Physics of Biology

1808 Submissions

[18] viXra:1808.0236 [pdf] submitted on 2018-08-16 08:00:25

Biological Clocks in Light Fluctuation

Authors: George Rajna
Comments: 60 Pages.

Anyone who has experienced jet lag knows the power of the biological clock. [27] Using X-ray laser technology, a team led by researchers of the Paul Scherrer Institute PSI has recorded one of the fastest processes in biology. [26] A Virginia Commonwealth University researcher has developed a procedure for identifying the source of cells present in a forensic biological sample that could change how cell types are identified in samples across numerous industries. [25] In work at the National Institute of Standards and Technology (NIST) and the University of Maryland in College Park, researchers have devised and demonstrated a new way to measure free energy. [24] A novel technique developed by researchers at the ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) will help shine new light on biological questions by improving the quality and quantity of information that can be extracted in fluorescence microscopy. [23] Micro-computed tomography or "micro-CT" is X-ray imaging in 3-D, by the same method used in hospital CT (or "CAT") scans, but on a small scale with massively increased resolution. [22] A new experimental method permits the X-ray analysis of amyloids, a class of large, filamentous biomolecules which are an important hallmark of diseases such as Alzheimer's and Parkinson's. [12]
Category: Physics of Biology

[17] viXra:1808.0229 [pdf] submitted on 2018-08-16 13:42:24

Key Mechanism of DNA Replication

Authors: George Rajna
Comments: 32 Pages.

Researchers from Osaka University in Japan have uncovered a key control mechanism of DNA replication with potential implications for better understanding how cells maintain genetic information to prevent diseases or cancer. [19] Researchers at Delft University of Technology, in collaboration with colleagues at the Autonomous University of Madrid, have created an artificial DNA blueprint for the replication of DNA in a cell-like structure. [18] An LMU team now reveals the inner workings of a molecular motor made of proteins which packs and unpacks DNA. [17] Chemist Ivan Huc finds the inspiration for his work in the molecular principles that underlie biological systems. [16] What makes particles self-assemble into complex biological structures? [15] Scientists from Moscow State University (MSU) working with an international team of researchers have identified the structure of one of the key regions of telomerase—a so-called "cellular immortality" ribonucleoprotein. [14] Researchers from Tokyo Metropolitan University used a light-sensitive iridium-palladium catalyst to make "sequential" polymers, using visible light to change how building blocks are combined into polymer chains. [13] Researchers have fused living and non-living cells for the first time in a way that allows them to work together, paving the way for new applications. [12] UZH researchers have discovered a previously unknown way in which proteins interact with one another and cells organize themselves. [11] Dr Martin Sweatman from the University of Edinburgh's School of Engineering has discovered a simple physical principle that might explain how life started on Earth. [10] Nearly 75 years ago, Nobel Prize-winning physicist Erwin Schrödinger wondered if the mysterious world of quantum mechanics played a role in biology. A recent finding by Northwestern University's Prem Kumar adds further evidence that the answer might be yes. [9]
Category: Physics of Biology

[16] viXra:1808.0221 [pdf] submitted on 2018-08-17 04:12:43

Personal X-Ray

Authors: George Rajna
Comments: 67 Pages.

All these applications would benefit from the creation of more flexible digital X-ray detectors. [39] In a recent study featured on the March 2018 cover of Nature Photonics, researchers developed a new holographic method called in-flight holography. With this method, they were able to demonstrate the first X-ray holograms of nano-sized viruses that were not attached to any surface. [38] A paper published in the journal Physical Review X presents evidence of a radiation reaction occurring when a high-intensity laser pulse collides with a high-energy electron beam. [37] Researchers from Würzburg and London have succeeded in controlling the coupling of light and matter at room temperature. [36] Researchers have, for the first time, integrated two technologies widely used in applications such as optical communications, bio-imaging and Light Detection and Ranging (LIDAR) systems that scan the surroundings of self-driving cars and trucks. [35] The unique platform, which is referred as a 4-D microscope, combines the sensitivity and high time-resolution of phase imaging with the specificity and high spatial resolution of fluorescence microscopy. [34] The experiment relied on a soliton frequency comb generated in a chip-based optical microresonator made from silicon nitride. [33] This scientific achievement toward more precise control and monitoring of light is highly interesting for miniaturizing optical devices for sensing and signal processing. [32] It may seem like such optical behavior would require bending the rules of physics, but in fact, scientists at MIT, Harvard University, and elsewhere have now demonstrated that photons can indeed be made to interact-an accomplishment that could open a path toward using photons in quantum computing, if not in light sabers. [31] Optical highways for light are at the heart of modern communications. But when it comes to guiding individual blips of light called photons, reliable transit is far less common. [30] Theoretical physicists propose to use negative interference to control heat flow in quantum devices. [29]
Category: Physics of Biology

[15] viXra:1808.0199 [pdf] submitted on 2018-08-15 23:10:22

Cross Effect of Neurofibromatosis Type 1

Authors: Toshichan-man
Comments: 23 Pages.

I statistically analyzed 27 patients with neurofibromatosis type 1. Since the 1930's, it has been said that the neurofibromatosis type 1 born to affected mothers is very serious. It is called "maternal effect". But many are against the opinion. The result of my examination is as follows.  The male cases born to affected mothers or the female cases born to affected fathers have extremely possibility of having malignant tumors. The male cases born to affected fathers or the female cases born to affected mathers or those who were new mutations didn't have malignant tumors. They were all benign. "When the tumor is found in the male cases born to affected mothers or female cases born to affected fathers, it is extremely possible that the tumor is malignant." I newly name it "cross effect".
Category: Physics of Biology

[14] viXra:1808.0198 [pdf] submitted on 2018-08-15 23:20:54

An Example of a Female with Anorexia Nervosa-Like Symptoms in Microprolactinoma

Authors: Toshichan-man
Comments: 9 Pages.

Since seven years ago, internal medicine was inevitable with unknown fever and abdominal pain. In 1990 (three years ago), prolactinoma was suspected as prolactinoma in blood and suspected prolactinoma, contrast MRI of Turkish saddle was enforced at A University Hospital Although it was not discovered despite the fact that microadenoma was definitely present when it was minutely read, it was a patient who had been follow-up as it was.
Category: Physics of Biology

[13] viXra:1808.0197 [pdf] submitted on 2018-08-16 00:10:38

A Case of Autistic Spectrum Disorder in Which Benzodiazepines Are Effective in Childhood Onset Flu-Dysfunction

Authors: Toshichan-Man
Comments: 19 Pages.

We experienced cases in which benzodiazepines were successful in childhood onset flu. The case was autistic spectrum disorder, and there was a dull articulation while being milder than childhood. Immediately before the high school days ended, cases complicated of social anxiety disorder. Since we visited our hospital, we have prescribed large quantities of benzodiazepines. As in this case, there is a possibility that there are potentially many cases in which benzodiazepines are strongly effective against childhood onset flu-dysfunction. In case This implies childhood onset flu-dysfunction is unknown partial epilepsy starting from the basal ganglia with no abnormality in brain waves. It is also possible that there may be childhood onset flu-dysfunction as psychogenic nonepileptic seizure.   [Key words] Childhood-onset fluency disorder, autism spectrum disorder, benzodiazepine derivatives, partial epilepsy, psychogenic nonepileptic seizure psychogenic non-epileptic seizure)
Category: Physics of Biology

[12] viXra:1808.0196 [pdf] submitted on 2018-08-16 01:26:07

A Case of Complaining of Nasal Smell and Being Diagnosed as Self-Odor Fear in Case Nasal Mucosal Insufficiency Syndrome (a New Concept of Bad Smell)

Authors: Toshichan-Man
Comments: 17 Pages.

A case of suffering nasal odor and showing psychiatry referral as self-odor fear is shown as one case. The case actually had a strong nasal odor. It is not diagnosed as atrophic rhinitis or bronchoscopy in otolaryngology. Many people suffer from the same pathology when looking over the net. Almost everything complains about abnormal dryness of the nose. It is thought that Staphylococcus aureus which prefers drying in desolated dry nasal mucosa abnormally proliferates, the nasal secretion is unsuccessful, it is impossible to push the metabolic products of bacteria to throat and the like, and it emits a strong nasal odor It was. In addition, Staphylococcus lugdunensis that produces substances to prevent the growth of Staphylococcus aureus was not considered to be present. Although the frequency of this disease is high, it is diagnosed as self-odor fear in neglect or psychiatry. I call it nasal mucosal insufficiency syndrome. This is a new concept of odor nasal disease. Because there is no scab formation, it is hard to recognize because only nasal mucosa devastation is found in the nasal endoscope, it is difficult to recognize and it is considered a serious disease hidden behind the veil of atrophic rhinitis / bad nose disease and is not noticed .
Category: Physics of Biology

[11] viXra:1808.0171 [pdf] submitted on 2018-08-13 08:14:26

Nanoreactor Biocatalytic Cascades

Authors: George Rajna
Comments: 66 Pages.

A team of researchers at the Hebrew University of Jerusalem in Israel has now made such cascades in the lab by encapsulating three enzymes and enzyme cofactors in nanoreactors made from metal-organic framework nanoparticles. [39] Researchers have developed a new form of nanoparticle and associated imaging technique that can detect multiple disease biomarkers, including those for breast cancer, found in deep-tissue in the body. [38] Researchers at University of Utah Health developed a proof-of-concept technology using nanoparticles that could offer a new approach for oral medications. [37] Using scanning tunneling microscopy (STM), extremely high resolution imaging of the molecule-covered surface structures of silver nanoparticles is possible, even down to the recognition of individual parts of the molecules protecting the surface. [36] A fiber optic sensing system developed by researchers in China and Canada can peer inside supercapacitors and batteries to observe their state of charge. [35] The idea of using a sound wave in optical fibers initially came from the team's partner researchers at Bar-Ilan University in Israel. Joint research projects should follow. [34] Researchers at the Technion-Israel Institute of Technology have constructed a first-of-its-kind optic isolator based on resonance of light waves on a rapidly rotating glass sphere. [33] The micro-resonator is a two-mirror trap for the light, with the mirrors facing each other within several hundred nanometers. [32] "The realization of such all-optical single-photon devices will be a large step towards deterministic multi-mode entanglement generation as well as high-fidelity photonic quantum gates that are crucial for all-optical quantum information processing," says Tanji-Suzuki. [31] Researchers at ETH have now used attosecond laser pulses to measure the time evolution of this effect in molecules. [30]
Category: Physics of Biology

[10] viXra:1808.0132 [pdf] submitted on 2018-08-11 04:20:50

DNA Sequence Data

Authors: George Rajna
Comments: 28 Pages.

Globally, biodiversity is concentrated around the equator, but the scientific institutions generating DNA sequence data to study that biodiversity tend to be clustered in developed countries toward the poles. [17] Chemist Ivan Huc finds the inspiration for his work in the molecular principles that underlie biological systems. [16] What makes particles self-assemble into complex biological structures? [15] Scientists from Moscow State University (MSU) working with an international team of researchers have identified the structure of one of the key regions of telomerase—a so-called "cellular immortality" ribonucleoprotein. [14] Researchers from Tokyo Metropolitan University used a light-sensitive iridium-palladium catalyst to make "sequential" polymers, using visible light to change how building blocks are combined into polymer chains. [13] Researchers have fused living and non-living cells for the first time in a way that allows them to work together, paving the way for new applications. [12] UZH researchers have discovered a previously unknown way in which proteins interact with one another and cells organize themselves. [11] Dr Martin Sweatman from the University of Edinburgh's School of Engineering has discovered a simple physical principle that might explain how life started on Earth. [10] Nearly 75 years ago, Nobel Prize-winning physicist Erwin Schrödinger wondered if the mysterious world of quantum mechanics played a role in biology. A recent finding by Northwestern University's Prem Kumar adds further evidence that the answer might be yes. [9] A UNSW Australia-led team of researchers has discovered how algae that survive in very low levels of light are able to switch on and off a weird quantum phenomenon that occurs during photosynthesis. [8] This paper contains the review of quantum entanglement investigations in living systems, and in the quantum mechanically modeled photoactive prebiotic kernel systems. [7] The human body is a constant flux of thousands of chemical/biological interactions and processes connecting molecules, cells, organs, and fluids, throughout the brain, body, and nervous system. Up until recently it was thought that all these interactions operated in a linear sequence, passing on information much like a runner passing the baton to the next runner. However, the latest findings in quantum biology and biophysics have discovered that there is in fact a tremendous degree of coherence within all living systems. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to understand the Quantum Biology.
Category: Physics of Biology

[9] viXra:1808.0131 [pdf] submitted on 2018-08-11 04:39:45

Using eDNA Sequencing

Authors: George Rajna
Comments: 29 Pages.

Ecological surveys of biodiversity provide fundamental baseline information on species occurrence and the health of an ecosystem, but can require significant labor and taxonomic expertise to conduct. [18] Globally, biodiversity is concentrated around the equator, but the scientific institutions generating DNA sequence data to study that biodiversity tend to be clustered in developed countries toward the poles. [17] Chemist Ivan Huc finds the inspiration for his work in the molecular principles that underlie biological systems. [16] What makes particles self-assemble into complex biological structures? [15] Scientists from Moscow State University (MSU) working with an international team of researchers have identified the structure of one of the key regions of telomerase—a so-called "cellular immortality" ribonucleoprotein. [14] Researchers from Tokyo Metropolitan University used a light-sensitive iridium-palladium catalyst to make "sequential" polymers, using visible light to change how building blocks are combined into polymer chains. [13] Researchers have fused living and non-living cells for the first time in a way that allows them to work together, paving the way for new applications. [12] UZH researchers have discovered a previously unknown way in which proteins interact with one another and cells organize themselves. [11] Dr Martin Sweatman from the University of Edinburgh's School of Engineering has discovered a simple physical principle that might explain how life started on Earth. [10] Nearly 75 years ago, Nobel Prize-winning physicist Erwin Schrödinger wondered if the mysterious world of quantum mechanics played a role in biology. A recent finding by Northwestern University's Prem Kumar adds further evidence that the answer might be yes. [9] A UNSW Australia-led team of researchers has discovered how algae that survive in very low levels of light are able to switch on and off a weird quantum phenomenon that occurs during photosynthesis. [8]
Category: Physics of Biology

[8] viXra:1808.0112 [pdf] submitted on 2018-08-08 07:29:58

Nanoparticles for Medications

Authors: George Rajna
Comments: 62 Pages.

Researchers at University of Utah Health developed a proof-of-concept technology using nanoparticles that could offer a new approach for oral medications. [37] Using scanning tunneling microscopy (STM), extremely high resolution imaging of the molecule-covered surface structures of silver nanoparticles is possible, even down to the recognition of individual parts of the molecules protecting the surface. [36] A fiber optic sensing system developed by researchers in China and Canada can peer inside supercapacitors and batteries to observe their state of charge. [35] The idea of using a sound wave in optical fibers initially came from the team's partner researchers at Bar-Ilan University in Israel. Joint research projects should follow. [34] Researchers at the Technion-Israel Institute of Technology have constructed a first-of-its-kind optic isolator based on resonance of light waves on a rapidly rotating glass sphere. [33] The micro-resonator is a two-mirror trap for the light, with the mirrors facing each other within several hundred nanometers. [32] "The realization of such all-optical single-photon devices will be a large step towards deterministic multi-mode entanglement generation as well as high-fidelity photonic quantum gates that are crucial for all-optical quantum information processing," says Tanji-Suzuki. [31] Researchers at ETH have now used attosecond laser pulses to measure the time evolution of this effect in molecules. [30] A new benchmark quantum chemical calculation of C2, Si2, and their hydrides reveals a qualitative difference in the topologies of core electron orbitals of organic molecules and their silicon analogues. [29] A University of Central Florida team has designed a nanostructured optical sensor that for the first time can efficiently detect molecular chirality—a property of molecular spatial twist that defines its biochemical properties. [28]
Category: Physics of Biology

[7] viXra:1808.0110 [pdf] submitted on 2018-08-08 08:37:20

Nanoparticles Detect Deep-Tissue Cancers

Authors: George Rajna
Comments: 65 Pages.

Researchers have developed a new form of nanoparticle and associated imaging technique that can detect multiple disease biomarkers, including those for breast cancer, found in deep-tissue in the body. [38] Researchers at University of Utah Health developed a proof-of-concept technology using nanoparticles that could offer a new approach for oral medications. [37] Using scanning tunneling microscopy (STM), extremely high resolution imaging of the molecule-covered surface structures of silver nanoparticles is possible, even down to the recognition of individual parts of the molecules protecting the surface. [36] A fiber optic sensing system developed by researchers in China and Canada can peer inside supercapacitors and batteries to observe their state of charge. [35] The idea of using a sound wave in optical fibers initially came from the team's partner researchers at Bar-Ilan University in Israel. Joint research projects should follow. [34] Researchers at the Technion-Israel Institute of Technology have constructed a first-of-its-kind optic isolator based on resonance of light waves on a rapidly rotating glass sphere. [33] The micro-resonator is a two-mirror trap for the light, with the mirrors facing each other within several hundred nanometers. [32] "The realization of such all-optical single-photon devices will be a large step towards deterministic multi-mode entanglement generation as well as high-fidelity photonic quantum gates that are crucial for all-optical quantum information processing," says Tanji-Suzuki. [31] Researchers at ETH have now used attosecond laser pulses to measure the time evolution of this effect in molecules. [30] A new benchmark quantum chemical calculation of C2, Si2, and their hydrides reveals a qualitative difference in the topologies of core electron orbitals of organic molecules and their silicon analogues. [29]
Category: Physics of Biology

[6] viXra:1808.0098 [pdf] submitted on 2018-08-09 08:08:51

Nanoparticle Therapy to Cancer

Authors: George Rajna
Comments: 66 Pages.

A new cancer therapy using nanoparticles to deliver a combination therapy direct to cancer cells could be on the horizon, thanks to research from the University of East Anglia. [39] Researchers have developed a new form of nanoparticle and associated imaging technique that can detect multiple disease biomarkers, including those for breast cancer, found in deep-tissue in the body. [38] Researchers at University of Utah Health developed a proof-of-concept technology using nanoparticles that could offer a new approach for oral medications. [37] Using scanning tunneling microscopy (STM), extremely high resolution imaging of the molecule-covered surface structures of silver nanoparticles is possible, even down to the recognition of individual parts of the molecules protecting the surface. [36] A fiber optic sensing system developed by researchers in China and Canada can peer inside supercapacitors and batteries to observe their state of charge. [35] The idea of using a sound wave in optical fibers initially came from the team's partner researchers at Bar-Ilan University in Israel. Joint research projects should follow. [34] Researchers at the Technion-Israel Institute of Technology have constructed a first-of-its-kind optic isolator based on resonance of light waves on a rapidly rotating glass sphere. [33] The micro-resonator is a two-mirror trap for the light, with the mirrors facing each other within several hundred nanometers. [32] "The realization of such all-optical single-photon devices will be a large step towards deterministic multi-mode entanglement generation as well as high-fidelity photonic quantum gates that are crucial for all-optical quantum information processing," says Tanji-Suzuki. [31] Researchers at ETH have now used attosecond laser pulses to measure the time evolution of this effect in molecules. [30]
Category: Physics of Biology

[5] viXra:1808.0072 [pdf] submitted on 2018-08-06 05:34:04

Mapping a Living Cell

Authors: George Rajna
Comments: 43 Pages.

Now, Columbia University researchers report a new way to zoom in at the tiniest scales to track changes within individual cells. [30] One of the main challenges in tissue engineering today is to create a complete network of blood vessels and capillaries throughout an artificial tissue. [29] Scientists from the University of Freiburg have developed materials systems that are composed of biological components and polymer materials and are capable of perceiving and processing information. [28] Nanotechnology may provide an effective treatment for Parkinson's disease, a team of researchers suggests. [27] Recent research from Kumamoto University in Japan has revealed that polyoxometalates (POMs), typically used for catalysis, electrochemistry, and photochemistry, may also be used in a technique for analyzing quantum dot (QD) photoluminescence (PL) emission mechanisms. [26] Researchers have designed a new type of laser called a quantum dot ring laser that emits red, orange, and green light. [25] The world of nanosensors may be physically small, but the demand is large and growing, with little sign of slowing. [24] In a joint research project, scientists from the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI), the Technische Universität Berlin (TU) and the University of Rostock have managed for the first time to image free nanoparticles in a laboratory experiment using a highintensity laser source. [23] For the first time, researchers have built a nanolaser that uses only a single molecular layer, placed on a thin silicon beam, which operates at room temperature. [22] A team of engineers at Caltech has discovered how to use computer-chip manufacturing technologies to create the kind of reflective materials that make safety vests, running shoes, and road signs appear shiny in the dark. [21] In the September 23th issue of the Physical Review Letters, Prof. Julien Laurat and his team at Pierre and Marie Curie University in Paris (Laboratoire Kastler Brossel-LKB) report that they have realized an efficient mirror consisting of only 2000 atoms. [20]
Category: Physics of Biology

[4] viXra:1808.0043 [pdf] submitted on 2018-08-04 04:26:05

Cellular Building Blocks

Authors: George Rajna
Comments: 41 Pages.

One of the main challenges in tissue engineering today is to create a complete network of blood vessels and capillaries throughout an artificial tissue. [29] Scientists from the University of Freiburg have developed materials systems that are composed of biological components and polymer materials and are capable of perceiving and processing information. [28] Nanotechnology may provide an effective treatment for Parkinson's disease, a team of researchers suggests. [27] Recent research from Kumamoto University in Japan has revealed that polyoxometalates (POMs), typically used for catalysis, electrochemistry, and photochemistry, may also be used in a technique for analyzing quantum dot (QD) photoluminescence (PL) emission mechanisms. [26] Researchers have designed a new type of laser called a quantum dot ring laser that emits red, orange, and green light. [25] The world of nanosensors may be physically small, but the demand is large and growing, with little sign of slowing. [24] In a joint research project, scientists from the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI), the Technische Universität Berlin (TU) and the University of Rostock have managed for the first time to image free nanoparticles in a laboratory experiment using a highintensity laser source. [23] For the first time, researchers have built a nanolaser that uses only a single molecular layer, placed on a thin silicon beam, which operates at room temperature. [22] A team of engineers at Caltech has discovered how to use computer-chip manufacturing technologies to create the kind of reflective materials that make safety vests, running shoes, and road signs appear shiny in the dark. [21] In the September 23th issue of the Physical Review Letters, Prof. Julien Laurat and his team at Pierre and Marie Curie University in Paris (Laboratoire Kastler Brossel-LKB) report that they have realized an efficient mirror consisting of only 2000 atoms. [20] Physicists at MIT have now cooled a gas of potassium atoms to several nanokelvins—just a hair above absolute zero—and trapped the atoms within a two-dimensional sheet of an optical lattice created by crisscrossing lasers. Using a high-resolution microscope, the researchers took images of the cooled atoms residing in the lattice. [19]
Category: Physics of Biology

[3] viXra:1808.0028 [pdf] submitted on 2018-08-03 06:04:52

Proton Therapy Slimline

Authors: George Rajna
Comments: 57 Pages.

Since protons were first used to treat hospital cancer patients in the early 1990s, around 100 000 people have benefited from this alternative form of radiation therapy. [30] Researchers have moved closer to the real-time verification of hadron therapy, demonstrating the in vivo accuracy of simulations that predict particle range in the patient. [29]
Category: Physics of Biology

[2] viXra:1808.0004 [pdf] submitted on 2018-08-01 04:09:09

Blood-Brain Barrier

Authors: George Rajna
Comments: 41 Pages.

Focused ultrasound from outside the body can safely and reversibly open the blood–brain barrier in patients with Alzheimer's disease, researchers in Canada have shown for the first time. [30] Small vessel vasculitis—inflammation of the small blood vessels—appears as a stain of tiny, red dots covering the skin that, depending on the severity, can evolve into painful pustules or ulcers. [29] Scientists from the University of Freiburg have developed materials systems that are composed of biological components and polymer materials and are capable of perceiving and processing information. [28] Nanotechnology may provide an effective treatment for Parkinson's disease, a team of researchers suggests. [27] Recent research from Kumamoto University in Japan has revealed that polyoxometalates (POMs), typically used for catalysis, electrochemistry, and photochemistry, may also be used in a technique for analyzing quantum dot (QD) photoluminescence (PL) emission mechanisms. [26] Researchers have designed a new type of laser called a quantum dot ring laser that emits red, orange, and green light. [25] The world of nanosensors may be physically small, but the demand is large and growing, with little sign of slowing. [24] In a joint research project, scientists from the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI), the Technische Universität Berlin (TU) and the University of Rostock have managed for the first time to image free nanoparticles in a laboratory experiment using a highintensity laser source. [23] For the first time, researchers have built a nanolaser that uses only a single molecular layer, placed on a thin silicon beam, which operates at room temperature. [22] A team of engineers at Caltech has discovered how to use computer-chip manufacturing technologies to create the kind of reflective materials that make safety vests, running shoes, and road signs appear shiny in the dark. [21] In the September 23th issue of the Physical Review Letters, Prof. Julien Laurat and his team at Pierre and Marie Curie University in Paris (Laboratoire Kastler Brossel-LKB) report that they have realized an efficient mirror consisting of only 2000 atoms. [20]
Category: Physics of Biology

[1] viXra:1808.0001 [pdf] submitted on 2018-08-01 05:20:37

RNA Profiling

Authors: George Rajna
Comments: 40 Pages.

An LMU team has improved both the sensitivity and efficiency of a popular method for single-cell RNA sequencing, which yields a molecular fingerprint for individual cells based on their patterns of gene activity. [24] The goal is to find bits of DNA in common between the known relatives and the unidentified remains, suggesting both belong to a particular lineage. One analysis develops a profile that combines what's found at 23 spots in the DNA, for example. [23] A new method allows researchers to systematically identify specialized proteins that unpack DNA inside the nucleus of a cell, making the usually dense DNA more accessible for gene expression and other functions. [22] Bacterial systems are some of the simplest and most effective platforms for the expression of recombinant proteins. [21] Now, in a new paper published in Nature Structural & Molecular Biology, Mayo researchers have determined how one DNA repair protein gets to the site of DNA damage. [20] A microscopic thread of DNA evidence in a public genealogy database led California authorities to declare this spring they had caught the Golden State Killer, the rapist and murderer who had eluded authorities for decades. [19] Researchers at Delft University of Technology, in collaboration with colleagues at the Autonomous University of Madrid, have created an artificial DNA blueprint for the replication of DNA in a cell-like structure. [18] An LMU team now reveals the inner workings of a molecular motor made of proteins which packs and unpacks DNA. [17] Chemist Ivan Huc finds the inspiration for his work in the molecular principles that underlie biological systems. [16] What makes particles self-assemble into complex biological structures? [15] Scientists from Moscow State University (MSU) working with an international team of researchers have identified the structure of one of the key regions of telomerase—a so-called "cellular immortality" ribonucleoprotein. [14]
Category: Physics of Biology