[24] **viXra:1602.0376 [pdf]**
*submitted on 2016-02-29 14:07:47*

**Authors:** George Rajna

**Comments:** 17 Pages.

We demonstrated the feasibility and the potential of a new approach to making a quantum computer. In our approach, we replace the qubits with qumodes. Our method is advantageous because the number of qumodes can be extremely large. This is the case, for instance, in hundred–thousand mode, octave-spanning optical frequency combs of carrier-envelope phase-locked classical femtosecond lasers. [9] IBM scientists today unveiled two critical advances towards the realization of a practical quantum computer. For the first time, they showed the ability to detect and measure both kinds of quantum errors simultaneously, as well as demonstrated a new, square quantum bit circuit design that is the only physical architecture that could successfully scale to larger dimensions. [8] Physicists at the Universities of Bonn and Cambridge have succeeded in linking two completely different quantum systems to one another. In doing so, they have taken an important step forward on the way to a quantum computer. To accomplish their feat the researchers used a method that seems to function as well in the quantum world as it does for us people: teamwork. The results have now been published in the "Physical Review Letters". [7] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer.

**Category:** Quantum Physics

[23] **viXra:1602.0375 [pdf]**
*replaced on 2016-04-05 16:07:58*

**Authors:** Brian B.K. Min

**Comments:** 15 Pages.

A kinetic energy-operated quantum wave equation is used to formulate alternate quantum fields: an alternate Klein-Gordon field, an alternate Dirac field, an alternate Proca field, and an alternate Higgs field.
Unlike the original Dirac field equations, the alternate Dirac field equations are shown to include a vacuum state solution apart from the particle and anti-particle solutions, lending support to the alternate formulation. The alternate Klein-Gordon field shows scalar bosons transforming between a massive state and a massless, charged state whenever the vector potential vanishes. A local U(1) gauge transformation of the alternate Klein-Gordon Lagrangian directly leads to both the alternate Proca field and the alternate Higgs field. These fields show vector bosons transforming between a massive state and a massless, charged state by a spontaneous breakdown of symmetry at a minimum potential trough similar to that of a Mexican hat or wine bottle potential in the Brout, Englert, and Higgs (BEH) mechanism, but more generally leaving open a possible presence of entirely different or many alternate Higgs bosons.

**Category:** Quantum Physics

[22] **viXra:1602.0325 [pdf]**
*submitted on 2016-02-25 08:47:28*

**Authors:** A. Laidlaw

**Comments:** 4 Pages.

De Broglie waves were originally derived from the Lorentz Transformation of a standing wave, $e^{-i \omega t}$, that has no space dependence. It is shown here that a suitable, physically reasonable, standing wave can be constructed from physical waves that propagate at c, subject to the condition that any field line of the wave vector exists on the surface of a sphere at rest in the comoving frame. This result contradicts the classical picture of a point particle emitting a far field that propagates radially away from it, and it is argued that, while the present construction of de Broglie waves is both local and realistic, Bell Inequalities cannot be derived in de Broglie's context.

**Category:** Quantum Physics

[21] **viXra:1602.0306 [pdf]**
*submitted on 2016-02-24 11:52:54*

**Authors:** George Rajna

**Comments:** 14 Pages.

A team of quantum physicists managed to tame a so-called "dark state", created in a superconducting qubit. A superconducting qubit is an artificial atom fabricated on a silicon chip as an electrical circuit made of capacitors and tunnel junctions. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.

**Category:** Quantum Physics

[20] **viXra:1602.0277 [pdf]**
*submitted on 2016-02-22 05:37:22*

**Authors:** George Rajna

**Comments:** 16 Pages.

Konstanz have demonstrated the ability to generate a quantum logic operation, or rotation of the qubit, that-surprisingly—is intrinsically resilient to noise as well as to variations in the strength or duration of the control. Their achievement is based on a geometric concept known as the Berry phase and is implemented through entirely optical means within a single electronic spin in diamond. [9] New research demonstrates that particles at the quantum level can in fact be seen as behaving something like billiard balls rolling along a table, and not merely as the probabilistic smears that the standard interpretation of quantum mechanics suggests. But there's a catch-the tracks the particles follow do not always behave as one would expect from "realistic" trajectories, but often in a fashion that has been termed "surrealistic." [8] Quantum entanglement—which occurs when two or more particles are correlated in such a way that they can influence each other even across large distances—is not an all-or-nothing phenomenon, but occurs in various degrees. The more a quantum state is entangled with its partner, the better the states will perform in quantum information applications. Unfortunately, quantifying entanglement is a difficult process involving complex optimization problems that give even physicists headaches. [7] A trio of physicists in Europe has come up with an idea that they believe would allow a person to actually witness entanglement. Valentina Caprara Vivoli, with the University of Geneva, Pavel Sekatski, with the University of Innsbruck and Nicolas Sangouard, with the University of Basel, have together written a paper describing a scenario where a human subject would be able to witness an instance of entanglement—they have uploaded it to the arXiv server for review by others. [6] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory.

**Category:** Quantum Physics

[19] **viXra:1602.0241 [pdf]**
*submitted on 2016-02-20 01:44:31*

**Authors:** George Rajna

**Comments:** 14 Pages.

New research demonstrates that particles at the quantum level can in fact be seen as behaving something like billiard balls rolling along a table, and not merely as the probabilistic smears that the standard interpretation of quantum mechanics suggests. But there's a catch - the tracks the particles follow do not always behave as one would expect from "realistic" trajectories, but often in a fashion that has been termed "surrealistic." [8]
Quantum entanglement—which occurs when two or more particles are correlated in such a way that they can influence each other even across large distances—is not an all-or-nothing phenomenon, but occurs in various degrees. The more a quantum state is entangled with its partner, the better the states will perform in quantum information applications. Unfortunately, quantifying entanglement is a difficult process involving complex optimization problems that give even physicists headaches. [7]
A trio of physicists in Europe has come up with an idea that they believe would allow a person to actually witness entanglement. Valentina Caprara Vivoli, with the University of Geneva, Pavel Sekatski, with the University of Innsbruck and Nicolas Sangouard, with the University of Basel, have together written a paper describing a scenario where a human subject would be able to witness an instance of entanglement—they have uploaded it to the arXiv server for review by others. [6]
The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories.
The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry.
The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory.

**Category:** Quantum Physics

[18] **viXra:1602.0240 [pdf]**
*submitted on 2016-02-19 13:23:59*

**Authors:** George Rajna

**Comments:** 13 Pages.

Quantum entanglement—which occurs when two or more particles are correlated in such a way that they can influence each other even across large distances—is not an all-or-nothing phenomenon, but occurs in various degrees. The more a quantum state is entangled with its partner, the better the states will perform in quantum information applications. Unfortunately, quantifying entanglement is a difficult process involving complex optimization problems that give even physicists headaches. [7] A trio of physicists in Europe has come up with an idea that they believe would allow a person to actually witness entanglement. Valentina Caprara Vivoli, with the University of Geneva, Pavel Sekatski, with the University of Innsbruck and Nicolas Sangouard, with the University of Basel, have together written a paper describing a scenario where a human subject would be able to witness an instance of entanglement—they have uploaded it to the arXiv server for review by others. [6] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory.

**Category:** Quantum Physics

[17] **viXra:1602.0236 [pdf]**
*submitted on 2016-02-19 04:06:56*

**Authors:** George Rajna

**Comments:** 11 Pages.

A trio of physicists in Europe has come up with an idea that they believe would allow a person to actually witness entanglement. Valentina Caprara Vivoli, with the University of Geneva, Pavel Sekatski, with the University of Innsbruck and Nicolas Sangouard, with the University of Basel, have together written a paper describing a scenario where a human subject would be able to witness an instance of entanglement—they have uploaded it to the arXiv server for review by others. [6] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory.

**Category:** Quantum Physics

[16] **viXra:1602.0219 [pdf]**
*replaced on 2017-12-18 13:58:20*

**Authors:** Gene H Barbee

**Comments:** 28 Pages. Please contact me at genebarbee@msn.com

Revised December 2017
Abstract for Part 1 Schrodinger Fundamentals
Practitioners of quantum mechanics (QM) have known for some time that observations are probability based and that consciousness is involved [18][3]. Our mind is very good at creating an internal model of the information it receives from reality. Schrodinger’s equation helps understand the relationship between reality, our internal model, energy and time. I believe in physical reality but also believe that consciousness is a fundamental characteristic of nature. Evidence will be presented that consciousness created physical nature and provides structure that allows consciousness to re-emerge.
Over centuries physical nature has been well characterized in terms of particles, fields, etc. It is not difficult to characterize these with information models. We will show energy components for neutrons, protons and electrons and their associated probabilities. Nature is based on quantum circles but they can be real or information based. The difference is important and leads to clues regarding nature’s enduring questions.
Part 2 of this document presents details that support the part 1 concepts.

**Category:** Quantum Physics

[15] **viXra:1602.0210 [pdf]**
*submitted on 2016-02-17 08:47:24*

**Authors:** George Rajna

**Comments:** 15 Pages.

In what may provide a potential path to processing information in a quantum computer, researchers have switched an intrinsic property of electrons from an excited state to a relaxed state on demand using a device that served as a microwave "tuning fork." [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.

**Category:** Quantum Physics

[14] **viXra:1602.0188 [pdf]**
*submitted on 2016-02-16 07:57:51*

**Authors:** George Rajna

**Comments:** 14 Pages.

Theoretical physicists at MIT recently reported a quantum computer design featuring an array of superconducting islands on the surface of a topological insulator. They propose basing both quantum computation and error correction on the peculiar behavior of electrons at neighboring corners of these islands and their ability to interact across islands at a distance. [8] An international team led by Princeton University scientists has discovered an elusive massless particle theorized 85 years ago. The particle could give rise to faster and more efficient electronics because of its unusual ability to behave as matter and antimatter inside a crystal, according to new research. The researchers report in the journal Science July 16 the first observation of Weyl fermions, which, if applied to next-generation electronics, could allow for a nearly free and efficient flow of electricity in electronics, and thus greater power, especially for computers, the researchers suggest. [7] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer.

**Category:** Quantum Physics

[13] **viXra:1602.0142 [pdf]**
*submitted on 2016-02-12 12:07:56*

**Authors:** Terubumi Honjou

**Comments:** 6 Pages.

I presented my hypothesis, in 1980.
I announced at the physical society of Japan of Fukushima University.
Dark energy discovery 18 years ago, I announced the pulsation principle of particle hypothesis JPs annual meeting was held in Fukushima University in 1980, no dark energy term,. The concept of rarefied energy rallied and even to each other, was named energy atmospheric in the hypothesis space to meet the equivalent as the dark energy was named after.

**Category:** Quantum Physics

[12] **viXra:1602.0113 [pdf]**
*submitted on 2016-02-09 14:39:35*

**Authors:** George Rajna

**Comments:** 13 Pages.

In quantum entanglement, two particles are correlated in such a way that any action on one of them affects the other even when they are far apart. The traditional methods of measuring the degree of quantum entanglement were originally developed for nonidentical particles, such as between an electron and a proton, or two atoms of different types. [7] For the first time, scientists have entangled four photons in their orbital angular momentum. Leiden physicists sent a laser through a crystal, thereby creating four photons with coupled 'rotation'. So far this has only been achieved with two photons. The discovery makes uncrackable secret communication of complex information possible between multiple parties. [6] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory.

**Category:** Quantum Physics

[11] **viXra:1602.0098 [pdf]**
*submitted on 2016-02-08 14:36:14*

**Authors:** George Rajna

**Comments:** 18 Pages.

Scientists have created a crystal structure that boosts the interaction between tiny bursts of light and individual electrons, an advance that could be a significant step toward establishing quantum networks in the future. [10] Researchers from Stanford have advanced a long-standing problem in quantum physics – how to send "entangled" particles over long distances. [9] Scientists at the University of York's Centre for Quantum Technology have made an important step in establishing scalable and secure high rate quantum networks. [8] As do all advancing technologies, they will also create new nightmares. The most worrisome development will be in cryptography. Developing new standards for protecting data won't be easy. The RSA standards that are in common use each took five years to develop. Ralph Merkle, a pioneer of public-key cryptography, points out that the technology of public-key systems, because it is less well-known, will take longer to update than these — optimistically, ten years. And then there is a matter of implementation so that computer systems worldwide are protected. Without a particular sense of urgency or shortcuts, Merkle says, it could easily be 20 years before we've replaced all of the Internet's present security-critical infrastructure. [7] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer.

**Category:** Quantum Physics

[10] **viXra:1602.0097 [pdf]**
*submitted on 2016-02-08 11:06:40*

**Authors:** George Rajna

**Comments:** 16 Pages.

Brook University have discovered a new way to generate very low-resistance electric current in a new class of materials. The discovery, which relies on the separation of right-and left-"handed" particles, points to a range of potential applications in energy, quantum computing, and medical imaging, and possibly even a new mechanism for inducing superconductivity—the ability of some materials to carry current with no energy loss. [8] This paper explains the magnetic effect of the electric current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Quantum Theories. The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the changing relativistic mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions.

**Category:** Quantum Physics

[9] **viXra:1602.0089 [pdf]**
*submitted on 2016-02-07 14:53:01*

**Authors:** George Rajna

**Comments:** 17 Pages.

Scientists have achieved the ultimate speed limit of the control of spins in a solid state magnetic material. The rise of the digital information era posed a daunting challenge to develop ever faster and smaller devices for data storage and processing. An approach which relies on the magnetic moment of electrons (i.e. the spin) rather than the charge, has recently turned into major research fields, called spintronics and magnonics. [11] A team of researchers with members from Germany, the U.S. and Russia has found a way to measure the time it takes for an electron in an atom to respond to a pulse of light. [10] As an elementary particle, the electron cannot be broken down into smaller particles, at least as far as is currently known. However, in a phenomenon called electron fractionalization, in certain materials an electron can be broken down into smaller "charge pulses," each of which carries a fraction of the electron's charge. Although electron fractionalization has many interesting implications, its origins are not well understood. [9] New ideas for interactions and particles: This paper examines the possibility to origin the Spontaneously Broken Symmetries from the Planck Distribution Law. This way we get a Unification of the Strong, Electromagnetic, and Weak Interactions from the interference occurrences of oscillators. Understanding that the relativistic mass change is the result of the magnetic induction we arrive to the conclusion that the Gravitational Force is also based on the electromagnetic forces, getting a Unified Relativistic Quantum Theory of all 4 Interactions.

**Category:** Quantum Physics

[8] **viXra:1602.0083 [pdf]**
*submitted on 2016-02-07 05:06:13*

**Authors:** George Rajna

**Comments:** 16 Pages.

A team of researchers with members from Germany, the U.S. and Russia has found a way to measure the time it takes for an electron in an atom to respond to a pulse of light. [10] As an elementary particle, the electron cannot be broken down into smaller particles, at least as far as is currently known. However, in a phenomenon called electron fractionalization, in certain materials an electron can be broken down into smaller "charge pulses," each of which carries a fraction of the electron's charge. Although electron fractionalization has many interesting implications, its origins are not well understood. [9] New ideas for interactions and particles: This paper examines the possibility to origin the Spontaneously Broken Symmetries from the Planck Distribution Law. This way we get a Unification of the Strong, Electromagnetic, and Weak Interactions from the interference occurrences of oscillators. Understanding that the relativistic mass change is the result of the magnetic induction we arrive to the conclusion that the Gravitational Force is also based on the electromagnetic forces, getting a Unified Relativistic Quantum Theory of all 4 Interactions.

**Category:** Quantum Physics

[7] **viXra:1602.0081 [pdf]**
*submitted on 2016-02-06 14:06:55*

**Authors:** George Rajna

**Comments:** 21 Pages.

Although in theory it may seem possible to divide time up into infinitely tiny intervals, the smallest physically meaningful interval of time is widely considered to be the Planck time, which is approximately 10-43 seconds. This ultimate limit means that it is not possible for two events to be separated by a time smaller than this. [14] A team of researchers working at Stanford University has extended the record for quantum superposition at the macroscopic level, from 1 to 54 centimeters. [13] Now, researchers have come up with a rather simple scheme for providing quantum error controls: entangle atoms from two different elements so that manipulating won't affect the second. Not only is this highly effective, the researchers show that they can construct quantum logic gates with the setup. And while they were at it, they demonstrate the quantum nature of entanglement with a precision that's 40 standard deviations away from classic physical behavior. [12] A team of quantum physicists from Harvard University measured a property called entanglement entropy, which quantifies the apparent randomness that comes with observing just a portion of an entangled whole. Markus Greiner and colleagues used lasers to create an optical cage with four compartments, each of which held a rubidium atom chilled to nearly absolute zero. The researchers could tweak the laser settings to adjust the height of the walls between compartments. If the walls were low enough, atoms could exploit their strange quantum ability to occupy multiple compartments at once. As the four atoms jumped around, they interacted and established a state of entanglement. [11] Physicists in the US and Serbia have created an entangled quantum state of nearly 3000 ultracold atoms using just one photon. This is the largest number of atoms ever to be entangled in the lab, and the researchers say that the technique could be used to boost the precision of atomic clocks. [10] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.

**Category:** Quantum Physics

[6] **viXra:1602.0061 [pdf]**
*submitted on 2016-02-05 07:11:57*

**Authors:** George Rajna

**Comments:** 16 Pages.

A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.

**Category:** Quantum Physics

[5] **viXra:1602.0057 [pdf]**
*replaced on 2016-02-11 18:00:09*

**Authors:** Jiri Soucek

**Comments:** 6 Pages.

We prove that the Bell’s theorem and the nonlocality of quantum mechanics are scientifically unfounded statements.

**Category:** Quantum Physics

[4] **viXra:1602.0056 [pdf]**
*submitted on 2016-02-04 19:46:01*

**Authors:** Frank Dodd Tony Smith Jr

**Comments:** 7 Pages.

E8 Physics AQFT is constructed from an E8 Physics Lagrangian (viXra 1508.0157) by embedding E8 into the Real Clifford Algebra Cl(16) = Cl(8)xCl(8) and taking the completion of the union of all tensor products of copies of Cl(16) which forms a generalized hyperfinite II1 von Neumann factor algebra AQFT
(Algebraic Quantum Field Theory) that by Periodicity retains underlying E8 symmetry. The World-Line of a Particle in E8 Physics is a String connecting the Cl(16) copies that make up points / events in the History of the Particle. Interaction among those History World-Line Strings by String Theory produces a Force / Potential that is similar to Gravity but the Local Lagrangian of E8 Physics in each copy of Cl(16) in the AQFT
already contains Gravity (as well as the Standard Model).
The purpose of this paper is to describe the Physical Interpretation of the E8 AQFT String Gravity-like Force / Potential as the Sarfatti-Bohm Quantum Potential with Back-Reaction that permits Free Will and is the fundamental Force of Quantum Consciousness that is described as Gravity by Penrose and Hameroff (Physics of Life Reviews 11 (March 2014) 39-78).
The Quantum Potential of this paper is a Bohm internal energy of a quantum system whose total force does not fall off with distance since it depends on the form of the quantum state rather than its magnitude. The form is described in terms of Cl(16) which is related (see viXra 1512.0300) to the Tensor Product Quantum Reed-Muller code [[ 256 , 0 , 24 ]] x [[ 256 , 0 , 24 ]] and which contains not only 248-dim E8 but a total of 65,536 elements.

**Category:** Quantum Physics

[3] **viXra:1602.0054 [pdf]**
*submitted on 2016-02-05 02:15:36*

**Authors:** George Rajna

**Comments:** 13 Pages.

New findings from an international collaboration led by Canadian scientists may eventually lead to a theory of how superconductivity initiates at the atomic level, a key step in understanding how to harness the potential of materials that could provide lossless energy storage, levitating trains and ultra-fast supercomputers. [27] This paper explains the magnetic effect of the superconductive current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Quantum Theories. The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the Higgs Field, the changing Relativistic Mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Since the superconductivity is basically a quantum mechanical phenomenon and some entangled particles give this opportunity to specific matters, like Cooper Pairs or other entanglements, as strongly correlated materials and Exciton-mediated electron pairing, we can say that the secret of superconductivity is the quantum entanglement.

**Category:** Quantum Physics

[2] **viXra:1602.0045 [pdf]**
*submitted on 2016-02-04 12:37:36*

**Authors:** George Rajna

**Comments:** 11 Pages.

For the first time, scientists have entangled four photons in their orbital angular momentum. Leiden physicists sent a laser through a crystal, thereby creating four photons with coupled 'rotation'. So far this has only been achieved with two photons. The discovery makes uncrackable secret communication of complex information possible between multiple parties. [6] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory.

**Category:** Quantum Physics

[1] **viXra:1602.0030 [pdf]**
*submitted on 2016-02-02 13:45:10*

**Authors:** George Rajna

**Comments:** 15 Pages.

Research conducted by the Quantum Dynamics Unit at Okinawa Institute of Science and Technology graduate University (OIST) could represent an important step in understanding two-dimensional semiconductors. The Unit's latest paper, published in Physical Review Letters, describes anomalies in the behaviour of electrons in electrons on liquid helium two-dimensional system. [28]
The work in correlated electrons looks at a subset of electrons. Metals, as an example, have an unfilled outermost orbital and electrons are free to move from atom to atom. Thus, metals are good electrical conductors. When metal atoms are tightly packed into lattices (or crystals) these electrons mingle together into a "sea" of electrons. The metallic element mercury is liquid at room temperature, in part due to its electron configuration, and shows very little resistance to electric current due to its electron configuration. At 4 degrees above absolute zero (just barely above -460 degrees Fahrenheit), mercury's electron arrangement and other properties create communal electrons that show no resistance to electric current, a state known as superconductivity. [27]
This paper explains the magnetic effect of the superconductive current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron’s spin also, building the bridge between the Classical and Quantum Theories.
The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the Higgs Field, the changing Relativistic Mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions.
Since the superconductivity is basically a quantum mechanical phenomenon and some entangled particles give this opportunity to specific matters, like Cooper Pairs or other entanglements, as strongly correlated materials and Exciton-mediated electron pairing, we can say that the secret of superconductivity is the quantum entanglement.

**Category:** Quantum Physics