Quantum Physics

1704 Submissions

[63] viXra:1704.0389 [pdf] submitted on 2017-04-29 04:23:17

Organic Lasers

Authors: George Rajna
Comments: 26 Pages.

New research could make lasers emitting a wide range of colors more accessible and open new applications from communications and sensing to displays. [17] A novel way to harness lasers and plasmas may give researchers new ways to explore outer space and to examine bugs, tumors and bones back on planet Earth. [16] A team of researchers at Harvard University has successfully cooled a three-atom molecule down to near absolute zero for the first time. [15] A research team led by UCLA electrical engineers has developed a new technique to control the polarization state of a laser that could lead to a new class of powerful, high-quality lasers for use in medical imaging, chemical sensing and detection, or fundamental science research. [14] UCLA physicists have shown that shining multicolored laser light on rubidium atoms causes them to lose energy and cool to nearly absolute zero. This result suggests that atoms fundamental to chemistry, such as hydrogen and carbon, could also be cooled using similar lasers, an outcome that would allow researchers to study the details of chemical reactions involved in medicine. [13] Powerful laser beams, given the right conditions, will act as their own lenses and "self-focus" into a tighter, even more intense beam. University of Maryland physicists have discovered that these self-focused laser pulses also generate violent swirls of optical energy that strongly resemble smoke rings. [12] Electrons fingerprint the fastest laser pulses. [11] A team of researchers with members from Germany, the U.S. and Russia has found a way to measure the time it takes for an electron in an atom to respond to a pulse of light. [10] As an elementary particle, the electron cannot be broken down into smaller particles, at least as far as is currently known. However, in a phenomenon called electron fractionalization, in certain materials an electron can be broken down into smaller "charge pulses," each of which carries a fraction of the electron's charge. Although electron fractionalization has many interesting implications, its origins are not well understood. [9] New ideas for interactions and particles: This paper examines the possibility to origin the Spontaneously Broken Symmetries from the Planck Distribution Law. This way we get a Unification of the Strong, Electromagnetic, and Weak Interactions from the interference occurrences of oscillators. Understanding that the relativistic mass change is the result of the magnetic induction we arrive to the conclusion that the Gravitational Force is also based on the electromagnetic forces, getting a Unified Relativistic Quantum Theory of all 4 Interactions.
Category: Quantum Physics

[62] viXra:1704.0388 [pdf] submitted on 2017-04-29 04:53:21

Quantum Experiments of Rogue Ocean Waves

Authors: George Rajna
Comments: 22 Pages.

By precisely controlling the quantum behavior of an ultracold atomic gas, Rice University physicists have created a model system for studying the wave phenomenon that may bring about rogue waves in Earth's oceans. [13] Australian and German researchers have collaborated to develop a genetic algorithm to confirm the rejection of classical notions of causality. [12] Quantum systems are extremely hard to analyze if they consist of more than just a few parts. It is not difficult to calculate a single hydrogen atom, but in order to describe an atom cloud of several thousand atoms, it is usually necessary to use rough approximations. The reason for this is that quantum particles are connected to each other and cannot be described separately. [11] Quantum coherence and quantum entanglement are two landmark features of quantum physics, and now physicists have demonstrated that the two phenomena are "operationally equivalent"—that is, equivalent for all practical purposes, though still conceptually distinct. This finding allows physicists to apply decades of research on entanglement to the more fundamental but less-well-researched concept of coherence, offering the possibility of advancing a wide range of quantum technologies. [10] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.
Category: Quantum Physics

[61] viXra:1704.0381 [pdf] submitted on 2017-04-29 03:45:58

Computational Power of Chaos-Based Systems

Authors: George Rajna
Comments: 23 Pages.

New research from North Carolina State University has found that combining digital and analog components in nonlinear, chaos-based integrated circuits can improve their computational power by enabling processing of a larger number of inputs. [18] A team of researchers from Australia and the UK have developed a new theoretical framework to identify computations that occupy the 'quantum frontier'—the boundary at which problems become impossible for today's computers and can only be solved by a quantum computer. [17] Scientists at the University of Sussex have invented a groundbreaking new method that puts the construction of large-scale quantum computers within reach of current technology. [16] Physicists at the University of Bath have developed a technique to more reliably produce single photons that can be imprinted with quantum information. [15] Now a researcher and his team at Tyndall National Institute in Cork have made a 'quantum leap' by developing a technical step that could enable the use of quantum computers sooner than expected. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[60] viXra:1704.0378 [pdf] submitted on 2017-04-28 08:53:27

Quantum Correlations of Causal Models

Authors: George Rajna
Comments: 20 Pages.

Australian and German researchers have collaborated to develop a genetic algorithm to confirm the rejection of classical notions of causality. [12] Quantum systems are extremely hard to analyze if they consist of more than just a few parts. It is not difficult to calculate a single hydrogen atom, but in order to describe an atom cloud of several thousand atoms, it is usually necessary to use rough approximations. The reason for this is that quantum particles are connected to each other and cannot be described separately. [11] Quantum coherence and quantum entanglement are two landmark features of quantum physics, and now physicists have demonstrated that the two phenomena are "operationally equivalent"—that is, equivalent for all practical purposes, though still conceptually distinct. This finding allows physicists to apply decades of research on entanglement to the more fundamental but less-well-researched concept of coherence, offering the possibility of advancing a wide range of quantum technologies. [10] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.
Category: Quantum Physics

[59] viXra:1704.0369 [pdf] submitted on 2017-04-28 02:26:41

Chemical Imaging

Authors: George Rajna
Comments: 26 Pages.

A "chemical imaging" system that uses a special type of laser beam to penetrate deep into tissue might lead to technologies that eliminate the need to draw blood for analyses including drug testing and early detection of diseases such as cancer and diabetes. [17] A novel way to harness lasers and plasmas may give researchers new ways to explore outer space and to examine bugs, tumors and bones back on planet Earth. [16] A team of researchers at Harvard University has successfully cooled a three-atom molecule down to near absolute zero for the first time. [15] A research team led by UCLA electrical engineers has developed a new technique to control the polarization state of a laser that could lead to a new class of powerful, high-quality lasers for use in medical imaging, chemical sensing and detection, or fundamental science research. [14] UCLA physicists have shown that shining multicolored laser light on rubidium atoms causes them to lose energy and cool to nearly absolute zero. This result suggests that atoms fundamental to chemistry, such as hydrogen and carbon, could also be cooled using similar lasers, an outcome that would allow researchers to study the details of chemical reactions involved in medicine. [13] Powerful laser beams, given the right conditions, will act as their own lenses and "self-focus" into a tighter, even more intense beam. University of Maryland physicists have discovered that these self-focused laser pulses also generate violent swirls of optical energy that strongly resemble smoke rings. [12] Electrons fingerprint the fastest laser pulses. [11] A team of researchers with members from Germany, the U.S. and Russia has found a way to measure the time it takes for an electron in an atom to respond to a pulse of light. [10] As an elementary particle, the electron cannot be broken down into smaller particles, at least as far as is currently known. However, in a phenomenon called electron fractionalization, in certain materials an electron can be broken down into smaller "charge pulses," each of which carries a fraction of the electron's charge. Although electron fractionalization has many interesting implications, its origins are not well understood. [9] New ideas for interactions and particles: This paper examines the possibility to origin the Spontaneously Broken Symmetries from the Planck Distribution Law. This way we get a Unification of the Strong, Electromagnetic, and Weak Interactions from the interference occurrences of oscillators. Understanding that the relativistic mass change is the result of the magnetic induction we arrive to the conclusion that the Gravitational Force is also based on the electromagnetic forces, getting a Unified Relativistic Quantum Theory of all 4 Interactions.
Category: Quantum Physics

[58] viXra:1704.0366 [pdf] submitted on 2017-04-27 11:16:26

Quantum Computing Frontier

Authors: George Rajna
Comments: 22 Pages.

A team of researchers from Australia and the UK have developed a new theoretical framework to identify computations that occupy the 'quantum frontier'—the boundary at which problems become impossible for today's computers and can only be solved by a quantum computer. [17] Scientists at the University of Sussex have invented a groundbreaking new method that puts the construction of large-scale quantum computers within reach of current technology. [16] Physicists at the University of Bath have developed a technique to more reliably produce single photons that can be imprinted with quantum information. [15] Now a researcher and his team at Tyndall National Institute in Cork have made a 'quantum leap' by developing a technical step that could enable the use of quantum computers sooner than expected. [14] A method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications has gained momentum with a demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. [13] A source of single photons that meets three important criteria for use in quantum-information systems has been unveiled in China by an international team of physicists. Based on a quantum dot, the device is an efficient source of photons that emerge as solo particles that are indistinguishable from each other. The researchers are now trying to use the source to create a quantum computer based on "boson sampling". [11] With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream of identical photons. [10] Optical photons would be ideal carriers to transfer quantum information over large distances. Researchers envisage a network where information is processed in certain nodes and transferred between them via photons. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Quantum Physics

[57] viXra:1704.0364 [pdf] submitted on 2017-04-27 11:52:28

Photodielectric Discovery

Authors: George Rajna
Comments: 23 Pages.

A team of researchers from Japan reports this week in Applied Physics Letters, that they have discovered a phenomenon called the photodielectric effect, which could lead to laser-controlled touch displays. [33] Researchers from the ARC Centre for Ultrahigh bandwidth Devices for Optical Systems (CUDOS) in the University of Sydney's Australian Institute for Nanoscale Science and Technology have made a breakthrough achieving radio frequency signal control at sub-nanosecond time scales on a chip-scale optical device. [32] The shrinking of electronic components and the excessive heat generated by their increasing power has heightened the need for chip-cooling solutions, according to a Rutgers-led study published recently in Proceedings of the National Academy of Sciences. Using graphene combined with a boron nitride crystal substrate, the researchers demonstrated a more powerful and efficient cooling mechanism. [31] Materials like graphene can exhibit a particular type of large-amplitude, stable vibrational modes that are localised, referred to as Discrete Breathers (DBs). [30] A two-dimensional material developed by Bayreuth physicist Prof. Dr. Axel Enders together with international partners could revolutionize electronics. [29] Researchers have found a way to trigger the innate, but previously hidden, ability of graphene to act as a superconductor-meaning that it can be made to carry an electrical current with zero resistance. [28] Researchers in Japan have found a way to make the 'wonder material' graphene superconductive-which means electricity can flow through it with zero resistance. The new property adds to graphene's already impressive list of attributes, like the fact that it's stronger than steel, harder than diamond, and incredibly flexible. [27] Superconductivity is a rare physical state in which matter is able to conduct electricity—maintain a flow of electrons—without any resistance. It can only be found in certain materials, and even then it can only be achieved under controlled conditions of low temperatures and high pressures. New research from a team including Carnegie's Elissaios Stavrou, Xiao-Jia Chen, and Alexander Goncharov hones in on the structural changes underlying superconductivity in iron arsenide compounds—those containing iron and arsenic. [26] This paper explains the magnetic effect of the superconductive current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Quantum Theories. The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the Higgs Field, the changing Relativistic Mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions.
Category: Quantum Physics

[56] viXra:1704.0362 [pdf] submitted on 2017-04-27 08:31:47

Electricity at Almost the Speed of Light

Authors: George Rajna
Comments: 27 Pages.

Physicists at the University of California, Irvine and elsewhere have fabricated new two-dimensional quantum materials with breakthrough electrical and magnetic attributes that could make them building blocks of future quantum computers and other advanced electronics. [16] NIST has been granted a patent for technology that may hasten the advent of a long-awaited new generation of high-performance, low-energy computers. [15] Researchers have shown how to create a rechargeable "spin battery" made out of materials called topological insulators, a step toward building new spintronic devices and quantum computers. [14] Fermions are ubiquitous elementary particles. They span from electrons in metals, to protons and neutrons in nuclei and to quarks at the sub-nuclear level. Further, they possess an intrinsic degree of freedom called spin with only two possible configurations, either up or down. In a new study published in EPJ B, theoretical physicists explore the possibility of separately controlling the up and down spin populations of a group of interacting fermions. [13] An international consortium led by researchers at the University of Basel has developed a method to precisely alter the quantum mechanical states of electrons within an array of quantum boxes. The method can be used to investigate the interactions between various types of atoms and electrons, which is essential for future quantum technologies, as the group reports in the journal Small. [12] Quantum systems are extremely hard to analyze if they consist of more than just a few parts. It is not difficult to calculate a single hydrogen atom, but in order to describe an atom cloud of several thousand atoms, it is usually necessary to use rough approximations. The reason for this is that quantum particles are connected to each other and cannot be described separately. [11] Quantum coherence and quantum entanglement are two landmark features of quantum physics, and now physicists have demonstrated that the two phenomena are "operationally equivalent"—that is, equivalent for all practical purposes, though still conceptually distinct. This finding allows physicists to apply decades of research on entanglement to the more fundamental but less-well-researched concept of coherence, offering the possibility of advancing a wide range of quantum technologies. [10] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.
Category: Quantum Physics

[55] viXra:1704.0357 [pdf] submitted on 2017-04-27 07:16:39

Spintronic Computing

Authors: George Rajna
Comments: 25 Pages.

NIST has been granted a patent for technology that may hasten the advent of a long-awaited new generation of high-performance, low-energy computers. [15] Researchers have shown how to create a rechargeable "spin battery" made out of materials called topological insulators, a step toward building new spintronic devices and quantum computers. [14] Fermions are ubiquitous elementary particles. They span from electrons in metals, to protons and neutrons in nuclei and to quarks at the sub-nuclear level. Further, they possess an intrinsic degree of freedom called spin with only two possible configurations, either up or down. In a new study published in EPJ B, theoretical physicists explore the possibility of separately controlling the up and down spin populations of a group of interacting fermions. [13] An international consortium led by researchers at the University of Basel has developed a method to precisely alter the quantum mechanical states of electrons within an array of quantum boxes. The method can be used to investigate the interactions between various types of atoms and electrons, which is essential for future quantum technologies, as the group reports in the journal Small. [12] Quantum systems are extremely hard to analyze if they consist of more than just a few parts. It is not difficult to calculate a single hydrogen atom, but in order to describe an atom cloud of several thousand atoms, it is usually necessary to use rough approximations. The reason for this is that quantum particles are connected to each other and cannot be described separately. [11] Quantum coherence and quantum entanglement are two landmark features of quantum physics, and now physicists have demonstrated that the two phenomena are "operationally equivalent"—that is, equivalent for all practical purposes, though still conceptually distinct. This finding allows physicists to apply decades of research on entanglement to the more fundamental but less-well-researched concept of coherence, offering the possibility of advancing a wide range of quantum technologies. [10] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.
Category: Quantum Physics

[54] viXra:1704.0350 [pdf] submitted on 2017-04-26 08:24:21

Laser for Everything

Authors: George Rajna
Comments: 24 Pages.

A novel way to harness lasers and plasmas may give researchers new ways to explore outer space and to examine bugs, tumors and bones back on planet Earth. [16] A team of researchers at Harvard University has successfully cooled a three-atom molecule down to near absolute zero for the first time. [15] A research team led by UCLA electrical engineers has developed a new technique to control the polarization state of a laser that could lead to a new class of powerful, high-quality lasers for use in medical imaging, chemical sensing and detection, or fundamental science research. [14] UCLA physicists have shown that shining multicolored laser light on rubidium atoms causes them to lose energy and cool to nearly absolute zero. This result suggests that atoms fundamental to chemistry, such as hydrogen and carbon, could also be cooled using similar lasers, an outcome that would allow researchers to study the details of chemical reactions involved in medicine. [13] Powerful laser beams, given the right conditions, will act as their own lenses and "self-focus" into a tighter, even more intense beam. University of Maryland physicists have discovered that these self-focused laser pulses also generate violent swirls of optical energy that strongly resemble smoke rings. [12] Electrons fingerprint the fastest laser pulses. [11] A team of researchers with members from Germany, the U.S. and Russia has found a way to measure the time it takes for an electron in an atom to respond to a pulse of light. [10] As an elementary particle, the electron cannot be broken down into smaller particles, at least as far as is currently known. However, in a phenomenon called electron fractionalization, in certain materials an electron can be broken down into smaller "charge pulses," each of which carries a fraction of the electron's charge. Although electron fractionalization has many interesting implications, its origins are not well understood. [9] New ideas for interactions and particles: This paper examines the possibility to origin the Spontaneously Broken Symmetries from the Planck Distribution Law. This way we get a Unification of the Strong, Electromagnetic, and Weak Interactions from the interference occurrences of oscillators. Understanding that the relativistic mass change is the result of the magnetic induction we arrive to the conclusion that the Gravitational Force is also based on the electromagnetic forces, getting a Unified Relativistic Quantum Theory of all 4 Interactions.
Category: Quantum Physics

[53] viXra:1704.0348 [pdf] submitted on 2017-04-26 09:47:36

Quantum Secure Communications

Authors: George Rajna
Comments: 32 Pages.

Scientists at the University of York's Centre for Quantum Technology have made an important breakthrough in the theory of quantum secure communications. [19] How to reliably transfer quantum information when the connecting channels are impacted by detrimental noise? Scientists at the University of Innsbruck and TU Wien (Vienna) have presented new solutions to this problem. [18] Adding to strong recent demonstrations that particles of light perform what Einstein called "spooky action at a distance," in which two separated objects can have a connection that exceeds everyday experience, physicists at the National Institute of Standards and Technology (NIST) have confirmed that particles of matter can act really spooky too. [17] How fast will a quantum computer be able to calculate? While fully functional versions of these long-sought technological marvels have yet to be built, one theorist at the National Institute of Standards and Technology (NIST) has shown that, if they can be realized, there may be fewer limits to their speed than previously put forth. [16] Unlike experimental neuroscientists who deal with real-life neurons, computational neuroscientists use model simulations to investigate how the brain functions. [15] A pair of physicists with ETH Zurich has developed a way to use an artificial neural network to characterize the wave function of a quantum many-body system. [14] A team of researchers at Google's DeepMind Technologies has been working on a means to increase the capabilities of computers by combining aspects of data processing and artificial intelligence and have come up with what they are calling a differentiable neural computer (DNC.) In their paper published in the journal Nature, they describe the work they are doing and where they believe it is headed. To make the work more accessible to the public team members, Alexander Graves and Greg Wayne have posted an explanatory page on the DeepMind website. [13] Nobody understands why deep neural networks are so good at solving complex problems. Now physicists say the secret is buried in the laws of physics. [12] A team of researchers working at the University of California (and one from Stony Brook University) has for the first time created a neural-network chip that was built using just memristors. In their paper published in the journal Nature, the team describes how they built their chip and what capabilities it has. [11] A team of researchers used a promising new material to build more functional memristors, bringing us closer to brain-like computing. Both academic and industrial laboratories are working to develop computers that operate more like the human brain. Instead of operating like a conventional, digital system, these new devices could potentially function more like a network of neurons. [10] Cambridge Quantum Computing Limited (CQCL) has built a new Fastest Operating System aimed at running the futuristic superfast quantum computers. [9] IBM scientists today unveiled two critical advances towards the realization of a practical quantum computer. For the first time, they showed the ability to detect and measure both kinds of quantum errors simultaneously, as well as demonstrated a new, square quantum bit circuit design that is the only physical architecture that could successfully scale to larger dimensions. [8] Physicists at the Universities of Bonn and Cambridge have succeeded in linking two completely different quantum systems to one another. In doing so, they have taken an important step forward on the way to a quantum computer. To accomplish their feat the researchers used a method that seems to function as well in the quantum world as it does for us people: teamwork. The results have now been published in the "Physical Review Letters". [7] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer.
Category: Quantum Physics

[52] viXra:1704.0338 [pdf] replaced on 2017-04-29 14:31:16

On the Planck Fine-structure Constant

Authors: Rodolfo A. Frino
Comments: 8 Pages.

In this paper I introduce a new Planck constant – the Planck fine-structure constant –. Then, from the relativistic model of the hydrogen atom I prove that this new constant is consistent with the existence of hydrogen, and hence, consistent with the appearance of life in the universe.
Category: Quantum Physics

[51] viXra:1704.0316 [pdf] submitted on 2017-04-24 11:27:27

Nanoscopic Techniques

Authors: George Rajna
Comments: 38 Pages.

Tromsø have developed a photonic chip that makes it possible to carry out super-resolution light microscopy, also called 'nanoscopy,' with conventional microscopes. In nanoscopy, the position of single fluorescent molecules can be determined with a precision of just a few nano-meters, that is, to a millionth of a millimeter. [21] Researchers at Columbia University have made a significant step toward breaking the so-called "color barrier" of light microscopy for biological systems, allowing for much more comprehensive, system-wide labeling and imaging of a greater number of biomolecules in living cells and tissues than is currently attainable. [20] Scientists around the Nobel laureate Stefan Hell at the Max Planck Institute for Biophysical Chemistry in Göttingen have now achieved what was for a long time considered impossible – they have developed a new fluorescence microscope, called MINFLUX, allowing, for the first time, to optically separate molecules, which are only nanometers (one millionth of a millimeter) apart from each other. [19] Dipole orientation provides new dimension in super-resolution microscopy [18] Fluorescence is an incredibly useful tool for experimental biology and it just got easier to tap into, thanks to the work of a group of University of Chicago researchers. [17] Molecules that change colour can be used to follow in real-time how bacteria form a protective biofilm around themselves. This new method, which has been developed in collaboration between researchers at Linköping University and Karolinska Institutet in Sweden, may in the future become significant both in medical care and the food industry, where bacterial biofilms are a problem. [16] Researchers led by Carnegie Mellon University physicist Markus Deserno and University of Konstanz (Germany) chemist Christine Peter have developed a computer simulation that crushes viral capsids. By allowing researchers to see how the tough shells break apart, the simulation provides a computational window for looking at how viruses and proteins assemble. [15] IBM scientists have developed a new lab-on-a-chip technology that can, for the first time, separate biological particles at the nanoscale and could enable physicians to detect diseases such as cancer before symptoms appear. [14]
Category: Quantum Physics

[50] viXra:1704.0315 [pdf] submitted on 2017-04-24 11:57:50

Chiral Currents in Quantum Hall

Authors: George Rajna
Comments: 40 Pages.

Using an atomic quantum simulator, scientists at the University of Illinois at Urbana-Champaign have achieved the first-ever direct observation of chiral currents in the model topological insulator, the 2-D integer quantum Hall system. [22] Physicists at Bielefeld University and the Arctic University of Norway in Tromsø have developed a photonic chip that makes it possible to carry out super-resolution light microscopy, also called 'nanoscopy,' with conventional microscopes. In nanoscopy, the position of single fluorescent molecules can be determined with a precision of just a few nano-meters, that is, to a millionth of a millimeter. [21] Researchers at Columbia University have made a significant step toward breaking the so-called "color barrier" of light microscopy for biological systems, allowing for much more comprehensive, system-wide labeling and imaging of a greater number of biomolecules in living cells and tissues than is currently attainable. [20] Scientists around the Nobel laureate Stefan Hell at the Max Planck Institute for Biophysical Chemistry in Göttingen have now achieved what was for a long time considered impossible – they have developed a new fluorescence microscope, called MINFLUX, allowing, for the first time, to optically separate molecules, which are only nanometers (one millionth of a millimeter) apart from each other. [19] Dipole orientation provides new dimension in super-resolution microscopy [18] Fluorescence is an incredibly useful tool for experimental biology and it just got easier to tap into, thanks to the work of a group of University of Chicago researchers. [17] Molecules that change colour can be used to follow in real-time how bacteria form a protective biofilm around themselves. This new method, which has been developed in collaboration between researchers at Linköping University and Karolinska Institutet in Sweden, may in the future become significant both in medical care and the food industry, where bacterial biofilms are a problem. [16] Researchers led by Carnegie Mellon University physicist Markus Deserno and University of Konstanz (Germany) chemist Christine Peter have developed a computer simulation that crushes viral capsids. By allowing researchers to see how the tough shells break apart, the simulation provides a computational window for looking at how viruses and proteins assemble. [15]
Category: Quantum Physics

[49] viXra:1704.0311 [pdf] submitted on 2017-04-24 00:38:54

Optical Micro-Oscillator

Authors: George Rajna
Comments: 23 Pages.

A team of engineering researchers from UCLA and OEWaves has developed an optical micro-oscillator, a key time-keeping component of clocks that could vastly improve the accuracy of time-keeping, which is essential for use in spacecraft, automobile sensing or satellite communications. [33] Researchers from the ARC Centre for Ultrahigh bandwidth Devices for Optical Systems (CUDOS) in the University of Sydney's Australian Institute for Nanoscale Science and Technology have made a breakthrough achieving radio frequency signal control at sub-nanosecond time scales on a chip-scale optical device. [32] The shrinking of electronic components and the excessive heat generated by their increasing power has heightened the need for chip-cooling solutions, according to a Rutgers-led study published recently in Proceedings of the National Academy of Sciences. Using graphene combined with a boron nitride crystal substrate, the researchers demonstrated a more powerful and efficient cooling mechanism. [31] Materials like graphene can exhibit a particular type of large-amplitude, stable vibrational modes that are localised, referred to as Discrete Breathers (DBs). [30] A two-dimensional material developed by Bayreuth physicist Prof. Dr. Axel Enders together with international partners could revolutionize electronics. [29] Researchers have found a way to trigger the innate, but previously hidden, ability of graphene to act as a superconductor-meaning that it can be made to carry an electrical current with zero resistance. [28] Researchers in Japan have found a way to make the 'wonder material' graphene superconductive-which means electricity can flow through it with zero resistance. The new property adds to graphene's already impressive list of attributes, like the fact that it's stronger than steel, harder than diamond, and incredibly flexible. [27] Superconductivity is a rare physical state in which matter is able to conduct electricity—maintain a flow of electrons—without any resistance. It can only be found in certain materials, and even then it can only be achieved under controlled conditions of low temperatures and high pressures. New research from a team including Carnegie's Elissaios Stavrou, Xiao-Jia Chen, and Alexander Goncharov hones in on the structural changes underlying superconductivity in iron arsenide compounds—those containing iron and arsenic. [26] This paper explains the magnetic effect of the superconductive current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Quantum Theories. The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the Higgs Field, the changing Relativistic Mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions.
Category: Quantum Physics

[48] viXra:1704.0300 [pdf] submitted on 2017-04-22 14:54:00

Mass

Authors: Peter V. Raktoe
Comments: 2 Pages.

I don't believe that the Higgs boson theory is correct, and it's obvious that there is no definite proof that a Higgs boson exists. The discovery of the Higgs boson is only based on data, the data consists of an energy trail of a particle that was found after a particle collision experiment in the LHC accelerator. Physicists were convinced that it was a Higgs boson because the data confirmed that the mass was similar to the mass of a hypothetical Higgs boson, but they cannot prove that the data was real. They didn't prove that the Higgs boson theory is correct, so the Higgs theory remains a theory.
Category: Quantum Physics

[47] viXra:1704.0285 [pdf] submitted on 2017-04-21 19:21:32

Local Realism Cuts the Quantum Bait

Authors: Andrew P. Yake
Comments: 1 Page. Please see main article: ** http://vixra.org/abs/1704.0078 **

Local realism is now revitalized as a fully viable causal explanation of physical reality including empirical Bell violations according to detailed arguments provided at the link below. Meanwhile, by denying local realism in its account of EPR experiments, quantum theory requires a physical causal signal that is physically discontinuous, leaping out of spacetime from one locality and landing in another, like a fish leaping out of water. Quantum theory thus invokes a physical domain outside spacetime through which its causal signal is logically required to travel -- unobservable, unstoppable, and at infinite speed. It might be tempting to conclude that such domains and such signals are some sort of magic, except that would be exactly wrong. Even magic obeys local realism. A master magician, however, can provide a compelling illusion to the contrary. The causally complete local realistic model given by the article below argues compellingly that the antilocality claims of quantum physics reduce to such illusions. Please see main article: ** http://vixra.org/abs/1704.0078 ** Local Realism Explains Bell Violations (author Andrew P. Yake) - Claims to demonstrate that all empirical evidence taken to support quantum theory over local realism plausibly does the reverse. The article comprises 8 pages, 4 figures, 6 equations, 32 references, 1 graph of testable predictions, and 2 paragraphs that purport to expose how the Bell inequality misrepresents the local realistic predictions for the EPR experiment. Thoughtful feedback appreciated (apyake@gmail.com).
Category: Quantum Physics

[46] viXra:1704.0271 [pdf] submitted on 2017-04-21 08:43:51

Hyper-Complex Quantum Theory

Authors: George Rajna
Comments: 44 Pages.

Physicists use an interferometer to test whether standard quantum mechanics is correct, or whether a more complex version is required. They used the interferometer to send photons around a loop in opposite directions. In this way, photons travelling in one direction interact with objects inside the loop in one order, while photons travelling the opposite direction interact with objects in the opposite order. [26] Physicists at the Institute for Quantum Information and Matter at Caltech have discovered the first three-dimensional quantum liquid crystal—a new state of matter that may have applications in ultrafast quantum computers of the future. [25] For the first time, an experiment has directly imaged electron orbits in a high-magnetic field, illuminating an unusual collective behavior in electrons and suggesting new ways of manipulating the charged particles. [24] Scientists can now detect magnetic behavior at the atomic level with a new electron microscopy technique developed by a team from the The researchers took a counterintuitive approach by taking advantage of optical distortions that they typically try to eliminate. [23] Researchers at the Nanoscale Transport Physics Laboratory from the School of Physics at the University of the Witwatersrand have found a technique to improve carbon superlattices for quantum electronic device applications. [22] The researchers have found that these previously underestimated interactions can play a significant role in preventing heat dissipation in microelectronic devices. [21] LCLS works like an extraordinary strobe light: Its ultrabright X-rays take snapshots of materials with atomic resolution and capture motions as fast as a few femtoseconds, or millionths of a billionth of a second. For comparison, one femtosecond is to a second what seven minutes is to the age of the universe. [20] A 'nonlinear' effect that seemingly turns materials transparent is seen for the first time in X-rays at SLAC's LCLS. [19] Leiden physicists have manipulated light with large artificial atoms, so-called quantum dots. Before, this has only been accomplished with actual atoms. It is an important step toward light-based quantum technology. [18]
Category: Quantum Physics

[45] viXra:1704.0269 [pdf] submitted on 2017-04-21 09:09:35

Quantum Bilocal Causality

Authors: George Rajna
Comments: 17 Pages.

For the first time, physicists have experimentally demonstrated the violation of "bilocal causality"—a concept that is related to the more standard local causality, except that it accounts for the precise way in which physical systems are initially generated. The results show that it's possible to violate local causality in an entirely new and more general way, which could lead to a potential new resource for quantum technologies. [10] The microscopic world is governed by the rules of quantum mechanics, where the properties of a particle can be completely undetermined and yet strongly correlated with those of other particles. Physicists from the University of Basel have observed these so-called Bell correlations for the first time between hundreds of atoms. [9] For the past 100 years, physicists have been studying the weird features of quantum physics, and now they're trying to put these features to good use. One prominent example is that quantum superposition (also known as quantum coherence)—which is the property that allows an object to be in two states at the same time—has been identified as a useful resource for quantum communication technologies. [8] Quantum entanglement—which occurs when two or more particles are correlated in such a way that they can influence each other even across large distances—is not an all-or-nothing phenomenon, but occurs in various degrees. The more a quantum state is entangled with its partner, the better the states will perform in quantum information applications. Unfortunately, quantifying entanglement is a difficult process involving complex optimization problems that give even physicists headaches. [7] A trio of physicists in Europe has come up with an idea that they believe would allow a person to actually witness entanglement. Valentina Caprara Vivoli, with the University of Geneva, Pavel Sekatski, with the University of Innsbruck and Nicolas Sangouard, with the University of Basel, have together written a paper describing a scenario where a human subject would be able to witness an instance of entanglement—they have uploaded it to the arXiv server for review by others. [6] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory.
Category: Quantum Physics

[44] viXra:1704.0268 [pdf] submitted on 2017-04-21 10:01:53

Can Quantum Mechanical Systems Influence the Geometry of the Fiber Bundle/space-Time?

Authors: Victor Atanasov, Hristo Dimov
Comments: 5 Pages.

We suggest that gravitation is an emergent phenomenon which origin is the information signal associated with quantum fields acting like test particles. We have shown how the metric (Lamè) coefficients emerge as position & time operator mean value densities. The scalar curvature of the space-time in the case of a Bose-Einstein condensate or super- fluid/conductor is calculated and an experimentally verifiable prediction of the theory is made.
Category: Quantum Physics

[43] viXra:1704.0266 [pdf] submitted on 2017-04-20 13:20:56

Laser Polarization Control

Authors: George Rajna
Comments: 23 Pages.

A research team led by UCLA electrical engineers has developed a new technique to control the polarization state of a laser that could lead to a new class of powerful, high-quality lasers for use in medical imaging, chemical sensing and detection, or fundamental science research. [14] UCLA physicists have shown that shining multicolored laser light on rubidium atoms causes them to lose energy and cool to nearly absolute zero. This result suggests that atoms fundamental to chemistry, such as hydrogen and carbon, could also be cooled using similar lasers, an outcome that would allow researchers to study the details of chemical reactions involved in medicine. [13] Powerful laser beams, given the right conditions, will act as their own lenses and "self-focus" into a tighter, even more intense beam. University of Maryland physicists have discovered that these self-focused laser pulses also generate violent swirls of optical energy that strongly resemble smoke rings. [12] Electrons fingerprint the fastest laser pulses. [11] A team of researchers with members from Germany, the U.S. and Russia has found a way to measure the time it takes for an electron in an atom to respond to a pulse of light. [10] As an elementary particle, the electron cannot be broken down into smaller particles, at least as far as is currently known. However, in a phenomenon called electron fractionalization, in certain materials an electron can be broken down into smaller "charge pulses," each of which carries a fraction of the electron's charge. Although electron fractionalization has many interesting implications, its origins are not well understood. [9] New ideas for interactions and particles: This paper examines the possibility to origin the Spontaneously Broken Symmetries from the Planck Distribution Law. This way we get a Unification of the Strong, Electromagnetic, and Weak Interactions from the interference occurrences of oscillators. Understanding that the relativistic mass change is the result of the magnetic induction we arrive to the conclusion that the Gravitational Force is also based on the electromagnetic forces, getting a Unified Relativistic Quantum Theory of all 4 Interactions.
Category: Quantum Physics

[42] viXra:1704.0265 [pdf] submitted on 2017-04-20 14:42:45

Quantum Liquid Crystals

Authors: George Rajna
Comments: 42 Pages.

Physicists at the Institute for Quantum Information and Matter at Caltech have discovered the first three-dimensional quantum liquid crystal—a new state of matter that may have applications in ultrafast quantum computers of the future. [25] For the first time, an experiment has directly imaged electron orbits in a high-magnetic field, illuminating an unusual collective behavior in electrons and suggesting new ways of manipulating the charged particles. [24] Scientists can now detect magnetic behavior at the atomic level with a new electron microscopy technique developed by a team from the The researchers took a counterintuitive approach by taking advantage of optical distortions that they typically try to eliminate. [23] Researchers at the Nanoscale Transport Physics Laboratory from the School of Physics at the University of the Witwatersrand have found a technique to improve carbon superlattices for quantum electronic device applications. [22] The researchers have found that these previously underestimated interactions can play a significant role in preventing heat dissipation in microelectronic devices. [21] LCLS works like an extraordinary strobe light: Its ultrabright X-rays take snapshots of materials with atomic resolution and capture motions as fast as a few femtoseconds, or millionths of a billionth of a second. For comparison, one femtosecond is to a second what seven minutes is to the age of the universe. [20] A 'nonlinear' effect that seemingly turns materials transparent is seen for the first time in X-rays at SLAC's LCLS. [19] Leiden physicists have manipulated light with large artificial atoms, so-called quantum dots. Before, this has only been accomplished with actual atoms. It is an important step toward light-based quantum technology. [18] In a tiny quantum prison, electrons behave quite differently as compared to their counterparts in free space. They can only occupy discrete energy levels, much like the electrons in an atom-for this reason, such electron prisons are often called "artificial atoms". [17] When two atoms are placed in a small chamber enclosed by mirrors, they can simultaneously absorb a single photon. [16]
Category: Quantum Physics

[41] viXra:1704.0263 [pdf] submitted on 2017-04-20 11:11:51

Casimir Effect on a Silicon Chip

Authors: George Rajna
Comments: 47 Pages.

A new approach to control forces and interactions between atoms and molecules, such as those employed by geckos to climb vertical surfaces, could bring advances in new materials for developing quantum light sources. [30] Quantum mechanics rules. It dictates how particles and forces interact, and thus how atoms and molecules work—for example, what happens when a molecule goes from a higher-energy state to a lower-energy one. But beyond the simplest molecules, the details become very complex. [29] In an article published in the Proceedings of the National Academy of Sciences scientists from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg show, however, that under certain conditions, photons can strongly influence chemistry. [28] University of Otago physicists have found a way to control individual atoms, making them appear wherever they want them to. [27] New research shows that a scanning-tunneling microscope (STM), used to study changes in the shape of a single molecule at the atomic scale, impacts the ability of that molecule to make these changes. [26] Physicists are getting a little bit closer to answering one of the oldest and most basic questions of quantum theory: does the quantum state represent reality or just our knowledge of reality? [25] A team of researchers led by LMU physics professor Immanuel Bloch has experimentally realized an exotic quantum system which is robust to mixing by periodic forces. [24] A group of scientists led by Johannes Fink from the Institute of Science and Technology Austria (IST Austria) reported the first experimental observation of a first-order phase transition in a dissipative quantum system. [23] ORNL researchers have discovered a new type of quantum critical point, a new way in which materials change from one state of matter to another. [22] New research conducted at the University of Chicago has confirmed a decades-old theory describing the dynamics of continuous phase transitions. [21] No matter whether it is acoustic waves, quantum matter waves or optical waves of a laser—all kinds of waves can be in different states of oscillation.
Category: Quantum Physics

[40] viXra:1704.0255 [pdf] submitted on 2017-04-20 09:21:46

Ejemplo de Cómo Obtener Los Valores Energéticos de la Partícula en un Pozo de Potencial Infinito Unidimensional

Authors: Roberto Reinosa
Comments: 2 Pages. Spanish

En el presente artículo se va a exponer un ejemplo de la obtención de los valores energéticos de la partícula en un pozo de potencial infinito unidimensional.
Category: Quantum Physics

[39] viXra:1704.0249 [pdf] submitted on 2017-04-20 06:46:11

Ejemplo de Obtención de Los Valores Energéticos Del Pozo de Potencial Infinito Unidimensional

Authors: Roberto Reinosa
Comments: 2 Pages. Spanish

En el presente artículo se va a exponer un ejemplo de la obtención de los valores energéticos del caso del pozo de potencial infinito unidimensional.
Category: Quantum Physics

[38] viXra:1704.0244 [pdf] submitted on 2017-04-20 01:46:09

Microscopy for Biological Systems

Authors: George Rajna
Comments: 37 Pages.

Researchers at Columbia University have made a significant step toward breaking the so-called "color barrier" of light microscopy for biological systems, allowing for much more comprehensive, system-wide labeling and imaging of a greater number of biomolecules in living cells and tissues than is currently attainable. [20] Scientists around the Nobel laureate Stefan Hell at the Max Planck Institute for Biophysical Chemistry in Göttingen have now achieved what was for a long time considered impossible – they have developed a new fluorescence microscope, called MINFLUX, allowing, for the first time, to optically separate molecules, which are only nanometers (one millionth of a millimeter) apart from each other. [19] Dipole orientation provides new dimension in super-resolution microscopy [18] Fluorescence is an incredibly useful tool for experimental biology and it just got easier to tap into, thanks to the work of a group of University of Chicago researchers. [17] Molecules that change colour can be used to follow in real-time how bacteria form a protective biofilm around themselves. This new method, which has been developed in collaboration between researchers at Linköping University and Karolinska Institutet in Sweden, may in the future become significant both in medical care and the food industry, where bacterial biofilms are a problem. [16] Researchers led by Carnegie Mellon University physicist Markus Deserno and University of Konstanz (Germany) chemist Christine Peter have developed a computer simulation that crushes viral capsids. By allowing researchers to see how the tough shells break apart, the simulation provides a computational window for looking at how viruses and proteins assemble. [15] IBM scientists have developed a new lab-on-a-chip technology that can, for the first time, separate biological particles at the nanoscale and could enable physicians to detect diseases such as cancer before symptoms appear. [14] Scientists work toward storing digital information in DNA. [13] Leiden theoretical physicists have proven that DNA mechanics, in addition to genetic information in DNA, determines who we are. Helmut Schiessel and his group simulated many DNA sequences and found a correlation between mechanical cues and the way DNA is folded. They have published their results in PLoS One. [12]
Category: Quantum Physics

[37] viXra:1704.0242 [pdf] submitted on 2017-04-19 11:18:30

Spin Battery for Spintronics and Quantum Computing

Authors: George Rajna
Comments: 23 Pages.

Researchers have shown how to create a rechargeable "spin battery" made out of materials called topological insulators, a step toward building new spintronic devices and quantum computers. [14] Fermions are ubiquitous elementary particles. They span from electrons in metals, to protons and neutrons in nuclei and to quarks at the sub-nuclear level. Further, they possess an intrinsic degree of freedom called spin with only two possible configurations, either up or down. In a new study published in EPJ B, theoretical physicists explore the possibility of separately controlling the up and down spin populations of a group of interacting fermions. [13] An international consortium led by researchers at the University of Basel has developed a method to precisely alter the quantum mechanical states of electrons within an array of quantum boxes. The method can be used to investigate the interactions between various types of atoms and electrons, which is essential for future quantum technologies, as the group reports in the journal Small. [12] Quantum systems are extremely hard to analyze if they consist of more than just a few parts. It is not difficult to calculate a single hydrogen atom, but in order to describe an atom cloud of several thousand atoms, it is usually necessary to use rough approximations. The reason for this is that quantum particles are connected to each other and cannot be described separately. [11] Quantum coherence and quantum entanglement are two landmark features of quantum physics, and now physicists have demonstrated that the two phenomena are "operationally equivalent"—that is, equivalent for all practical purposes, though still conceptually distinct. This finding allows physicists to apply decades of research on entanglement to the more fundamental but less-well-researched concept of coherence, offering the possibility of advancing a wide range of quantum technologies. [10] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.
Category: Quantum Physics

[36] viXra:1704.0239 [pdf] submitted on 2017-04-19 12:12:50

Quantum Measurement: A New View

Authors: H. J. Spencer
Comments: 24 Pages. Measurement is the bridge between quantum theory and experiment.

This report investigates the flawed foundations of standard quantum theory based on a misunderstanding of the role of measurement. The report is major part of a research programme (UET) based on a new theory of the electromagnetism (EM), centered exclusively on the interaction between electrons. All the previous papers to date in this series have presented a realistic view of the dynamics of two or more electrons as they interact only between themselves. This paper now posits a theory of how this microscopic activity is perceived by human beings in attempting to extract information about atomic systems. The standard theory of quantum mechanics (QM) is constructed on only how the micro-world appears to macro measurements - as such, it cannot offer any view of how the foundations of the world are acting when humans are not observing it (the vast majority of the time) - this has generated almost 100 years of confusion and contradiction at the very heart of physics. All human beings (and all our instruments) are vast collections of electrons, our information about atomic-scale can only be obtained destructively and statistically. This theory now extends the realistic model of digital electrons by adding an explicit measurement model of how our macro instruments interfere with nature's micro-systems when such attempts result in human-scale information. The focus here is on the connection between the micro-world (when left to itself) and our mental models of this sphere of material reality, via the mechanism of atomic measurements. The mathematics of quantum mechanics reflects the eigenvalues of the combined target system plus equipment used for measurement together. Therefore, QM has constructed a theory that inseparably conflates the ontological and epistemological views of nature. This standard approach fails to examine isolated target systems alone. It is metaphysically deficient. This investigation concludes that the Quantum State function (Ψ) is not a representation of physical reality, within a single atom, but a generator function for producing the average statistical results on many atoms of this type. In contrast, the present theory builds on the physical reality of micro-states of single atoms, where (in the case of hydrogen), a single electron executes a series of fixed segments (corresponding to the micro-states) across the atom between a finite number of discrete interactions between the electron and one of the positrons in the nucleus. The set of serial segments form closed trajectories with real temporal periods, contra to Heisenberg’s ‘papal’ decree banning such reality because of his need to measure position and momentum at all times. This is the first paper in the multi-paper series (UET7n), which is dedicated to analyzing, criticizing and replacing existing theories of quantum mechanics.
Category: Quantum Physics

[35] viXra:1704.0227 [pdf] submitted on 2017-04-18 04:35:47

Time Crystals for Quantum Machines

Authors: George Rajna
Comments: 23 Pages.

Harvard physicists have created a new form of matter-dubbed a time crystal-which could offer important insights into the mysterious behavior of quantum systems. [31] Two groups of researchers based at Harvard University and the University of Maryland report March 9 in the journal Nature that they have successfully created time crystals using theories developed at Princeton University. [30] Are time crystals just a mathematical curiosity, or could they actually physically exist? Physicists have been debating this question since 2012, when Nobel laureate Frank Wilczek first proposed the idea of time crystals. He argued that these hypothetical objects can exhibit periodic motion, such as moving in a circular orbit, in their state of lowest energy, or their "ground state." [28] Researchers from the Foundation for Fundamental Research on Matter and the University of Amsterdam (the Netherlands), together with researchers from the Institute for Materials Science in Tsukuba (Japan), have discovered an exceptional new quantum state within a superconducting material. This exceptional quantum state is characterised by a broken rotational symmetry – in other words, if you turn the material in a magnetic field, the superconductivity isn't the same everywhere in the material. [27], and collaborators have produced the first direct evidence of a state of electronic matter first predicted by theorists in 1964. The discovery, described in a paper published online April 13, 2016, in Nature, may provide key insights into the workings of high-temperature superconductors. [26] This paper explains the magnetic effect of the superconductive current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Quantum Theories. The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the Higgs Field, the changing Relativistic Mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions.
Category: Quantum Physics

[34] viXra:1704.0226 [pdf] submitted on 2017-04-18 05:39:10

Bell Correlations of Million Atoms

Authors: George Rajna
Comments: 16 Pages.

Physicists have demonstrated Bell correlations in the largest physical system to date—an ensemble of half a million atoms at an ultracold temperature of 25 µK. [10] The microscopic world is governed by the rules of quantum mechanics, where the properties of a particle can be completely undetermined and yet strongly correlated with those of other particles. Physicists from the University of Basel have observed these so-called Bell correlations for the first time between hundreds of atoms. [9] For the past 100 years, physicists have been studying the weird features of quantum physics, and now they're trying to put these features to good use. One prominent example is that quantum superposition (also known as quantum coherence)—which is the property that allows an object to be in two states at the same time—has been identified as a useful resource for quantum communication technologies. [8] Quantum entanglement—which occurs when two or more particles are correlated in such a way that they can influence each other even across large distances—is not an all-or-nothing phenomenon, but occurs in various degrees. The more a quantum state is entangled with its partner, the better the states will perform in quantum information applications. Unfortunately, quantifying entanglement is a difficult process involving complex optimization problems that give even physicists headaches. [7] A trio of physicists in Europe has come up with an idea that they believe would allow a person to actually witness entanglement. Valentina Caprara Vivoli, with the University of Geneva, Pavel Sekatski, with the University of Innsbruck and Nicolas Sangouard, with the University of Basel, have together written a paper describing a scenario where a human subject would be able to witness an instance of entanglement—they have uploaded it to the arXiv server for review by others. [6] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory.
Category: Quantum Physics

[33] viXra:1704.0221 [pdf] replaced on 2017-04-18 21:18:24

Universal Topology W = P ± iV and First Horizon of Quantum Fields

Authors: C. Wei XU
Comments: 7 Pages. Restored original introduction and Converted to the 1 column style

The universal topology W = P ± iV is the nature law that intuitively constitutes a duality of Manifolds and Event Operations. Its First Horizon of this framework, naturally comes out with the dual State Equilibrium and dual Motion Dynamics, which replace the empirical “math laws” and give rise to the general quantum fields to concisely include Schrödinger and Klein– Gordon Equations. As a result, it becomes a groundbreaking in the quest for Unified Physics: the workings of a life streaming of physical and virtual dynamics.
Category: Quantum Physics

[32] viXra:1704.0186 [pdf] submitted on 2017-04-14 11:09:27

Local Realism Versus Quantum Mysticism

Authors: Andrew P. Yake
Comments: 1 Page. See main article ** http://vixra.org/abs/1704.0078 **

Local realism has been widely falsely discounted but is recently vindicated according to detailed arguments at the link below. Local realism is ordinary causal determinism. By contrast, quantum theory is mystical causation by indeterminacy. If this claim that quantum theory embeds mystical causation seems at odds with the modal signal in physics right now, we ought to ask why that should be so. In any case, it is a trivial point to establish from the quantum account of the EPR experiment. According to this account, two unmeasured particles at respective separate localities in spacetime have remarkable properties. (A) Neither has measurable properties prior to the first being measured. (B) The instant either is measured, both obtain perfectly correlated outcomes. So where do the physical properties that "decide" those outcomes come from? And how do they coordinate their instant perfect correlation across a spacetime interval, which requires violating Special Relativity? Enter the mystic. Or consider the compelling logic of a new formulation of local realism per below. http://vixra.org/abs/1704.0078 Local Realism Explains Bell Violations (author Andrew P. Yake) - Claims to demonstrate that all empirical evidence taken to support quantum theory over local realism plausibly does the reverse. The article comprises 8 pages, 4 figures, 6 equations, 32 references, 1 graph of testable predictions, and 2 paragraphs that purport to expose how the Bell inequality misrepresents the local realistic predictions for the EPR experiment. Thoughtful feedback appreciated (apyake@gmail.com).
Category: Quantum Physics

[31] viXra:1704.0182 [pdf] submitted on 2017-04-13 13:42:01

Novel Quantum Effect

Authors: George Rajna
Comments: 28 Pages.

A team of scientists from the Quantum Dynamics Division of Professor Gerhard Rempe at the Max Planck Institute of Quantum Optics (Garching near Munich) has now succeeded to make the first steps in this direction. Using a strongly coupled atom-cavity system, they were the first to observe the so-called two-photon blockade: the system emits at most two photons at the same time since its storage capacity is limited to that number. [17] Members of the Faculty of Physics at the Lomonosov Moscow State University have elaborated a new technique for creating entangled photon states. [16] Quantum mechanics, with its counter-intuitive rules for describing the behavior of tiny particles like photons and atoms, holds great promise for profound advances in the security and speed of how we communicate and compute. [15] University of Oregon physicists have combined light and sound to control electron states in an atom-like system, providing a new tool in efforts to move toward quantum-computing systems. [14] Researchers from the Institute for Quantum Computing at the University of Waterloo and the National Research Council of Canada (NRC) have, for the first time, converted the color and bandwidth of ultrafast single photons using a room-temperature quantum memory in diamond. [13] One promising approach for scalable quantum computing is to use an all-optical architecture, in which the qubits are represented by photons and manipulated by mirrors and beam splitters. So far, researchers have demonstrated this method, called Linear Optical Quantum Computing, on a very small scale by performing operations using just a few photons. In an attempt to scale up this method to larger numbers of photons, researchers in a new study have developed a way to fully integrate single-photon sources inside optical circuits, creating integrated quantum circuits that may allow for scalable optical quantum computation. [12] Spin-momentum locking might be applied to spin photonics, which could hypothetically harness the spin of photons in devices and circuits. Whereas microchips use electrons to perform computations and process information, photons are limited primarily to communications, transmitting data over optical fiber. However, using the spin of light waves could make possible devices that integrate electrons and photons to perform logic and memory operations. [11]
Category: Quantum Physics

[30] viXra:1704.0180 [pdf] submitted on 2017-04-14 02:00:52

Ten Superconducting Qubits Entangled

Authors: George Rajna
Comments: 33 Pages.

A group of physicists in China has taken the lead in the race to couple together increasing numbers of superconducting qubits. [19] The race to build larger and larger quantum computers is heating up, with several technologies competing for a role in future devices. Each potential platform has strengths and weaknesses, but little has been done to directly compare the performance of early prototypes. Now, researchers at the JQI have performed a first-of-its-kind benchmark test of two small quantum computers built from different technologies. [18] To find out whether quantum computers will work properly, scientists must simulate them on a classical computer. Now a record-breaking experiment has simulated the largest quantum computer yet. [17] How fast will a quantum computer be able to calculate? While fully functional versions of these long-sought technological marvels have yet to be built, one theorist at the National Institute of Standards and Technology (NIST) has shown that, if they can be realized, there may be fewer limits to their speed than previously put forth. [16] Unlike experimental neuroscientists who deal with real-life neurons, computational neuroscientists use model simulations to investigate how the brain functions. [15] A pair of physicists with ETH Zurich has developed a way to use an artificial neural network to characterize the wave function of a quantum many-body system. [14] A team of researchers at Google's DeepMind Technologies has been working on a means to increase the capabilities of computers by combining aspects of data processing and artificial intelligence and have come up with what they are calling a differentiable neural computer (DNC.) In their paper published in the journal Nature, they describe the work they are doing and where they believe it is headed. To make the work more accessible to the public team members, Alexander Graves and Greg Wayne have posted an explanatory page on the DeepMind website. [13] Nobody understands why deep neural networks are so good at solving complex problems. Now physicists say the secret is buried in the laws of physics. [12] A team of researchers working at the University of California (and one from Stony Brook University) has for the first time created a neural-network chip that was built using just memristors. In their paper published in the journal Nature, the team describes how they built their chip and what capabilities it has. [11] A team of researchers used a promising new material to build more functional memristors, bringing us closer to brain-like computing. Both academic and industrial laboratories are working to develop computers that operate more like the human brain. Instead of operating like a conventional, digital system, these new devices could potentially function more like a network of neurons. [10] Cambridge Quantum Computing Limited (CQCL) has built a new Fastest Operating System aimed at running the futuristic superfast quantum computers. [9] IBM scientists today unveiled two critical advances towards the realization of a practical quantum computer. For the first time, they showed the ability to detect and measure both kinds of quantum errors simultaneously, as well as demonstrated a new, square quantum bit circuit design that is the only physical architecture that could successfully scale to larger dimensions. [8] Physicists at the Universities of Bonn and Cambridge have succeeded in linking two completely different quantum systems to one another. In doing so, they have taken an important step forward on the way to a quantum computer. To accomplish their feat the researchers used a method that seems to function as well in the quantum world as it does for us people: teamwork. The results have now been published in the "Physical Review Letters". [7] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer.
Category: Quantum Physics

[29] viXra:1704.0178 [pdf] submitted on 2017-04-14 04:03:04

Local Realism Versus Quantum Computers & Quantum Information Theory

Authors: Andrew P. Yake
Comments: 1 Page. See also ** http://vixra.org/abs/1704.0078 **

Local realism reduces to the proposition that every physical effect arises exclusively at the spacetime locality where the determinate properties of physical reality determine that it be so. The causal model of quantum theory, however, and thus all prospects for quantum computers, require that local realism is false. The essential argument favoring quantum beliefs is that local realism cannot explain empirical Bell violations, whereas quantum theory can. By contrast, the article cited below offers compelling evidence to the contrary. Furthermore, such alleged refutations of local realism are predicated on an interpretation of the Bell inequality that many researchers reject (the cited article provides specific references). Meanwhile, the causal model of quantum theory reduces to the quantum formalism itself, which distributes outcomes across separate localities without providing enough information to determine what those outcomes are. More specifically, depending on subtleties of interpretation, the quantum formalism requires either: (A) There exists a bit of physical information such that this bit exists as mutually exclusive states, or (B) there exists a bit of physical information such that this bit is not physically informed. They are both contradictions. Pick your poison. Or reconsider local realism. See ** http://vixra.org/abs/1704.0078 ** Local Realism Explains Bell Violations (author Andrew P. Yake) - for a demonstration that all empirical evidence taken to support quantum theory over local realism plausibly does the reverse. The article comprises 8 pages, 4 figures, 6 equations, 32 references, 1 graph of testable predictions, and 2 paragraphs that purport to expose how the Bell inequality misrepresents the local realistic predictions for the EPR experiment. Thoughtful feedback appreciated (apyake@gmail.com).
Category: Quantum Physics

[28] viXra:1704.0177 [pdf] submitted on 2017-04-13 11:08:43

Trapped Ions and Superconductors

Authors: George Rajna
Comments: 31 Pages.

The race to build larger and larger quantum computers is heating up, with several technologies competing for a role in future devices. Each potential platform has strengths and weaknesses, but little has been done to directly compare the performance of early prototypes. Now, researchers at the JQI have performed a first-of-its-kind benchmark test of two small quantum computers built from different technologies. [18] To find out whether quantum computers will work properly, scientists must simulate them on a classical computer. Now a record-breaking experiment has simulated the largest quantum computer yet. [17] How fast will a quantum computer be able to calculate? While fully functional versions of these long-sought technological marvels have yet to be built, one theorist at the National Institute of Standards and Technology (NIST) has shown that, if they can be realized, there may be fewer limits to their speed than previously put forth. [16] Unlike experimental neuroscientists who deal with real-life neurons, computational neuroscientists use model simulations to investigate how the brain functions. [15] A pair of physicists with ETH Zurich has developed a way to use an artificial neural network to characterize the wave function of a quantum many-body system. [14] A team of researchers at Google's DeepMind Technologies has been working on a means to increase the capabilities of computers by combining aspects of data processing and artificial intelligence and have come up with what they are calling a differentiable neural computer (DNC.) In their paper published in the journal Nature, they describe the work they are doing and where they believe it is headed. To make the work more accessible to the public team members, Alexander Graves and Greg Wayne have posted an explanatory page on the DeepMind website. [13] Nobody understands why deep neural networks are so good at solving complex problems. Now physicists say the secret is buried in the laws of physics. [12] A team of researchers working at the University of California (and one from Stony Brook University) has for the first time created a neural-network chip that was built using just memristors. In their paper published in the journal Nature, the team describes how they built their chip and what capabilities it has. [11]
Category: Quantum Physics

[27] viXra:1704.0173 [pdf] submitted on 2017-04-13 08:39:21

Supercomputer Simulation of Quantum Computers

Authors: George Rajna
Comments: 30 Pages.

To find out whether quantum computers will work properly, scientists must simulate them on a classical computer. Now a record-breaking experiment has simulated the largest quantum computer yet. [17] How fast will a quantum computer be able to calculate? While fully functional versions of these long-sought technological marvels have yet to be built, one theorist at the National Institute of Standards and Technology (NIST) has shown that, if they can be realized, there may be fewer limits to their speed than previously put forth. [16] Unlike experimental neuroscientists who deal with real-life neurons, computational neuroscientists use model simulations to investigate how the brain functions. [15] A pair of physicists with ETH Zurich has developed a way to use an artificial neural network to characterize the wave function of a quantum many-body system. [14] A team of researchers at Google's DeepMind Technologies has been working on a means to increase the capabilities of computers by combining aspects of data processing and artificial intelligence and have come up with what they are calling a differentiable neural computer (DNC.) In their paper published in the journal Nature, they describe the work they are doing and where they believe it is headed. To make the work more accessible to the public team members, Alexander Graves and Greg Wayne have posted an explanatory page on the DeepMind website. [13] Nobody understands why deep neural networks are so good at solving complex problems. Now physicists say the secret is buried in the laws of physics. [12] A team of researchers working at the University of California (and one from Stony Brook University) has for the first time created a neural-network chip that was built using just memristors. In their paper published in the journal Nature, the team describes how they built their chip and what capabilities it has. [11] A team of researchers used a promising new material to build more functional memristors, bringing us closer to brain-like computing. Both academic and industrial laboratories are working to develop computers that operate more like the human brain. Instead of operating like a conventional, digital system,
Category: Quantum Physics

[26] viXra:1704.0164 [pdf] submitted on 2017-04-12 22:23:53

Local Realism Versus Volumes of Quantum Nonsense

Authors: Andrew P. Yake
Comments: 1 Page. See also ** http://vixra.org/abs/1704.0078 **

Local realism must predict empirical Bell violations in a reasonable way to become a compelling causal explanation of physical reality. According to the paper at the link given below, it can now do that. On the other hand, quantum theory, despite its wonderful statistical predictions, must transcend its infamous paradoxes to become a compelling causal explanation of anything. Unfortunately, quantum paradoxes reduce to quantum contradictions, and thus to nonsense. Take "quantum superposition". Is this the simultaneous existence of mutually exclusive states or not? If it is, then we have a contradiction, and all further claims from quantum theory fail to have meaningful interpretations. If quantum superposition is something other than that contradiction, then what -- exactly -- is quantum superposition? And let's take "physical reality" while we are at it. Defending quantum theory as a causal explanation of physical reality requires that physical reality is not exclusively physical reality! Whoops. What -- exactly -- is so difficult about simply admitting when we have no sensible causal explanation for certain phenomena like Bell violations in EPR(B) experiments? In psychology, we know the answer to such questions. Our beliefs are evidence resistant. We thus predict that the rational threat from local realism to widespread beliefs -- its implication that physical reality might be mostly explained without appeal to antilocal mysticism -- will continue to be buried under reams of empirical observations stitched together by nonsense insinuations that that paradoxes are assets rather than contradictions. In any case, the paper below arguably formulates a theory of local realism that constitutes a causally valid description of physical reality. No nonsense required. Or, it could just be wrong. But it is waiting to be tested. Indeed, even existing data could bear on the empirical question if the theory is sound enough. See ** http://vixra.org/abs/1704.0078 ** Local Realism Explains Bell Violations (author Andrew P. Yake) - for a demonstration that all empirical evidence taken to support quantum theory over local realism plausibly does the reverse. The article comprises 8 pages, 4 figures, 6 equations, 32 references, a graph of testable predictions, and two paragraphs that purport to expose how the Bell inequality misrepresents the local realistic predictions for the EPR experiment. Thoughtful feedback appreciated (apyake@gmail.com).
Category: Quantum Physics

[25] viXra:1704.0158 [pdf] submitted on 2017-04-12 08:05:19

Atom Interferometers

Authors: George Rajna
Comments: 46 Pages.

The atom interferometer uses the quantum 'wave-like' nature of atoms to make precise measurements. [31] A new approach to control forces and interactions between atoms and molecules, such as those employed by geckos to climb vertical surfaces, could bring advances in new materials for developing quantum light sources. [30] Quantum mechanics rules. It dictates how particles and forces interact, and thus how atoms and molecules work—for example, what happens when a molecule goes from a higher-energy state to a lower-energy one. But beyond the simplest molecules, the details become very complex. [29] In an article published in the Proceedings of the National Academy of Sciences scientists from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg show, however, that under certain conditions, photons can strongly influence chemistry. [28] University of Otago physicists have found a way to control individual atoms, making them appear wherever they want them to. [27] New research shows that a scanning-tunneling microscope (STM), used to study changes in the shape of a single molecule at the atomic scale, impacts the ability of that molecule to make these changes. [26] Physicists are getting a little bit closer to answering one of the oldest and most basic questions of quantum theory: does the quantum state represent reality or just our knowledge of reality? [25] A team of researchers led by LMU physics professor Immanuel Bloch has experimentally realized an exotic quantum system which is robust to mixing by periodic forces. [24] A group of scientists led by Johannes Fink from the Institute of Science and Technology Austria (IST Austria) reported the first experimental observation of a first-order phase transition in a dissipative quantum system. [23] ORNL researchers have discovered a new type of quantum critical point, a new way in which materials change from one state of matter to another. [22] New research conducted at the University of Chicago has confirmed a decades-old theory describing the dynamics of continuous phase transitions. [21] No matter whether it is acoustic waves, quantum matter waves or optical waves of a laser—all kinds of waves can be in different states of oscillation,
Category: Quantum Physics

[24] viXra:1704.0156 [pdf] submitted on 2017-04-12 09:13:38

Nonlocal Correlations

Authors: George Rajna
Comments: 31 Pages.

In the quantum realm, Heisenberg's uncertainty principle states that accurately measuring a pair of properties of an atom puts a limit to the precision of measurement you can obtain on the same properties of another atom. [20] Scientists have pushed quantum entanglement to new levels in two experiments. In one study, researchers linked up millions of atoms, and in another, intertwined hundreds of large groups consisting of billions of atoms. [19] Researchers have devised an improved method for checking whether two particles are entangled. [18] A group of researchers from the Faculty of Physics at the University of Warsaw has shed new light on the famous paradox of Einstein, Podolsky and Rosen after 80 years. They created a multidimensional entangled state of a single photon and a trillion hot rubidium atoms, and stored this hybrid entanglement in the laboratory for several microseconds. [17] Members of the Faculty of Physics at the Lomonosov Moscow State University have elaborated a new technique for creating entangled photon states. [16] Quantum mechanics, with its counter-intuitive rules for describing the behavior of tiny particles like photons and atoms, holds great promise for profound advances in the security and speed of how we communicate and compute. [15] University of Oregon physicists have combined light and sound to control electron states in an atom-like system, providing a new tool in efforts to move toward quantum-computing systems. [14] Researchers from the Institute for Quantum Computing at the University of Waterloo and the National Research Council of Canada (NRC) have, for the first time, converted the color and bandwidth of ultrafast single photons using a room-temperature quantum memory in diamond. [13] One promising approach for scalable quantum computing is to use an all-optical architecture, in which the qubits are represented by photons and manipulated by mirrors and beam splitters. So far, researchers have demonstrated this method, called Linear Optical Quantum Computing, on a very small scale by performing operations using just a few photons. In an attempt to scale up this method to larger numbers of photons, researchers in a new study have developed a way to fully integrate single-photon sources inside optical circuits, creating integrated quantum circuits that may allow for scalable optical quantum computation. [12] Spin-momentum locking might be applied to spin photonics, which could hypothetically harness the spin of photons in devices and circuits. Whereas microchips use electrons to perform computations and process information, photons are limited primarily to communications, transmitting data over optical fiber. However, using the spin of light waves could make possible devices that integrate electrons and photons to perform logic and memory operations. [11] Researchers at the University of Ottawa observed that twisted light in a vacuum travels slower than the universal physical constant established as the speed of light by Einstein's theory of relativity. Twisted light, which turns around its axis of travel much like a corkscrew, holds great potential for storing information for quantum computing and communications applications. [10] We demonstrated the feasibility and the potential of a new approach to making a quantum computer. In our approach, we replace the qubits with qumodes. Our method is advantageous because the number of qumodes can be extremely large. This is the case, for instance, in hundred–thousand mode, octave-spanning optical frequency combs of carrier-envelope phase-locked classical femtosecond lasers. [9] IBM scientists today unveiled two critical advances towards the realization of a practical quantum computer. For the first time, they showed the ability to detect and measure both kinds of quantum errors simultaneously, as well as demonstrated a new, square quantum bit circuit design that is the only physical architecture that could successfully scale to larger dimensions. [8] Physicists at the Universities of Bonn and Cambridge have succeeded in linking two completely different quantum systems to one another. In doing so, they have taken an important step forward on the way to a quantum computer. To accomplish their feat the researchers used a method that seems to function as well in the quantum world as it does for us people: teamwork. The results have now been published in the "Physical Review Letters". [7] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer.
Category: Quantum Physics

[23] viXra:1704.0154 [pdf] submitted on 2017-04-12 10:31:11

Controlling Particles' Spin Configurations

Authors: George Rajna
Comments: 21 Pages.

Fermions are ubiquitous elementary particles. They span from electrons in metals, to protons and neutrons in nuclei and to quarks at the sub-nuclear level. Further, they possess an intrinsic degree of freedom called spin with only two possible configurations, either up or down. In a new study published in EPJ B, theoretical physicists explore the possibility of separately controlling the up and down spin populations of a group of interacting fermions. [13] An international consortium led by researchers at the University of Basel has developed a method to precisely alter the quantum mechanical states of electrons within an array of quantum boxes. The method can be used to investigate the interactions between various types of atoms and electrons, which is essential for future quantum technologies, as the group reports in the journal Small. [12] Quantum systems are extremely hard to analyze if they consist of more than just a few parts. It is not difficult to calculate a single hydrogen atom, but in order to describe an atom cloud of several thousand atoms, it is usually necessary to use rough approximations. The reason for this is that quantum particles are connected to each other and cannot be described separately. [11] Quantum coherence and quantum entanglement are two landmark features of quantum physics, and now physicists have demonstrated that the two phenomena are "operationally equivalent"—that is, equivalent for all practical purposes, though still conceptually distinct. This finding allows physicists to apply decades of research on entanglement to the more fundamental but less-well-researched concept of coherence, offering the possibility of advancing a wide range of quantum technologies. [10] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.
Category: Quantum Physics

[22] viXra:1704.0140 [pdf] submitted on 2017-04-12 02:52:05

Local Realism Versus the Quantum Spooks

Authors: Andrew P. Yake
Comments: 1 Page.

Local realism is causation by ordinary causal signals. What we mean by ordinary is this. First, these signals have fully determinate properties, whether measured or not. Second, they can only cause effects precisely at the spacetime locality of their physical existence. By contrast, as Einstein famously observed, quantum causal signals are spooky because they can cause effects where they do not in fact exist. Indeed, the only evidence that quantum causal signals possess any physical existence at all is that they seem to explain every effect you could ever measure. Unless you think about it. Take the simplest case: One photon, one spin measurement, up or down. The quantum explanation is essentially that we draw the answer from a bag that contains no answers such that physical reality obtains precisely from its own absence. This is known as the "measurement problem". But the problem is obviously not "measurement". The problem is that quantum theory has literally no explanation for any specific measurement result. On the other hand, local realism does. Spin Up and Spin Down for photons must, at the end of the day, be analogous to Heads Up and Heads Down for ordinary fair coins. The quantum counterclaim, here, is that there is no compelling solution set of local hidden variables that makes this analogy work for an EPR experiment. Furthermore, many claim that the Bell inequality rules out any such solution set. On the other hand, anyone who thinks that the Bell inequality has some single uncontested meaning has not been reading the literature. The paper noted below claims both to provide local hidden variables that constitute a compelling local realistic solution for an EPR experiment and to explain how such solutions have been falsely denied. See viXra:1704.0078 - Local Realism Explains Bell Violations - for a demonstration that all empirical evidence taken to support quantum theory over local realism plausibly does the reverse. The article comprises 8 pages, 4 figures, 6 equations, 32 references, a graph of testable predictions, and two paragraphs that purport to expose how the Bell inequality misrepresents the local realistic predictions for the EPR experiment. Thoughtful feedback appreciated (apyake@gmail.com).
Category: Quantum Physics

[21] viXra:1704.0139 [pdf] submitted on 2017-04-11 11:16:41

Quantum Image Processing

Authors: George Rajna
Comments: 33 Pages.

Quantum image processing (QIP) is an emerging sub-discipline that is focused on extending conventional image processing tasks and operations to the quantum computing framework. [20] The team's experimental collaborators have already demonstrated the technology, yielding cluster states composed of more than 1 million entangled modes. [19] How to reliably transfer quantum information when the connecting channels are impacted by detrimental noise? Scientists at the University of Innsbruck and TU Wien (Vienna) have presented new solutions to this problem. [18] Adding to strong recent demonstrations that particles of light perform what Einstein called "spooky action at a distance," in which two separated objects can have a connection that exceeds everyday experience, physicists at the National Institute of Standards and Technology (NIST) have confirmed that particles of matter can act really spooky too. [17] How fast will a quantum computer be able to calculate? While fully functional versions of these long-sought technological marvels have yet to be built, one theorist at the National Institute of Standards and Technology (NIST) has shown that, if they can be realized, there may be fewer limits to their speed than previously put forth. [16] Unlike experimental neuroscientists who deal with real-life neurons, computational neuroscientists use model simulations to investigate how the brain functions. [15] A pair of physicists with ETH Zurich has developed a way to use an artificial neural network to characterize the wave function of a quantum many-body system. [14] A team of researchers at Google's DeepMind Technologies has been working on a means to increase the capabilities of computers by combining aspects of data processing and artificial intelligence and have come up with what they are calling a differentiable neural computer (DNC.) In their paper published in the journal Nature, they describe the work they are doing and where they believe it is headed. To make the work more accessible to the public team members, Alexander Graves and Greg Wayne have posted an explanatory page on the DeepMind website. [13] Nobody understands why deep neural networks are so good at solving complex problems. Now physicists say the secret is buried in the laws of physics. [12]
Category: Quantum Physics

[20] viXra:1704.0138 [pdf] submitted on 2017-04-11 12:28:16

Indistinguishable Photons

Authors: George Rajna
Comments: 35 Pages.

To really take off, advanced quantum information processing will require getting a better (experimental) grasp of an essential phenomenon called "indistinguishable photons." A high degree of "indistinguishability" requires almost complete wave-packet overlap, or perfect photon matching, of energy, space, time and polarization. [21] Quantum image processing (QIP) is an emerging sub-discipline that is focused on extending conventional image processing tasks and operations to the quantum computing framework. [20] The team's experimental collaborators have already demonstrated the technology, yielding cluster states composed of more than 1 million entangled modes. [19] How to reliably transfer quantum information when the connecting channels are impacted by detrimental noise? Scientists at the University of Innsbruck and TU Wien (Vienna) have presented new solutions to this problem. [18] Adding to strong recent demonstrations that particles of light perform what Einstein called "spooky action at a distance," in which two separated objects can have a connection that exceeds everyday experience, physicists at the National Institute of Standards and Technology (NIST) have confirmed that particles of matter can act really spooky too. [17] How fast will a quantum computer be able to calculate? While fully functional versions of these long-sought technological marvels have yet to be built, one theorist at the National Institute of Standards and Technology (NIST) has shown that, if they can be realized, there may be fewer limits to their speed than previously put forth. [16] Unlike experimental neuroscientists who deal with real-life neurons, computational neuroscientists use model simulations to investigate how the brain functions. [15] A pair of physicists with ETH Zurich has developed a way to use an artificial neural network to characterize the wave function of a quantum many-body system. [14] A team of researchers at Google's DeepMind Technologies has been working on a means to increase the capabilities of computers by combining aspects of data processing and artificial intelligence and have come up with what they are calling a differentiable neural computer (DNC.) In their paper published in the journal Nature, they describe the work they are doing and where they believe it is headed. To make the work more accessible to the public team members, Alexander Graves and Greg Wayne have posted an explanatory page on the DeepMind website. [13] Nobody understands why deep neural networks are so good at solving complex problems. Now physicists say the secret is buried in the laws of physics. [12] A team of researchers working at the University of California (and one from Stony Brook University) has for the first time created a neural-network chip that was built using just memristors. In their paper published in the journal Nature, the team describes how they built their chip and what capabilities it has. [11] A team of researchers used a promising new material to build more functional memristors, bringing us closer to brain-like computing. Both academic and industrial laboratories are working to develop computers that operate more like the human brain. Instead of operating like a conventional, digital system, these new devices could potentially function more like a network of neurons. [10] Cambridge Quantum Computing Limited (CQCL) has built a new Fastest Operating System aimed at running the futuristic superfast quantum computers. [9] IBM scientists today unveiled two critical advances towards the realization of a practical quantum computer. For the first time, they showed the ability to detect and measure both kinds of quantum errors simultaneously, as well as demonstrated a new, square quantum bit circuit design that is the only physical architecture that could successfully scale to larger dimensions. [8] Physicists at the Universities of Bonn and Cambridge have succeeded in linking two completely different quantum systems to one another. In doing so, they have taken an important step forward on the way to a quantum computer. To accomplish their feat the researchers used a method that seems to function as well in the quantum world as it does for us people: teamwork. The results have now been published in the "Physical Review Letters". [7] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron’s spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer.
Category: Quantum Physics

[19] viXra:1704.0136 [pdf] submitted on 2017-04-11 12:55:18

Spin-Wave Information Processing

Authors: George Rajna
Comments: 36 Pages.

Computer electronics are shrinking to small-enough sizes that the very electrical currents underlying their functions can no longer be used for logic computations in the ways of their larger-scale ancestors. [22] To really take off, advanced quantum information processing will require getting a better (experimental) grasp of an essential phenomenon called "indistinguishable photons." A high degree of "indistinguishability" requires almost complete wave-packet overlap, or perfect photon matching, of energy, space, time and polarization. [21] Quantum image processing (QIP) is an emerging sub-discipline that is focused on extending conventional image processing tasks and operations to the quantum computing framework. [20] The team's experimental collaborators have already demonstrated the technology, yielding cluster states composed of more than 1 million entangled modes. [19] How to reliably transfer quantum information when the connecting channels are impacted by detrimental noise? Scientists at the University of Innsbruck and TU Wien (Vienna) have presented new solutions to this problem. [18] Adding to strong recent demonstrations that particles of light perform what Einstein called "spooky action at a distance," in which two separated objects can have a connection that exceeds everyday experience, physicists at the National Institute of Standards and Technology (NIST) have confirmed that particles of matter can act really spooky too. [17] How fast will a quantum computer be able to calculate? While fully functional versions of these long-sought technological marvels have yet to be built, one theorist at the National Institute of Standards and Technology (NIST) has shown that, if they can be realized, there may be fewer limits to their speed than previously put forth. [16] Unlike experimental neuroscientists who deal with real-life neurons, computational neuroscientists use model simulations to investigate how the brain functions. [15] A pair of physicists with ETH Zurich has developed a way to use an artificial neural network to characterize the wave function of a quantum many-body system. [14]
Category: Quantum Physics

[18] viXra:1704.0131 [pdf] submitted on 2017-04-10 13:42:09

Local Realism Versus the Quantum of Doubt

Authors: Andrew P. Yake
Comments: 1 Page.

Local realism is essentially the premise that physical reality is already physically real and that causal influence propagates through spacetime in a mechanistic way like a chain of toppling dominoes. However, local realism has been replaced by quantum theory as the scientific model of physical reality. Causal signal propagation under quantum theory is like starting with an arbitrarily long chain of dominoes, then removing all the dominoes in the middle and claiming that the first can topple the last instantly anyways -- just because we don't have any better ideas. The argument for replacing local realism with quantum theory requires that the Bell inequality is an accurate description of the predictions of local realism in an EPR experiment. However, many researchers conclude otherwise. Strangely, this substantial countersignal seems to promote fierce defensiveness rather than rational doubt among quantum believers. One begins to worry that the ongoing rejection of local realism is predicated upon motivated beliefs rather than upon motivated inquiry. Keywords: Local Realism. Local real dominoes. Quantum Dominoes. EPR. Bell inequality. Causal signal propagation. In any case, a concise paper posed as a local realistic puzzle representing an EPR experiment now claims to show that local realism explains Bell violations & thus plausibly all physical reality. The necessary logical flaw in the Bell inequality is claimed exposed in two paragraphs! See viXra:1704.0078 - Local Realism Explains Bell Violations (author Andrew P. Yake): 8 pages complete with figures, equations, a graph of testable predictions, and 32 references. Thoughtful feedback appreciated (apyake@gmail.com).
Category: Quantum Physics

[17] viXra:1704.0128 [pdf] replaced on 2017-07-15 17:15:55

Photon Models Are Derived by Solving a Bug in Poynting and Maxwell Theory

Authors: Shuang-Ren Zhao
Comments: 41 Pages. In this version English is corrected, and the summation used in Action-at-a-distance of Tetrode and Fokker is added.

It is found that the Poynting theorem is conflict with the energy conservation principle. It is a bug of the Poynting theorem. The Poynting theorem is derived from Maxwell equations by using the superimposition principle of the fields. Hence, this bug also existed at either in superimposition principle or in the Maxwell equations. The Poynting theorem is corrected in this article. After the correction the energy is not quadratic and hence the field is also not linear. The concept of the superposition of fields need also to be corrected. Hence the new definitions for the inner product and cross product are proposed. The corrected Poynting theorem become the mutual energy formula, it is strongly related to the mutual energy theorems. It is shown that starting from the mutual energy formula, the whole electromagnetic theory can be reconstructed. The Poynting theorem can be proved from the mutual energy formula by adding pseudo items. The Maxwell equations can be derived from Poynting theorem as sufficient conditions. Hence if the mutual energy formula is corrected, the Maxwell equations still can be applied with knowing its problem. Most the problems originally caused by Maxwell equations are solved. Examples of this problems are: (1) electric field infinity which need to be re-normalized in quantum physics; (2) collapse of the electromagnetic field, the waves has to be collapsed to its absorber, otherwise the energy is not conserved; (3) the emitter can send energy without absorber, this is conflict to the direct interaction principle and absorber theory; (4) if our universe is not completely opaque, the charges will continually send energy to the outside of our universe, our universe will have a continual loss of energy. However there is no testimony supporting that our universe is opaque. The new theory supports the existence of advanced wave, hence also strongly support the absorber theory and transactional interpretation of quantum physics. It can offer an equation for photon and a good explanation for the duality of the photon. If photon and electromagnetic field obeys the mutual energy formula, it is very possible that all other quanta also obey their similar mutual energy formula. Hence the mutual energy formula can be applied as a principle or axiom for the electromagnetic theory and quantum physics. According to this theory the asychronous retarded wave and the asychronous advanced wave of electromagnetic fields both are an ability or probability waves, which is also partly agree with Copenhagen interpretation.
Category: Quantum Physics

[16] viXra:1704.0123 [pdf] submitted on 2017-04-10 12:28:58

Gravitational Shift for Beginners

Authors: Rodolfo A. Frino
Comments: 11 Pages.

This paper, which I wrote in 2006, formulates the equations for gravitational shifts from the relativistic framework of special relativity. First I derive the formulas for the gravitational redshift and then the formulas for the gravitational blueshift.
Category: Quantum Physics

[15] viXra:1704.0088 [pdf] submitted on 2017-04-07 08:53:27

Quantum Model System

Authors: George Rajna
Comments: 43 Pages.

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment with ultracold atoms. [28] A research group from Bar-Ilan University, in collaboration with French colleagues at CNRS Grenoble, has developed a unique experiment to detect quantum events in ultra-thin films. [27] New research shows that a scanning-tunneling microscope (STM), used to study changes in the shape of a single molecule at the atomic scale, impacts the ability of that molecule to make these changes. [26] Physicists are getting a little bit closer to answering one of the oldest and most basic questions of quantum theory: does the quantum state represent reality or just our knowledge of reality? [25] A team of researchers led by LMU physics professor Immanuel Bloch has experimentally realized an exotic quantum system which is robust to mixing by periodic forces. [24] A group of scientists led by Johannes Fink from the Institute of Science and Technology Austria (IST Austria) reported the first experimental observation of a first-order phase transition in a dissipative quantum system. [23] ORNL researchers have discovered a new type of quantum critical point, a new way in which materials change from one state of matter to another. [22] New research conducted at the University of Chicago has confirmed a decades-old theory describing the dynamics of continuous phase transitions. [21] No matter whether it is acoustic waves, quantum matter waves or optical waves of a laser—all kinds of waves can be in different states of oscillation, corresponding to different frequencies. Calculating these frequencies is part of the tools of the trade in theoretical physics. Recently, however, a special class of systems has caught the attention of the scientific community, forcing physicists to abandon well-established rules. [20] Until quite recently, creating a hologram of a single photon was believed to be impossible due to fundamental laws of physics. However, scientists at the Faculty of Physics, University of Warsaw, have successfully applied concepts of classical holography to the world of quantum phenomena. A new measurement technique has enabled them to register the first-ever hologram of a single light particle, thereby shedding new light on the foundations of quantum mechanics. [19] A combined team of researchers from Columbia University in the U.S. and the University of Warsaw in Poland has found that there appear to be flaws in traditional theory that describe how photodissociation works. [18] Ultra-peripheral collisions of lead nuclei at the LHC accelerator can lead to elastic collisions of photons with photons. [17] Physicists from Trinity College Dublin's School of Physics and the CRANN Institute, Trinity College, have discovered a new form of light, which will impact our understanding of the fundamental nature of light. [16] Light from an optical fiber illuminates the metasurface, is scattered in four different directions, and the intensities are measured by the four detectors. From this measurement the state of polarization of light is detected. [15] Converting a single photon from one color, or frequency, to another is an essential tool in quantum communication, which harnesses the subtle correlations between the subatomic properties of photons (particles of light) to securely store and transmit information. Scientists at the National Institute of Standards and Technology (NIST) have now developed a miniaturized version of a frequency converter, using technology similar to that used to make computer chips. [14] Harnessing the power of the sun and creating light-harvesting or light-sensing devices requires a material that both absorbs light efficiently and converts the energy to highly mobile electrical current. Finding the ideal mix of properties in a single material is a challenge, so scientists have been experimenting with ways to combine different materials to create "hybrids" with enhanced features. [13] Condensed-matter physicists often turn to particle-like entities called quasiparticles—such as excitons, plasmons, magnons—to explain complex phenomena. Now Gil Refael from the California Institute of Technology in Pasadena and colleagues report the theoretical concept of the topological polarition, or “topolariton”: a hybrid half-light, half-matter quasiparticle that has special topological properties and might be used in devices to transport light in one direction. [12] Solitons are localized wave disturbances that propagate without changing shape, a result of a nonlinear interaction that compensates for wave packet dispersion. Individual solitons may collide, but a defining feature is that they pass through one another and emerge from the collision unaltered in shape, amplitude, or velocity, but with a new trajectory reflecting a discontinuous jump. Working with colleagues at the Harvard-MIT Center for Ultracold Atoms, a group led by Harvard Professor of Physics Mikhail Lukin and MIT Professor of Physics Vladan Vuletic have managed to coax photons into binding together to form molecules – a state of matter that, until recently, had been purely theoretical. The work is described in a September 25 paper in Nature. New ideas for interactions and particles: This paper examines the possibility to origin the Spontaneously Broken Symmetries from the Planck Distribution Law. This way we get a Unification of the Strong, Electromagnetic, and Weak Interactions from the interference occurrences of oscillators. Understanding that the relativistic mass change is the result of the magnetic induction we arrive to the conclusion that the Gravitational Force is also based on the electromagnetic forces, getting a Unified Relativistic Quantum Theory of all 4 Interactions.
Category: Quantum Physics

[14] viXra:1704.0084 [pdf] submitted on 2017-04-07 04:42:25

Forces Between Atoms

Authors: George Rajna
Comments: 45 Pages.

A new approach to control forces and interactions between atoms and molecules, such as those employed by geckos to climb vertical surfaces, could bring advances in new materials for developing quantum light sources. [30] Quantum mechanics rules. It dictates how particles and forces interact, and thus how atoms and molecules work—for example, what happens when a molecule goes from a higher-energy state to a lower-energy one. But beyond the simplest molecules, the details become very complex. [29] In an article published in the Proceedings of the National Academy of Sciences scientists from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg show, however, that under certain conditions, photons can strongly influence chemistry. [28] University of Otago physicists have found a way to control individual atoms, making them appear wherever they want them to. [27] New research shows that a scanning-tunneling microscope (STM), used to study changes in the shape of a single molecule at the atomic scale, impacts the ability of that molecule to make these changes. [26] Physicists are getting a little bit closer to answering one of the oldest and most basic questions of quantum theory: does the quantum state represent reality or just our knowledge of reality? [25] A team of researchers led by LMU physics professor Immanuel Bloch has experimentally realized an exotic quantum system which is robust to mixing by periodic forces. [24] A group of scientists led by Johannes Fink from the Institute of Science and Technology Austria (IST Austria) reported the first experimental observation of a first-order phase transition in a dissipative quantum system. [23] ORNL researchers have discovered a new type of quantum critical point, a new way in which materials change from one state of matter to another. [22] New research conducted at the University of Chicago has confirmed a decades-old theory describing the dynamics of continuous phase transitions. [21] No matter whether it is acoustic waves, quantum matter waves or optical waves of a laser—all kinds of waves can be in different states of oscillation, corresponding to different frequencies. Calculating these frequencies is part of the tools of the trade in theoretical physics. Recently, however, a special class of systems has caught the attention of the scientific community, forcing physicists to abandon well-established rules. [20] Until quite recently, creating a hologram of a single photon was believed to be impossible due to fundamental laws of physics. However, scientists at the Faculty of Physics, University of Warsaw, have successfully applied concepts of classical holography to the world of quantum phenomena. A new measurement technique has enabled them to register the first-ever hologram of a single light particle, thereby shedding new light on the foundations of quantum mechanics. [19] A combined team of researchers from Columbia University in the U.S. and the University of Warsaw in Poland has found that there appear to be flaws in traditional theory that describe how photodissociation works. [18] Ultra-peripheral collisions of lead nuclei at the LHC accelerator can lead to elastic collisions of photons with photons. [17] Physicists from Trinity College Dublin's School of Physics and the CRANN Institute, Trinity College, have discovered a new form of light, which will impact our understanding of the fundamental nature of light. [16] Light from an optical fiber illuminates the metasurface, is scattered in four different directions, and the intensities are measured by the four detectors. From this measurement the state of polarization of light is detected. [15] Converting a single photon from one color, or frequency, to another is an essential tool in quantum communication, which harnesses the subtle correlations between the subatomic properties of photons (particles of light) to securely store and transmit information. Scientists at the National Institute of Standards and Technology (NIST) have now developed a miniaturized version of a frequency converter, using technology similar to that used to make computer chips. [14] Harnessing the power of the sun and creating light-harvesting or light-sensing devices requires a material that both absorbs light efficiently and converts the energy to highly mobile electrical current. Finding the ideal mix of properties in a single material is a challenge, so scientists have been experimenting with ways to combine different materials to create "hybrids" with enhanced features. [13] Condensed-matter physicists often turn to particle-like entities called quasiparticles—such as excitons, plasmons, magnons—to explain complex phenomena. Now Gil Refael from the California Institute of Technology in Pasadena and colleagues report the theoretical concept of the topological polarition, or “topolariton”: a hybrid half-light, half-matter quasiparticle that has special topological properties and might be used in devices to transport light in one direction. [12] Solitons are localized wave disturbances that propagate without changing shape, a result of a nonlinear interaction that compensates for wave packet dispersion. Individual solitons may collide, but a defining feature is that they pass through one another and emerge from the collision unaltered in shape, amplitude, or velocity, but with a new trajectory reflecting a discontinuous jump. Working with colleagues at the Harvard-MIT Center for Ultracold Atoms, a group led by Harvard Professor of Physics Mikhail Lukin and MIT Professor of Physics Vladan Vuletic have managed to coax photons into binding together to form molecules – a state of matter that, until recently, had been purely theoretical. The work is described in a September 25 paper in Nature. New ideas for interactions and particles: This paper examines the possibility to origin the Spontaneously Broken Symmetries from the Planck Distribution Law. This way we get a Unification of the Strong, Electromagnetic, and Weak Interactions from the interference occurrences of oscillators. Understanding that the relativistic mass change is the result of the magnetic induction we arrive to the conclusion that the Gravitational Force is also based on the electromagnetic forces, getting a Unified Relativistic Quantum Theory of all 4 Interactions.
Category: Quantum Physics

[13] viXra:1704.0078 [pdf] submitted on 2017-04-07 03:13:45

Local Realism Explains Bell Violations

Authors: Andrew P. Yake
Comments: 8 Pages. 1 Puzzle. 6 Equations. 4 Figures. 1 Graph of Testable Predictions. 32 References.

Local realism reduces to the proposition that local determinate reality is the necessary and sufficient cause of every physical effect. By any standard account, quantum theory requires that local realism is false, because it embeds the famously spooky premise that some physical effects require causes that are instantly effective from arbitrarily far away. Nonetheless, quantum theory has replaced local realism as the foundation of science because, whereas local realism allegedly cannot violate the Bell inequality, quantum theory is taken to do so in accord with experiments. Here we prove, however, that an epistemic contextual model of local realism solves a puzzle about independent random measurements of local hidden variables in a way that causally explains observed Bell violations. We also reveal exactly how the Bell inequality fails to represent the local realistic prediction. Finally, we show that any theory that denies local realism comprises an unfalsifiable causal claim that is freely adjustable to make arbitrary predictions, which thus provide no validation of its causal claim. Results revitalize the hypothesis that local realism prevails. Keywords: Local Realism. Bell Violations. Photons. Entanglement. Quantum Physics.
Category: Quantum Physics

[12] viXra:1704.0068 [pdf] submitted on 2017-04-05 23:34:04

Quantum-Mechanical Analysis of the MO Method and VB Method from the Position of PQS.

Authors: Bezverkhniy Volodymyr Dmytrovych, Bezverkhniy Vitaliy Volodymyrovich.
Comments: 9 Pages.

The MO method and the VB method are analyzed using the principle of quantum superposition (PQS) and the method of describing a quantum system consisting of several parts. It is shown that the main assumption of the molecular orbitals method (namely, that the molecular orbital can be represented like a linear combination of overlapping atomic orbitals) enters into an insurmountable contradiction with the principle of quantum superposition. It is also shown that the description of a quantum system consisting of several parts (adopted in quantum mechanics) actually prohibits ascribe in VB method to members of equation corresponding canonical structures.
Category: Quantum Physics

[11] viXra:1704.0047 [pdf] submitted on 2017-04-05 03:46:24

Bohmian Double Slit Interpretation by Dual Entangled Universes, and the Benjamin Libet Experiment.

Authors: Leo Vuyk
Comments: 17 Pages.

Benjamin Libet measured the so called electric Readiness Potential (RP) time to perform a volitional act, in the brains of his students and the time of conscious awareness (TCA) of that act, which appeared to come 500 m.sec behind the RP. The results of this experiment gives still an ongoing debate in the broad layers of the scientific community, because the results are still (also in recent experiments) in firm contrast with the expected idea of Free Will and causality. Comparable debates are also related to the Broglie-Bohm interpretation of Quantum Mechanics also called Bohmian Mechanics, focussed on the so called single photon double slit interference experiment. I would try to answer those questions by postulating the absurd but constructive possibility that both slits are wavefunction connected and secondly even I myself is wavefunction entangled for decision making in a CP symmetric multiverse. Even Max Tegmark suggested already about the multiverse: “Is there a copy of you reading this article?” We (and all particles and wave information) could be instant entangled with at least one instant entangled anti-copy person living inside a Charge and Parity symmetric copy Universe. In that case we could construct a causal explanation for Libet’s strange results. New statistical difference research on RPI and RPII of repeated Libet experiments described here could support these ideas.
Category: Quantum Physics

[10] viXra:1704.0045 [pdf] submitted on 2017-04-04 11:49:07

Molecules in Action

Authors: George Rajna
Comments: 44 Pages.

Quantum mechanics rules. It dictates how particles and forces interact, and thus how atoms and molecules work—for example, what happens when a molecule goes from a higher-energy state to a lower-energy one. But beyond the simplest molecules, the details become very complex. [29] In an article published in the Proceedings of the National Academy of Sciences scientists from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg show, however, that under certain conditions, photons can strongly influence chemistry. [28] University of Otago physicists have found a way to control individual atoms, making them appear wherever they want them to. [27] New research shows that a scanning-tunneling microscope (STM), used to study changes in the shape of a single molecule at the atomic scale, impacts the ability of that molecule to make these changes. [26] Physicists are getting a little bit closer to answering one of the oldest and most basic questions of quantum theory: does the quantum state represent reality or just our knowledge of reality? [25] A team of researchers led by LMU physics professor Immanuel Bloch has experimentally realized an exotic quantum system which is robust to mixing by periodic forces. [24] A group of scientists led by Johannes Fink from the Institute of Science and Technology Austria (IST Austria) reported the first experimental observation of a first-order phase transition in a dissipative quantum system. [23] ORNL researchers have discovered a new type of quantum critical point, a new way in which materials change from one state of matter to another. [22] New research conducted at the University of Chicago has confirmed a decades-old theory describing the dynamics of continuous phase transitions. [21] No matter whether it is acoustic waves, quantum matter waves or optical waves of a laser—all kinds of waves can be in different states of oscillation, corresponding to different frequencies. Calculating these frequencies is part of the tools of the trade in theoretical physics. Recently, however, a special class of systems has caught the attention of the scientific community, forcing physicists to abandon well-established rules. [20]
Category: Quantum Physics

[9] viXra:1704.0044 [pdf] submitted on 2017-04-04 07:17:46

Nickel Chloride Bose-Einstein Condensate

Authors: George Rajna
Comments: 19 Pages.

Research by an international collaboration recently produced the equivalent of a Bose-Einstein condensate using the chemical compound nickel chloride. [9] Bose-Einstein condensates (BECs) are macroscopic systems that have quantum behaviour, and are useful for exploring fundamental physics. Now researchers at the Gakushuin University and the University of Electro-Communications have studied how the miscibility of multicomponent BECs affects their behaviour, with surprising results. [8] Particles can be classified as bosons or fermions. A defining characteristic of a boson is its ability to pile into a single quantum state with other bosons. Fermions are not allowed to do this. One broad impact of fermionic antisocial behavior is that it allows for carbon-based life forms, like us, to exist. If the universe were solely made from bosons, life would certainly not look like it does. Recently, JQI theorists have proposed an elegant method for achieving transmutation—that is, making bosons act like fermions. This work was published in the journal Physical Review Letters. [7] Quantum physics tell us that even massive particles can behave like waves, as if they could be in several places at once. This phenomenon is typically proven in the diffraction of a matter wave at a grating. Researchers have now carried this idea to the extreme and observed the delocalization of molecules at the thinnest possible grating, a mask milled into a single layer of atoms. [6] Researchers in Austria have made what they call the "fattest Schrödinger cats realized to date". They have demonstrated quantum superposition – in which an object exists in two or more states simultaneously – for molecules composed of up to 430 atoms each, several times larger than molecules used in previous such experiments1. [5] Patrick Coles, Jedrzej Kaniewski, and Stephanie Wehner made the breakthrough while at the Centre for Quantum Technologies at the National University of Singapore. They found that 'wave-particle duality' is simply the quantum 'uncertainty principle' in disguise, reducing two mysteries to one. [4] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry.
Category: Quantum Physics

[8] viXra:1704.0042 [pdf] submitted on 2017-04-04 08:41:59

Tiny Black Holes

Authors: George Rajna
Comments: 34 Pages.

Tiny "black holes" on a silicon wafer make for a new type of photodetector that could move more data at lower cost around the world or across a datacenter. [19] Humans are visual creatures: our brain processes images 60,000 times faster than text, and 90 percent of information sent to the brain is visual. Visualization is becoming increasingly useful in the era of big data, in which we are generating so much data at such high rates that we cannot keep up with making sense of it all. In particular, visual analytics—a research discipline that combines automated data analysis with interactive visualizations—has emerged as a promising approach to dealing with this information overload. [18] Neural networks are commonly used today to analyze complex data – for instance to find clues to illnesses in genetic information. Ultimately, though, no one knows how these networks actually work exactly. [17] Hey Siri, how's my hair?" Your smartphone may soon be able to give you an honest answer, thanks to a new machine learning algorithm designed by U of T Engineering researchers Parham Aarabi and Wenzhi Guo. [16] Researchers at Lancaster University's Data Science Institute have developed a software system that can for the first time rapidly self-assemble into the most efficient form without needing humans to tell it what to do. [15] Physicists have shown that quantum effects have the potential to significantly improve a variety of interactive learning tasks in machine learning. [14] A Chinese team of physicists have trained a quantum computer to recognise handwritten characters, the first demonstration of “quantum artificial intelligence”. Physicists have long claimed that quantum computers have the potential to dramatically outperform the most powerful conventional processors. The secret sauce at work here is the strange quantum phenomenon of superposition, where a quantum object can exist in two states at the same time. [13]
Category: Quantum Physics

[7] viXra:1704.0038 [pdf] submitted on 2017-04-04 05:30:49

Dark Heat

Authors: Kadir Aydogdu
Comments: 38 Pages.

To understand the relation between heat and temperature physicist are modeling them as radiation and kinetic energy, however in this thesis we will explain them as smallest particle. In thesis this heat particle becomes the energy itself which carries constant mass, conservative forces and potential energy and we will assume that the interaction between these particles result a radiation as blackbody distributed photons, moreover, interaction of these particles with other particles that we know result kinetic and other types of potential energy exchanges like we know as photon exchange. We will start with analyzing the laws and theories that we trust than we will try to find how these heat particles behave and how are they interacts with each other by modeling the heat inside the black body box and heat inside the photons as particles. We will discuss the possible results we have. By working with many particle systems we will make some assumptions and we will try to find some proportionality about our heat particle. After finding the proportionalities we will try to predict how every physical interaction happen and we will discuss every biggest physical problem in the eyes of our theory. Finally we will be discussing one particle physics model in which everything made from just one particle.
Category: Quantum Physics

[6] viXra:1704.0027 [pdf] submitted on 2017-04-03 06:59:38

Unification of the Electromagnatic Force and Quantum Gravity

Authors: S.M.Hosseini, M.I.Kendrick
Comments: 13 Pages.

Abstract In this paper the graviton or the quantum of gravity has been identified as the Planck mass (Planck Mass mpl=2.17651x10-8Kg Quantum of gravity, graviton particle or the God particle), Max Karl Ernst Ludwig Planck[1] 23 April 1858 – 4 October 1947) and hence the unification of the electromagnetic force with the quantum of gravity by definition of the Ampere, It is named after André-Marie Ampère [2] (1775–1836), F=2x10-7N, and the theoretical values by calculation of the force of attraction or repulsion which acts between two 1 m wires placed in vacuum 1 m apart with negligible cross-sectional area each carrying 1 Coulomb of charge per second or 6.24x1018es at any point on the circuit has been calculated to be: F=1.973181x10-7N. Furthermore the Bohr’s theory of the Hydrogen atom Niels Bohr[3] in 1913, has been explored showing how the factor of V2/C2 plays part in the Ionisation of atoms w.r.t kinetic energy of the orbiting electrons in Hydrogen and Helium as well as some other elements.
Category: Quantum Physics

[5] viXra:1704.0020 [pdf] submitted on 2017-04-03 10:44:46

'Virtual' Interferometers for Optical Quantum Computers

Authors: George Rajna
Comments: 33 Pages.

The team's experimental collaborators have already demonstrated the technology, yielding cluster states composed of more than 1 million entangled modes. [19] How to reliably transfer quantum information when the connecting channels are impacted by detrimental noise? Scientists at the University of Innsbruck and TU Wien (Vienna) have presented new solutions to this problem. [18] Adding to strong recent demonstrations that particles of light perform what Einstein called "spooky action at a distance," in which two separated objects can have a connection that exceeds everyday experience, physicists at the National Institute of Standards and Technology (NIST) have confirmed that particles of matter can act really spooky too. [17] How fast will a quantum computer be able to calculate? While fully functional versions of these long-sought technological marvels have yet to be built, one theorist at the National Institute of Standards and Technology (NIST) has shown that, if they can be realized, there may be fewer limits to their speed than previously put forth. [16] Unlike experimental neuroscientists who deal with real-life neurons, computational neuroscientists use model simulations to investigate how the brain functions. [15] A pair of physicists with ETH Zurich has developed a way to use an artificial neural network to characterize the wave function of a quantum many-body system. [14] A team of researchers at Google's DeepMind Technologies has been working on a means to increase the capabilities of computers by combining aspects of data processing and artificial intelligence and have come up with what they are calling a differentiable neural computer (DNC.) In their paper published in the journal Nature, they describe the work they are doing and where they believe it is headed. To make the work more accessible to the public team members, Alexander Graves and Greg Wayne have posted an explanatory page on the DeepMind website. [13] Nobody understands why deep neural networks are so good at solving complex problems. Now physicists say the secret is buried in the laws of physics. [12]
Category: Quantum Physics

[4] viXra:1704.0016 [pdf] submitted on 2017-04-03 01:19:04

Quantum Cryptography, Quantum Communication, and Quantum Computer in a Noisy Environment

Authors: Koji Nagata, Tadao Nakamura
Comments: 9 Pages. International Journal of Theoretical Physics, (2017), DOI 10.1007/s10773-017-3352-4

First, we study several information theories based on quantum computing in a desirable noiseless situation. (1) We present quantum key distribution based on Deutsch's algorithm using an entangled state. (2) We discuss the fact that the Bernstein-Vazirani algorithm can be used for quantum communication including an error correction. Finally, we discuss the main result. We study the Bernstein-Vazirani algorithm in a noisy environment. The original algorithm determines a noiseless function. Here we consider the case that the function has an environmental noise. We introduce a noise term into the function $f(x)$. So we have another noisy function $g(x)$. The relation between them is $ g(x)=f(x)\pm O(\epsilon). $ Here $O(\epsilon)\ll 1$ is the noise term. The goal is to determine the noisy function $g(x)$ with a success probability. The algorithm overcomes classical counterpart by a factor of $N$ in a noisy environment.
Category: Quantum Physics

[3] viXra:1704.0015 [pdf] submitted on 2017-04-03 01:45:44

A Method of Computing Many Functions Simultaneously by Using Many Parallel Quantum Systems

Authors: Koji Nagata, Germano Resconi, Tadao Nakamura, Josep Batle, Soliman Abdalla, Ahmed Farouk, Han Geurdes
Comments: 3 Pages. Asian Journal of Mathematics and Physics (accepted)

We suggest a method of computing many functions in the same time by using many parallel quantum systems. We use the Bernstein-Vazirani algorithm. Given the set of real values $\{a_1,a_2,a_3,\ldots,a_N\}$, and the function $g:{\bf R}\rightarrow \{0,1\}$, we shall determine the following values $\{g(a_1),g(a_2),g(a_3),\ldots, g(a_N)\}$ simultaneously. By using $M$ parallel quantum systems, we can compute $M$ functions $g^1,g^2,...,g^M$ simultaneously. The speed of determining the $N\times M$ values will be shown to outperform the classical case by a factor of $N$.
Category: Quantum Physics

[2] viXra:1704.0004 [pdf] submitted on 2017-04-01 12:00:28

A Children's Primer on Bell's Inequality and Quantum Entanglement

Authors: William O. Straub
Comments: 7 Pages.

An elementary overview of Bell's inequality and electron-pair entanglement.
Category: Quantum Physics

[1] viXra:1704.0003 [pdf] submitted on 2017-04-01 09:19:43

A Testable CP Symmetric Multiverse Model by Extended Experiments, Done by the Late Benjamin Libet in 1964.

Authors: Leo Vuyk
Comments: 8 Pages.

Benjamin Libet measured two different electric Readiness Potentials time profiles called RPI and RPII. to perform a volitional act, in the brains of his students related to the Time of Conscious Awareness (TCA) of that act, which appeared to come about 400 m.sec behind the RP I or RPII. All “volitional acts” were in principle based on the free choice to press an electric switch button. The results of this experiment gives still an ongoing debate in the broad layers of the scientific community, because the results are still (also in recent experiments) in firm contrast with the expected idea of free will and causality. However I woud propose the seemingly absurd but constructive possibility that we are not alone for decision making if we live inside a Charge/Parity (CP) symmetric multiverse as one part of a CP symmetric set of persons. Even Max Tegmark suggested already about the multiverse: “Is there a copy of you reading this article?” In line with Max Tegmark, my proposal is, that we could be long distance entangled with at least one instant entangled anti-copy person living inside a Charge and Parity symmetric anti-material copy Universe. In that case we could construct a causal explanation for Libet’s strange results between RPI and RPII, because new statistical difference research on RPI and RPII of extended Libet experiments described here could give answer on the number of participating copy persons living inside the same number of copy universes.
Category: Quantum Physics