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Abstract

The appearance of solutions with negative frequency in the D’Alembert wave equation can
be removed with a change of variable. The corresponding positive frequencies describe waves
propagating from the ”future” towards the ”past”. This argument was developed in the 1940s by
the Italian mathematician Luigi Fantappiè [1] in the analysis of the solutions of the D’Alembert
equation, but also of the Klein-Gordon equation (quantum particles of spin 0) and the Dirac
equation (spin 1/2 particles).

1 The D’Alembert equation

As is known, the D’Alembert wave equation

∇2ψ −
1

c2
∂2ψ

∂t2
= 0, (1)

is a linear, second-order partial differential equation (PDE) in ψ (x, y, z, t). It is often written as:

�
2ψ = 0,

where

�
2 = ∇2 −

1

c2
∂2

∂t2
,

is the Delambertian. The solutions of (1) si classificano in:are classified into: A) plane waves; B)
spherical waves; C) standing waves. We are interested in case A. For the remaining cases, please
refer to [2].

Rammentiamo che a differenza delle equazioni differenziali ordinarie (ODE), nelle PDE non in-
teressa l’integrale generale, ma soluzioni soddisfacenti particolari condizioni al contorno o iniziali.

Given this, plane waves (described by a wave function ψ (x, y, z, t)) are characterized by a constant
propagation direction verifying the following property: on every plane normal to this direction, the
d’function wave ψ depends only on the variable t. It follows that by orienting the x axis in the
direction of propagation, the (1) is rewritten:

∂2ψ

∂x2
−

1

c2
∂2ψ

∂t2
= 0, (2)

Definition 1 We say solution of the (2) any ψ ∈ C2 (R2) which verifies (2).

Notation 2 The definition (1) can be weakened by incorporating any finite discontinuities of the
derivatives of ψ and of ψ itself.

Theorem 3 A necessary and sufficient condition for ψ ∈ C2 (R2) to be a solution of (2), is that it
admits a decomposition of the type:

ψ (x, t) = f (x− ct) + g (x+ ct) , f, g ∈ C2 (R) (3)
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Proof. The sufficiency of the condition is immediate, since f(x − ct) and g(x − ct) are manifestly
solutions of (2). To demonstrate the need, we perform the coordinate transformation in the xt plane:

(x, t) → (ξ, η) , (4)

whose transformation equations are:

ξ = x− ct, η = x+ ct, (5)

so that (4) is manifestly invertible:

x =
1

2
(ξ + η) , t =

1

2c
(η − ξ) (6)

The (5) imply ψ (x, t) ≡ ψ [ξ (x, t) , η (x, t)]. Applying the derivation rule of composite functions:

∂ψ

∂x
=
∂ψ

∂ξ

∂ξ

∂x
+
∂ψ

∂η

∂η

∂x

From (5) ∂ξ

∂x
= 1, ∂η

∂x
= 1, so

∂ψ

∂x
=
∂ψ

∂ξ
+
∂ψ

∂η
, (7)

which can be rewritten as:
∂ψ

∂x
=

(

∂

∂ξ
+

∂

∂η

)

ψ (8)

This relation is valid for every differentiable function ψ. This circumstance suggests writing the
formal expression

∂

∂x
=

∂

∂ξ
+

∂

∂η
, (9)

which links the partial differentiation operator with respect to x, to the differentiation operators with
respect to the variables ξ and η. To determine the second partial derivative ∂2ψ

∂x2
, we can then write:

∂2

∂x2
=

(

∂

∂ξ
+

∂

∂η

)(

∂

∂ξ
+

∂

∂η

)

(10)

=
∂2

∂ξ2
+

∂2

∂ξ∂η
+

∂2

∂η∂ξ
+

∂2

∂η2

It is clear that we can write
∂2

∂ξ∂η
=

∂2

∂η∂ξ

if and only if this operator acts on a function that verifies the hypotheses of Schwarz’s theorem on
the invertibility of partial differentiation, i.e. of class C2 on an assigned field A of R2. Since we are
looking for solutions ψ ∈ C2 (R2), this condition is satisfied, so the (10) is written:

∂2

∂x2
=

∂2

∂ξ2
+ 2

∂2

∂ξ∂η
+

∂2

∂η2
, (11)

so
∂2ψ

∂x2
=
∂2ψ

∂ξ2
+ 2

∂2ψ

∂ξ∂η
+
∂2ψ

∂η2
(12)
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Proceeding in the same way for the second derivative ∂2ψ

∂t2

∂2ψ

∂t2
= c2

(

∂2ψ

∂η2
− 2

∂2ψ

∂ξ∂η
+
∂2ψ

∂ξ2

)

(13)

At this point we impose that ψ is a solution of the D’Alembert equation:

0 =
∂2ψ

∂t2
−

1

c2
∂2ψ

∂t2
= 4

∂2ψ

∂ξ∂η

i.e.
∂2ψ

∂ξ∂η
= 0, (14)

which is the D’Alembert equation written in coordinates (ξ, η), and integrates immediately. Indeed:

∂

∂η

(

∂ψ

∂ξ

)

= 0 =⇒
∂ψ

∂ξ
= θ (ξ) ,

being θ (ξ) ∈ C2 (R) an arbitrary function. Integrating again:

ψ (ξ, η) =

∫

θ (ξ) dξ + g (η) , (15)

where the arbitrary function g (η) ∈ C2 (R) plays the role of ”constant” of integration (with respect
to the variable ξ). We therefore set:

f (ξ)
def
=

∫

θ (ξ) dξ,

so
ψ (ξ, η) = f (ξ) + g (η)

By restoring the variables (x, t) the statement follows.

Definition 4 The solutions f(x − ct) and g(x + ct) are called progressing wave and regressive

wave.

These names are suggested by the fact that taking time t as the real parameter, the graph of the
function f(x− ct) [g(x+ ct)] translates uniformly in the direction of the x axis and in the direction
of the increasing [decreasing] abscissae. If t is the time, the translation occurs in both cases at speed
c, as shown in the Figures 1-2.

2 Fundamental solutions

Fundamental solutions are those for which ψ depends sinusoidally on x ± ct. They are called fun-
damental because from them we can reconstruct a more general solution by linear superposition
(thanks to the linearity of (2)). For example:

ψ (x, t) = A cos

[

2π

λ
(x− ct)

]

(16)
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y= f Hx-ctL y= f Hx-cHt+DtLL

cDt

Figure 1: Progressive plane wave.

x

y

y=gHx+ctLy=gHx+cHt+DtLL

cDt

Figure 2: Regressive plane wave.
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where A > 0 is the amplitude, while λ > 0 is the period of ψ with respect to x for a given instant.
This quantity is called wavelength. Let’s define

k ∈ R\ {0} | |k| =
2π

λ

We call the positive real number |k| wavenumber. Continued

ψ (x, t) = A cos [(|k| x− ωt)] (17)

having defined the angular frequency ω = c |k| = 2π
T

where T is the period of the function ψ with
respect to t (for an assigned x). If in ( (17) we free ourselves from |k|:

ψ (x, t) = A cos [(kx− ωt)] (18)

which for k < 0 describes a regressive plane wave. Complex notation is preferable:

ψ (x, t) = Aei(kx−ωt) (19)

3 Solutions with negative frequency

The totality of (19) does not exhaust the set of solutions of (2) relative to the fundamental solutions.
In fact, by imposing that (19) is a solution, we have

ω2 = c2k2

therefore negative frequencies are also allowed ω = −ck < 0. In this case, the (19) is rewritten

ψ (x, t) = Aei(kx+|ω|t) (20)

Performing the change of variable t′ = −t

ψ (x, t′) = Aei(kx−|ω|t′) (21)

having
−∞ < t = −t′ < +∞ =⇒ +∞ > t′ > −∞ (22)

It follows that while ψ (x, t) = Aei(kx+|ω|t) describes the propagation of a plane wave with initial
instant t0 = −∞ (≪past≫) and with negative frequency, the function ψ (x, t′) = Aei(kx−|ω|t′) describes
the propagation of a plane wave with initial instant t′0 = +∞ (≪future≫), with positive frequency.
This wave propagates backwards in time.
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