Physics of Biology

1701 Submissions

[10] viXra:1701.0675 [pdf] submitted on 2017-01-31 03:29:01

Microbes and Altruistic Behavior

Authors: George Rajna
Comments: 23 Pages.

In a new paper, researchers Ohad Lewin-Epstein, Ranit Aharonov, and Lilach Hadany at Tel-Aviv University in Israel have theoretically shown that microbes could influence their hosts to act altruistically. [12] A new study reveals how two populations of neurons in the brain contribute to the brain's inability to correctly assign emotional associations to events. Learning how this information is routed and misrouted could shed light on mental illnesses including depression, addiction, anxiety, and posttraumatic stress disorder. [11] In dynamic neuronal networks, pervasive oscillatory activity is usually explained by pointing to pacemaking elements that synchronize and drive the network. Recently, however, scientists at The Weizmann Institute of Science in Israel studied synchronized periodic bursting that emerged spontaneously in a network of in vitro rat hippocampus and cortex neurons, finding that roughly 60% of all active neurons were self-sustained oscillators when disconnected from the network – and that each neuron oscillated at its own frequency, which is controlled by the neuron's excitability. [10] Most biology students will be able to tell you that neural signals are sent via mechanisms such as synaptic transmission, gap junctions, and diffusion processes, but a new study suggests there's another way that our brains transmit information from one place to another. [9] Physicists are expected to play a vital role in this research, and already have an impressive record of developing new tools for neuroscience. From two-photon microscopy to magneto-encephalography, we can now record activity from individual synapses to entire brains in unprecedented detail. But physicists can do more than simply provide tools for data collection. [8] Discovery of quantum vibrations in 'microtubules' inside brain neurons supports controversial theory of consciousness. The human body is a constant flux of thousands of chemical/biological interactions and processes connecting molecules, cells, organs, and fluids, throughout the brain, body, and nervous system. Up until recently it was thought that all these interactions operated in a linear sequence, passing on information much like a runner passing the baton to the next runner. However, the latest findings in quantum biology and biophysics have discovered that there is in fact a tremendous degree of coherence within all living systems. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to understand the Quantum Biology.
Category: Physics of Biology

[9] viXra:1701.0661 [pdf] submitted on 2017-01-29 08:45:47

Fat Burning Brain Hormone

Authors: George Rajna
Comments: 23 Pages.

Biologists at The Scripps Research Institute (TSRI) have identified a brain hormone that appears to trigger fat burning in the gut. Their findings in animal models could have implications for future pharmaceutical development. [12] A new study reveals how two populations of neurons in the brain contribute to the brain's inability to correctly assign emotional associations to events. Learning how this information is routed and misrouted could shed light on mental illnesses including depression, addiction, anxiety, and posttraumatic stress disorder. [11] In dynamic neuronal networks, pervasive oscillatory activity is usually explained by pointing to pacemaking elements that synchronize and drive the network. Recently, however, scientists at The Weizmann Institute of Science in Israel studied synchronized periodic bursting that emerged spontaneously in a network of in vitro rat hippocampus and cortex neurons, finding that roughly 60% of all active neurons were self-sustained oscillators when disconnected from the network – and that each neuron oscillated at its own frequency, which is controlled by the neuron's excitability. [10] Most biology students will be able to tell you that neural signals are sent via mechanisms such as synaptic transmission, gap junctions, and diffusion processes, but a new study suggests there's another way that our brains transmit information from one place to another. [9] Physicists are expected to play a vital role in this research, and already have an impressive record of developing new tools for neuroscience. From two-photon microscopy to magneto-encephalography, we can now record activity from individual synapses to entire brains in unprecedented detail. But physicists can do more than simply provide tools for data collection. [8] Discovery of quantum vibrations in 'microtubules' inside brain neurons supports controversial theory of consciousness. The human body is a constant flux of thousands of chemical/biological interactions and processes connecting molecules, cells, organs, and fluids, throughout the brain, body, and nervous system. Up until recently it was thought that all these interactions operated in a linear sequence, passing on information much like a runner passing the baton to the next runner. However, the latest findings in quantum biology and biophysics have discovered that there is in fact a tremendous degree of coherence within all living systems. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to understand the Quantum Biology.
Category: Physics of Biology

[8] viXra:1701.0634 [pdf] submitted on 2017-01-27 10:05:33

How Long is Our Life? \\ Сколько нам отведено?

Authors: Mark M. Grinshtein
Comments: 7 Pages. in Russian

The article analyzes the possibility of determining the duration of human life. It is shown that no decisive answer can exist due to multisided nature of this issue, however classical medicine confirms such possibility through telomere theory. The article shows that the theory is groundless from the point of view of Information-Wave Medicine (IWM). \\ В статье проанализирована возможность определения продолжительности жизни человека. Показано, что в виду многомерности этой проблемы однозначного ответа на вопрос не может быть получено, тем не менее классическая медицина подтверждает такую возможность с помощью теории теломер. Показана несостоятельность этой теории с позиций информационно-волновой медицины (ИВМ).
Category: Physics of Biology

[7] viXra:1701.0543 [pdf] submitted on 2017-01-19 13:07:10

Phages Use Peptide to Communicate

Authors: George Rajna
Comments: 31 Pages.

A team of researchers from several institutions in Israel has, for the first time, identified a molecule that phages use to communicate with one another. [17] Molecules that change colour can be used to follow in real-time how bacteria form a protective biofilm around themselves. This new method, which has been developed in collaboration between researchers at Linköping University and Karolinska Institutet in Sweden, may in the future become significant both in medical care and the food industry, where bacterial biofilms are a problem. [16] Researchers led by Carnegie Mellon University physicist Markus Deserno and University of Konstanz (Germany) chemist Christine Peter have developed a computer simulation that crushes viral capsids. By allowing researchers to see how the tough shells break apart, the simulation provides a computational window for looking at how viruses and proteins assemble. [15] IBM scientists have developed a new lab-on-a-chip technology that can, for the first time, separate biological particles at the nanoscale and could enable physicians to detect diseases such as cancer before symptoms appear. [14] Scientists work toward storing digital information in DNA. [13] Leiden theoretical physicists have proven that DNA mechanics, in addition to genetic information in DNA, determines who we are. Helmut Schiessel and his group simulated many DNA sequences and found a correlation between mechanical cues and the way DNA is folded. They have published their results in PLoS One. [12] We model the electron clouds of nucleic acids in DNA as a chain of coupled quantum harmonic oscillators with dipole-dipole interaction between nearest neighbours resulting in a van der Waals type bonding. [11] Scientists have discovered a secret second code hiding within DNA which instructs cells on how genes are controlled. The amazing discovery is expected to open new doors to the diagnosis and treatment of diseases, according to a new study. [10] There is also connection between statistical physics and evolutionary biology, since the arrow of time is working in the biological evolution also. From the standpoint of physics, there is one essential difference between living things and inanimate clumps of carbon atoms: The former tend to be much better at capturing energy from their environment and dissipating that energy as heat. [8] This paper contains the review of quantum entanglement investigations in living systems, and in the quantum mechanically modeled photoactive prebiotic kernel systems. [7] The human body is a constant flux of thousands of chemical/biological interactions and processes connecting molecules, cells, organs, and fluids, throughout the brain, body, and nervous system. Up until recently it was thought that all these interactions operated in a linear sequence, passing on information much like a runner passing the baton to the next runner. However, the latest findings in quantum biology and biophysics have discovered that there is in fact a tremendous degree of coherence within all living systems. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to understand the Quantum Biology.
Category: Physics of Biology

[6] viXra:1701.0526 [pdf] submitted on 2017-01-17 12:05:57

Information-Wave Medicine. Should it be Considered a Science? \\ Информационно-волновая медицина. Можно ли считать ее наукой?

Authors: Mark M. Grinshtein
Comments: 8 Pages. in Russian

The article reviews the author's concept of the information-wave medicine (IWM). As presented, the IWM is not connected with author's special powers but is a branch of medical science. It is indicated that biolocation is also a science the principles of which are still not understood. \\ В статье рассматривается созданная автором концепция информационно-волновой медицины (ИВМ). Показано, что ИВМ не связана с особыми способностями автора, а является ветвью медицинской науки. Показано также, что биолокация тоже является наукой, механизм которой до настоящего времени ещё не познан.
Category: Physics of Biology

[5] viXra:1701.0506 [pdf] submitted on 2017-01-15 13:43:49

Stem Cells in Regenerative Vision Therapy

Authors: George Rajna
Comments: 37 Pages.

Stem cell therapies hold great promise for restoring function in a variety of degenerative conditions, but one of the logistical hurdles is how to ensure the cells survive in the body long enough to work. [21] A surprising new finding about gene expression could increase our understanding of the aging process. Gene expression is the process by which the information contained within a gene becomes a useful product. [20] Scientists at The Scripps Research Institute (TSRI) have discovered a protein that fine-tunes the cellular clock involved in aging. [19] Genes tell cells what to do—for example, when to repair DNA mistakes or when to die—and can be turned on or off like a light switch. Knowing which genes are switched on, or expressed, is important for the treatment and monitoring of disease. Now, for the first time, Caltech scientists have developed a simple way to visualize gene expression in cells deep inside the body using a common imaging technology. [18] Researchers at The University of Manchester have discovered that a potential new drug reduces the number of brain cells destroyed by stroke and then helps to repair the damage. [17] Researchers at the University of Connecticut have uncovered new information about how particles behave in our bloodstream, an important advancement that could help pharmaceutical scientists develop more effective cancer drugs. [16] For the past 15 years, the big data techniques pioneered by NASA's Jet Propulsion Laboratory in Pasadena, California, have been revolutionizing biomedical research. On Sept. 6, 2016, JPL and the National Cancer Institute (NCI), part of the National Institutes of Health, renewed a research partnership through 2021, extending the development of data science that originated in space exploration and is now supporting new cancer discoveries. [15] IBM scientists have developed a new lab-on-a-chip technology that can, for the first time, separate biological particles at the nanoscale and could enable physicians to detect diseases such as cancer before symptoms appear. [14] Scientists work toward storing digital information in DNA. [13]
Category: Physics of Biology

[4] viXra:1701.0500 [pdf] submitted on 2017-01-15 12:36:59

Regulator of Cellular Aging

Authors: George Rajna
Comments: 34 Pages.

Scientists at The Scripps Research Institute (TSRI) have discovered a protein that fine-tunes the cellular clock involved in aging. [19] Genes tell cells what to do—for example, when to repair DNA mistakes or when to die—and can be turned on or off like a light switch. Knowing which genes are switched on, or expressed, is important for the treatment and monitoring of disease. Now, for the first time, Caltech scientists have developed a simple way to visualize gene expression in cells deep inside the body using a common imaging technology. [18] Researchers at The University of Manchester have discovered that a potential new drug reduces the number of brain cells destroyed by stroke and then helps to repair the damage. [17] Researchers at the University of Connecticut have uncovered new information about how particles behave in our bloodstream, an important advancement that could help pharmaceutical scientists develop more effective cancer drugs. [16] For the past 15 years, the big data techniques pioneered by NASA's Jet Propulsion Laboratory in Pasadena, California, have been revolutionizing biomedical research. On Sept. 6, 2016, JPL and the National Cancer Institute (NCI), part of the National Institutes of Health, renewed a research partnership through 2021, extending the development of data science that originated in space exploration and is now supporting new cancer discoveries. [15] IBM scientists have developed a new lab-on-a-chip technology that can, for the first time, separate biological particles at the nanoscale and could enable physicians to detect diseases such as cancer before symptoms appear. [14] Scientists work toward storing digital information in DNA. [13] Leiden theoretical physicists have proven that DNA mechanics, in addition to genetic information in DNA, determines who we are. Helmut Schiessel and his group simulated many DNA sequences and found a correlation between mechanical cues and the way DNA is folded. They have published their results in PLoS One. [12] We model the electron clouds of nucleic acids in DNA as a chain of coupled quantum harmonic oscillators with dipole-dipole interaction between nearest neighbours resulting in a van der Waals type bonding. [11]
Category: Physics of Biology

[3] viXra:1701.0499 [pdf] submitted on 2017-01-15 13:09:15

Gene Expression Implications for Aging

Authors: George Rajna
Comments: 36 Pages.

A surprising new finding about gene expression could increase our understanding of the aging process. Gene expression is the process by which the information contained within a gene becomes a useful product. [20] Scientists at The Scripps Research Institute (TSRI) have discovered a protein that fine-tunes the cellular clock involved in aging. [19] Genes tell cells what to do—for example, when to repair DNA mistakes or when to die—and can be turned on or off like a light switch. Knowing which genes are switched on, or expressed, is important for the treatment and monitoring of disease. Now, for the first time, Caltech scientists have developed a simple way to visualize gene expression in cells deep inside the body using a common imaging technology. [18] Researchers at The University of Manchester have discovered that a potential new drug reduces the number of brain cells destroyed by stroke and then helps to repair the damage. [17] Researchers at the University of Connecticut have uncovered new information about how particles behave in our bloodstream, an important advancement that could help pharmaceutical scientists develop more effective cancer drugs. [16] For the past 15 years, the big data techniques pioneered by NASA's Jet Propulsion Laboratory in Pasadena, California, have been revolutionizing biomedical research. On Sept. 6, 2016, JPL and the National Cancer Institute (NCI), part of the National Institutes of Health, renewed a research partnership through 2021, extending the development of data science that originated in space exploration and is now supporting new cancer discoveries. [15] IBM scientists have developed a new lab-on-a-chip technology that can, for the first time, separate biological particles at the nanoscale and could enable physicians to detect diseases such as cancer before symptoms appear. [14] Scientists work toward storing digital information in DNA. [13] Leiden theoretical physicists have proven that DNA mechanics, in addition to genetic information in DNA, determines who we are. Helmut Schiessel and his group simulated many DNA sequences and found a correlation between mechanical cues and the way DNA is folded. They have published their results in PLoS One. [12]
Category: Physics of Biology

[2] viXra:1701.0321 [pdf] submitted on 2017-01-07 12:02:26

Estudo da Química e Farmacologia da Argemone Mexicana L. no Tratamento da Malária e Combate ao Aedes Aegypti

Authors: Ricardo Gobato, Alekssander Gobato, Desire Francine G. Fedrigo
Comments: 1 Page. Portuguese. Panel presented at the XVIII Physics Week of the State University of Londrina, from September 9 to 13, 2013.

Argemone Mexicana L. popularly known as: Mexican poppy, thorny Mexican poppy, thistle or cardo santo is a species of poppy found in Mexico and widespread in many parts of the world. It is an extremely resistant plant, tolerant to drought and poor soils, being often the only vegetation cover present in the soil. It has bright yellow latex, and although toxic to grazing animals, it is rarely ingested. From the Papaverácea family, informally known as poppies, it is an important ethno-pharmacological family of 44 genera and about 760 species of flowering plants. The plant is the source of several types of chemical compounds, such as flavonoids, although alkaloids are the most commonly found. In addition to pharmaceutical efficacy, certain parts of the plant also show toxic effects. It is used in different parts of the world for the treatment of various diseases including tumors, warts, skin diseases, rheumatism, inflammation, jaundice, leprosy, microbial infections, malaria and as a larvicide against Aedes aegypti, dengue vector.
Category: Physics of Biology

[1] viXra:1701.0139 [pdf] submitted on 2017-01-03 07:24:44

Chemically Modified Insulin

Authors: George Rajna
Comments: 25 Pages.

Replacing a hydrogen atom by an iodine atom in insulin, the hormone retains its efficacy but is available more rapidly to the organism. Researchers at the University of Basel were able to predict this effect based on computer simulations and then confirm it with experiments. [13] In a landmark experiment at SLAC National Accelerator Laboratory, scientists used an X-ray laser to capture the first snapshots of a chemical interaction between two biomolecules in real time and at an atomic level. [12] An international team of scientists has learned how to determine the spatial structure of a protein obtained with an X-ray laser using the sulfur atoms it contains. This development is the next stage in the project of a group led by Vadim Cherezov to create an effective method of studying receptor proteins. [11] When cryoEM images are obtained from protein nanocrystals the images themselves can appear to be devoid of any contrast. A group of scientists from the Netherlands have now demonstrated that lattice information can be revealed and enhanced by a specialized filter. [10] There is also connection between statistical physics and evolutionary biology, since the arrow of time is working in the biological evolution also. From the standpoint of physics, there is one essential difference between living things and inanimate clumps of carbon atoms: The former tend to be much better at capturing energy from their environment and dissipating that energy as heat. [8] This paper contains the review of quantum entanglement investigations in living systems, and in the quantum mechanically modeled photoactive prebiotic kernel systems. [7] The human body is a constant flux of thousands of chemical/biological interactions and processes connecting molecules, cells, organs, and fluids, throughout the brain, body, and nervous system. Up until recently it was thought that all these interactions operated in a linear sequence, passing on information much like a runner passing the baton to the next runner. However, the latest findings in quantum biology and biophysics have discovered that there is in fact a tremendous degree of coherence within all living systems. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to understand the Quantum Biology.
Category: Physics of Biology