented by

$$\mathbf{u} = \mathbf{u}^{\circ}(\mathbf{X}),\tag{20}$$

$$\mathbf{X} = \mathbf{x} + t\mathbf{u}^{\circ}(\mathbf{X}). \tag{21}$$

This can be checked as follows via the chain rule.

$$\frac{\partial \mathbf{u}^{\circ}(\mathbf{X})}{\partial t} = \frac{\partial \mathbf{u}^{\circ}(\mathbf{X})}{\partial \mathbf{X}} \frac{\partial \mathbf{X}}{\partial t}
= \frac{\partial \mathbf{u}^{\circ}(\mathbf{X})}{\partial \mathbf{X}} \mathbf{u}^{\circ}(\mathbf{X})
= -\frac{\partial \mathbf{u}^{\circ}(\mathbf{X})}{\partial \mathbf{x}} \mathbf{u}^{\circ}(\mathbf{X}).$$
(22)

Therefore (18), (19) are satisfied. We see here that this \mathbf{u} satisfying (18), (19) can not have a finite time singularity when $\mathbf{u}^{\circ}(\mathbf{x})$ is smooth.

The solution $\mathbf{u} = \mathbf{u}(\mathbf{x}, t)$, $p = p(\mathbf{x}, t)$ to (1), (2), (3), (6), (7) can be represented by

$$\mathbf{u} = \mathbf{u}^{\circ}(\mathbf{X}),\tag{23}$$

$$p = -\nabla_{\mathbf{X}}^{-2} \{ \nabla_{\mathbf{X}} \cdot [(\mathbf{u}^{\circ}(\mathbf{X}) \cdot \nabla_{\mathbf{X}}) \mathbf{u}^{\circ}(\mathbf{X})] \} = P(\mathbf{X}), \tag{24}$$

$$\mathbf{X} = \mathbf{x} + t[\mathbf{u}^{\circ}(\mathbf{X}) - \mathbf{u}^{s}(\mathbf{X})] \tag{25}$$

where $\mathbf{u}^{s}(\mathbf{X})$ is a representation of the implicit solution $\mathbf{u}^{\circ}(\mathbf{X})$ to

$$-\frac{\partial \mathbf{u}^{\circ}(\mathbf{X})}{\partial \mathbf{X}}\mathbf{u}^{\circ}(\mathbf{X}) = \nu \nabla_{\mathbf{X}}^{2}\mathbf{u}^{\circ}(\mathbf{X}) + \nabla_{\mathbf{X}}P(\mathbf{X}). \tag{26}$$

In these equations $\nabla_{\mathbf{X}}$, $\nabla_{\mathbf{X}}^2$, and $\nabla_{\mathbf{X}}^{-2}$ denote the gradient, Laplacian, and inverse Laplacian with respect to the variable \mathbf{X} respectively. Note it is true that

$$\mathbf{u}^{s}(\mathbf{X}) = \frac{1}{\nu} \nabla_{\mathbf{X}}^{-2} \left[-\frac{\partial \mathbf{u}^{\circ}(\mathbf{X})}{\partial \mathbf{X}} \mathbf{u}^{\circ}(\mathbf{X}) - \nabla_{\mathbf{X}} P(\mathbf{X}) \right]. \tag{27}$$

It is also true that $\mathbf{u}^{s}(\mathbf{X})$ can be represented by

$$\mathbf{u}^{s}(\mathbf{X}) = -\left(\frac{\partial \mathbf{u}^{\circ}(\mathbf{X})}{\partial \mathbf{X}}\right)^{-1} \left[\nu \nabla_{\mathbf{X}}^{2} \mathbf{u}^{\circ}(\mathbf{X}) + \nabla_{\mathbf{X}} P(\mathbf{X})\right]$$
(28)

in cases where the nonlinearity is not identically equal to zero. The solution can be checked as follows via the chain rule.

$$\frac{\partial \mathbf{u}^{\circ}(\mathbf{X})}{\partial t} = \frac{\partial \mathbf{u}^{\circ}(\mathbf{X})}{\partial \mathbf{X}} \frac{\partial \mathbf{X}}{\partial t}
= \frac{\partial \mathbf{u}^{\circ}(\mathbf{X})}{\partial \mathbf{X}} [\mathbf{u}^{\circ}(\mathbf{X}) - \mathbf{u}^{s}(\mathbf{X})]
= \frac{\partial \mathbf{u}^{\circ}(\mathbf{X})}{\partial \mathbf{X}} {\mathbf{u}^{\circ}(\mathbf{X}) - \frac{1}{\nu} \nabla_{\mathbf{X}}^{-2} [-\frac{\partial \mathbf{u}^{\circ}(\mathbf{X})}{\partial \mathbf{X}} \mathbf{u}^{\circ}(\mathbf{X}) - \nabla_{\mathbf{X}} P(\mathbf{X})]}
\text{or } \frac{\partial \mathbf{u}^{\circ}(\mathbf{X})}{\partial \mathbf{X}} {\mathbf{u}^{\circ}(\mathbf{X}) + (\frac{\partial \mathbf{u}^{\circ}(\mathbf{X})}{\partial \mathbf{X}})^{-1} [\nu \nabla_{\mathbf{X}}^{2} \mathbf{u}^{\circ}(\mathbf{X}) + \nabla_{\mathbf{X}} P(\mathbf{X})]}
= -\frac{\partial \mathbf{u}^{\circ}(\mathbf{X})}{\partial \mathbf{X}} {\mathbf{u}^{\circ}(\mathbf{X}) - \frac{1}{\nu} \nabla^{-2} [\frac{\partial \mathbf{u}^{\circ}(\mathbf{X})}{\partial \mathbf{X}} \mathbf{u}^{\circ}(\mathbf{X}) + \nabla P(\mathbf{X})]}
\text{or } -\frac{\partial \mathbf{u}^{\circ}(\mathbf{X})}{\partial \mathbf{x}} {\mathbf{u}^{\circ}(\mathbf{X}) - (\frac{\partial \mathbf{u}^{\circ}(\mathbf{X})}{\partial \mathbf{x}})^{-1} [\nu \nabla^{2} \mathbf{u}^{\circ}(\mathbf{X}) - \nabla P(\mathbf{X})]}.$$
(29)

Therefore (1), (3) are satisfied. We also have

$$p = -\nabla^{-2} \{ \nabla \cdot [(\mathbf{u} \cdot \nabla)\mathbf{u}] \}$$
 (30)

which is obtained by applying $\nabla \cdot$ to (1) of which ensures (2). Due to the form of the solution we see that **u** can not have a finite time singularity when $\mathbf{u}^{\circ}(\mathbf{x})$ is smooth. Therefore the theorem is true.

References

- [1] Batchelor G. 1967. An introduction to fluid dynamics. Cambridge U. Press, Cambridge.
- [2] Doering C. 2009. The 3D Navier–Stokes problem. *Annu. Rev. Fluid Mech.* **41**: 109–128.

- [3] Fefferman C. 2000. Existence and smoothness of the Navier–Stokes equation. *Clay Mathematics Institute*. Official problem description.
- [4] Hardy G. 1949. Divergent series. Oxford University Press.
- [5] Ladyzhenskaya O. 1969. *The mathematical theory of viscous incompressible flows*. Gordon and Breach, New York.
- [6] Tao T. 2013. Localisation and compactness properties of the Navier–Stokes global regularity problem. *Analysis and PDE*. **6**: 25–107.