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Abstract

The appearance of solutions with negative frequency in the D’Alembert wave equation can
be removed with a change of variable. The corresponding positive frequencies describe waves
propagating from the ”future” towards the ”"past”. This argument was developed in the 1940s by
the Italian mathematician Luigi Fantappie [1] in the analysis of the solutions of the D’Alembert
equation, but also of the Klein-Gordon equation (quantum particles of spin 0) and the Dirac
equation (spin 1/2 particles).

1 The D’Alembert equation

As is known, the D’Alembert wave equation
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is a linear, second-order partial differential equation (PDE) in v (z,y, z,t). It is often written as:
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is the Delambertian. The solutions of (1) si classificano in:are classified into: A) plane waves; B)
spherical waves; C) standing waves. We are interested in case A. For the remaining cases, please
refer to [2].

Rammentiamo che a differenza delle equazioni differenziali ordinarie (ODE), nelle PDE non in-
teressa l'integrale generale, ma soluzioni soddisfacenti particolari condizioni al contorno o iniziali.

Given this, plane waves (described by a wave function ¢ (x,y, z,t)) are characterized by a constant
propagation direction verifying the following property: on every plane normal to this direction, the
d’function wave v depends only on the variable ¢. It follows that by orienting the x axis in the
direction of propagation, the (1) is rewritten:
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Definition 1 We say solution of the (2) any ¢ € C* (R?) which verifies (2).

Notation 2 The definition (1) can be weakened by incorporating any finite discontinuities of the
derivatives of ¥ and of 1 itself.

Theorem 3 A necessary and sufficient condition for ¢ € C? (R?) to be a solution of (2), is that it
admits a decomposition of the type:

V(@ t)=f@—c)+gl@+tet), fg€eC*(R) (3)



Proof. The sufficiency of the condition is immediate, since f(x — ¢t) and g(z — ct) are manifestly
solutions of (2). To demonstrate the need, we perform the coordinate transformation in the xt plane:

(z,t) = (&n), (4)
whose transformation equations are:
E=x—ct, n=u+ct, (5)
so that (4) is manifestly invertible:
r=S(E4m), t= o (n—) (0
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The (5) imply ¢ (z,t) = ¥ [ (x,t) ,n (x,t)]. Applying the derivation rule of composite functions:
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This relation is valid for every differentiable function . This circumstance suggests writing the
formal expression
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which links the partial differentiation operator with respect to x, to the differen}iation operators with
respect to the variables ¢ and 7. To determine the second partial derivative ‘3712”, we can then write:
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It is clear that we can write
0? 0?
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if and only if this operator acts on a function that verifies the hypotheses of Schwarz’s theorem on
the invertibility of partial differentiation, i.e. of class C? on an assigned field A of R%. Since we are
looking for solutions ¢ € C? (R?), this condition is satisfied, so the (10) is written:
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Proceeding in the same way for the second derivative %T;"
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At this point we impose that 1 is a solution of the D’Alembert equation:

L1 o

0=%r "2 = €A

i.e. o2
v 0.
0&on

which is the D’Alembert equation written in coordinates (£,7), and integrates immediately. Indeed:

o (oW oy
o (36) == 5 =0(©)

being 6 (£) € C? (R) an arbitrary function. Integrating again:
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where the arbitrary function g (n) € C? (R) plays the role of ”constant” of integration (with respect
to the variable £). We therefore set:
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By restoring the variables (x,t) the statement follows. m

Definition 4 The solutions f(x — ct) and g(x + ct) are called progressing wave and regressive
wave.

These names are suggested by the fact that taking time t as the real parameter, the graph of the
function f(z — ct) [g(x + ct)] translates uniformly in the direction of the x axis and in the direction
of the increasing [decreasing] abscissae. If t is the time, the translation occurs in both cases at speed
¢, as shown in the Figures 1-2.

2 Fundamental solutions
Fundamental solutions are those for which ¢ depends sinusoidally on = + c¢t. They are called fun-

damental because from them we can reconstruct a more general solution by linear superposition
(thanks to the linearity of (2)). For example:

W (2,1) = Acos {27” (z — ct)] (16)
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Figure 1: Progressive plane wave.

y=0g(X+C(t+At)) y=g(x+ct)
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Figure 2: Regressive plane wave.



where A > 0 is the amplitude, while A > 0 is the period of ¥ with respect to x for a given instant.
This quantity is called wavelength. Let’s define
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We call the positive real number |k| wavenumber. Continued

Uz, t) = Acos[(|k| z — wt)] (17)
having defined the angular frequency w = c¢|k| = 2% where T is the period of the function ¢ with

respect to ¢ (for an assigned ). If in ( (17) we free ourselves from |k:
Y (x,t) = Acos[(kx — wt)] (18)
which for k£ < 0 describes a regressive plane wave. Complex notation is preferable:

Y (x,t) = Agilke—wt) (19)

3 Solutions with negative frequency

The totality of (19) does not exhaust the set of solutions of (2) relative to the fundamental solutions.
In fact, by imposing that (19) is a solution, we have

W2 = L2
therefore negative frequencies are also allowed w = —ck < 0. In this case, the (19) is rewritten
Y (z,t) = Aelketleld (20)
Performing the change of variable ' = —t
Y (1) = Aeilkr=Iwlt) (21)
having
—00 <t=—t <400 = +o0 >t > —00 (22)

It follows that while 1 (z,t) = Ae'F*+“l) describes the propagation of a plane wave with initial
instant ¢, = —oo (<past>) and with negative frequency, the function v (z, ') = Ae**~1“I*) describes
the propagation of a plane wave with initial instant ¢, = 400 (<futures), with positive frequency.
This wave propagates backwards in time.
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