Quantum Physics

1808 Submissions

[23] viXra:1808.0170 [pdf] submitted on 2018-08-13 09:40:20

Modified General Relativity and the Klein-Gordon Equation in Curved Spacetime

Authors: Gary Nash
Comments: 12 Pages.

The Klein-Gordon equation in curved spacetime can be symmetrized into symmetric and antisymmetric rank 2 tensors for bosons with spins 0,1,2 and spinor-tensors for fermions with spins $1/2,3/2$. The tensors in a modified equation of general relativity which add to zero are shown to belong to the symmetric part of the Klein-Gordon equation. Modified general relativity is intrinsically hidden in the Klein-Gordon equation and the formalism of quantum field theory. The metric as a field variable describing gravitons vanishes from the massless spin-2 Klein-Gordon equation in the long-range to particle regimes of a spacetime described by a 4-dimensional time oriented Lorentzian manifold with a torsionless and metric compatible connection. Massless gravitons do not exist as force mediators of gravity in these regimes of spacetime.
Category: Quantum Physics

[22] viXra:1808.0166 [pdf] submitted on 2018-08-13 16:47:03

Negative Sonic Mass & The Big Bang & Gravity Waves

Authors: David E. Fuller
Comments: 2 Pages.

All Mass is Inverted Reciprocal Mass created as Ballast to Balance Unbound Space Time with the energy/mass density of Quantum Mechanics
Category: Quantum Physics

[21] viXra:1808.0150 [pdf] submitted on 2018-08-13 04:27:06

Pure Energy

Authors: J.A.J. van Leunen
Comments: 4 Pages. This is part of the Hilbert Book Model Project

Energy appears in many forms, but this document focusses on the energy that can be transferred between particles. Particles have no limbs, thus the field that embeds them must transfer the energy via suitable field excitations
Category: Quantum Physics

[20] viXra:1808.0128 [pdf] submitted on 2018-08-09 10:24:01

Refutation of Bell's Inequality by Positive Reasons

Authors: Colin James III
Comments: 2 Pages. Copyright © 2018 by Colin James III All rights reserved. Respond to this author's email address: info@ersatz-systems dot com. (We instruct troll Mikko at Disqus to read the entire article twice before she starts typing.)

Bell's inequality as defined by P(A&~B)+P(B&~C)-P(A&~C)=P(A&~B&C)+P(B&~C&~A)≥0 is refuted as TTTF TTTF TTTT TTTT.
Category: Quantum Physics

[19] viXra:1808.0127 [pdf] submitted on 2018-08-09 10:26:15

Superposition Refutes Schrödinger's Cat Experiment

Authors: Colin James III
Comments: 2 Pages. Copyright © 2018 by Colin James III All rights reserved. Respond to this author's email address: info@ersatz-systems dot com. (We instruct troll Mikko at Disqus to read the entire article twice before she starts typing.)

Quantum logic (QL) maps Schrödinger's cat experiment in words the same as does bivalent logic, with the expression as not tautologous (FFFF FTFF FFFT FFFF), and nearly contradictory. QL assumes its variables are natural numbers. To support the aim of justification of superposition, QL also injects a probability of equal to or greater than one, under the guise of the inequality of equal to or greater than zero. What follows is that any "principle of uncertainty" is irrelevant because certainty or uncertainty is bivalently mappable as the status of known or unknown, as in the cat experiment.
Category: Quantum Physics

[18] viXra:1808.0118 [pdf] submitted on 2018-08-10 06:05:22

Quantum Chains in Graphene

Authors: George Rajna
Comments: 34 Pages.

If the width of a narrow graphene nanoribbon changes, in this case from seven to nine atoms, a special zone is created at the transition. [20] Researchers working at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) coupled graphene, a monolayer form of carbon, with thin layers of magnetic materials like cobalt and nickel to produce exotic behavior in electrons that could be useful for next-generation computing applications. [19] Particles can exchange their spin, and in this way spin currents can be formed in a material. [18] Researchers have shown that certain superconductors—materials that carry electrical current with zero resistance at very low temperatures—can also carry currents of 'spin'. [17] The first known superconductor in which spin-3/2 quasiparticles form Cooper pairs has been created by physicists in the US and New Zealand. [16] Now a team of researchers from the University of Maryland (UMD) Department of Physics together with collaborators has seen exotic superconductivity that relies on highly unusual electron interactions. [15] A group of researchers from institutions in Korea and the United States has determined how to employ a type of electron microscopy to cause regions within an iron-based superconductor to flip between superconducting and non-superconducting states. [14] In new research, scientists at the University of Minnesota used a first-of-its-kind device to demonstrate a way to control the direction of the photocurrent without deploying an electric voltage. [13] Brown University researchers have demonstrated for the first time a method of substantially changing the spatial coherence of light. [12] Researchers at the University of Central Florida have generated what is being deemed the fastest light pulse ever developed. [11] Physicists at Chalmers University of Technology and Free University of Brussels have now found a method to significantly enhance optical force. [10]
Category: Quantum Physics

[17] viXra:1808.0114 [pdf] submitted on 2018-08-10 08:04:11

Detect One Molecule in a Million

Authors: George Rajna
Comments: 50 Pages.

All those interested can learn about the properties of SERSitive substrates, which are available free of charge for tests. [34] A team of scientists from across the U.S. has found a new way to create molecular interconnections that can give a certain class of materials exciting new properties, including improving their ability to catalyze chemical reactions or harvest energy from light. [33] A team of scientists including Carnegie's Tim Strobel and Venkata Bhadram now report unexpected quantum behavior of hydrogen molecules, H2, trapped within tiny cages made of organic molecules, demonstrating that the structure of the cage influences the behavior of the molecule imprisoned inside it. [32] A potential revolution in device engineering could be underway, thanks to the discovery of functional electronic interfaces in quantum materials that can self-assemble spontaneously. [31] Now, for the first time ever, researchers from Aalto University, Brazilian Center for Research in Physics (CBPF), Technical University of Braunschweig and Nagoya University have produced the superconductor-like quantum spin liquid predicted by Anderson. [30] Electrons in graphene—an atomically thin, flexible and incredibly strong substance that has captured the imagination of materials scientists and physicists alike—move at the speed of light, and behave like they have no mass. [29] In a series of exciting experiments, Cambridge researchers experienced weightlessness testing graphene's application in space. [28] Scientists from ITMO University have developed effective nanoscale light sources based on halide perovskite. [27] Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. [26] Researchers have designed a new type of laser called a quantum dot ring laser that emits red, orange, and green light. [25] The world of nanosensors may be physically small, but the demand is large and growing, with little sign of slowing. [24]
Category: Quantum Physics

[16] viXra:1808.0100 [pdf] submitted on 2018-08-09 05:31:39

Three-Level Quantum System

Authors: George Rajna
Comments: 49 Pages.

For the first time, researchers were able to study quantum interference in a three-level quantum system and thereby control the behavior of individual electron spins. [33] Scientists at the University of Illinois at Urbana-Champaign have developed an algorithm that could provide meaningful answers to condensed matter physicists in their searches for novel and emergent properties in materials. [32] Scientists from the Niels Bohr Institute at the University of Copenhagen have, for the first time, succeeded in producing, controlling and understanding complex quantum states based on two electron spins connected to a superconductor. [31] Now, for the first time ever, researchers from Aalto University, Brazilian Center for Research in Physics (CBPF), Technical University of Braunschweig and Nagoya University have produced the superconductor-like quantum spin liquid predicted by Anderson. [30] Electrons in graphene—an atomically thin, flexible and incredibly strong substance that has captured the imagination of materials scientists and physicists alike—move at the speed of light, and behave like they have no mass. [29] In a series of exciting experiments, Cambridge researchers experienced weightlessness testing graphene's application in space. [28] Scientists from ITMO University have developed effective nanoscale light sources based on halide perovskite. [27] Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. [26] Researchers have designed a new type of laser called a quantum dot ring laser that emits red, orange, and green light. [25] The world of nanosensors may be physically small, but the demand is large and growing, with little sign of slowing. [24] In a joint research project, scientists from the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI), the Technische Universität Berlin (TU) and the University of Rostock have managed for the first time to image free nanoparticles in a laboratory experiment using a highintensity laser source. [23]
Category: Quantum Physics

[15] viXra:1808.0099 [pdf] submitted on 2018-08-09 07:37:07

Intense Lasers Hit Clusters of Atoms

Authors: George Rajna
Comments: 63 Pages.

Scientists found that relatively slow electrons are produced when intense lasers interact with small clusters of atoms, upturning current theories. [37] Lasers that emit ultrashort pulses of light are critical components of technologies, including communications and industrial processing, and have been central to fundamental Nobel Prize-winning research in physics. [36] A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. [35] The unique platform, which is referred as a 4-D microscope, combines the sensitivity and high time-resolution of phase imaging with the specificity and high spatial resolution of fluorescence microscopy. [34] The experiment relied on a soliton frequency comb generated in a chip-based optical microresonator made from silicon nitride. [33] This scientific achievement toward more precise control and monitoring of light is highly interesting for miniaturizing optical devices for sensing and signal processing. [32] It may seem like such optical behavior would require bending the rules of physics, but in fact, scientists at MIT, Harvard University, and elsewhere have now demonstrated that photons can indeed be made to interact-an accomplishment that could open a path toward using photons in quantum computing, if not in light sabers. [31] Optical highways for light are at the heart of modern communications. But when it comes to guiding individual blips of light called photons, reliable transit is far less common. [30] Theoretical physicists propose to use negative interference to control heat flow in quantum devices. [29] Particle physicists are studying ways to harness the power of the quantum realm to further their research. [28]
Category: Quantum Physics

[14] viXra:1808.0083 [pdf] submitted on 2018-08-08 04:31:17

Distortions in High-Temperature Superconductors

Authors: George Rajna
Comments: 25 Pages.

There's a literal disturbance in the force that alters what physicists have long thought of as a characteristic of superconductivity, according to Rice University scientists. [35] Now, researchers led by Arkady Shekhter of the National High Magnetic Field Laboratory in the US have shown that the same strange behaviour applies to the way their resistance varies with magnetic field. [34] Scientists at the Florida State University-headquartered National High Magnetic Field Laboratory have discovered a behavior in materials called cuprates that suggests they carry current in a way entirely different from conventional metals such as copper. [33] Now, Delft University of Technology have created a microchip on which two wires were placed in close proximity in order to measure the Casimir forces that act upon them when they become superconducting. [32] For a long time, physicists have tried to understand the relationship between a periodic pattern of conduction electrons called a charge density wave (CDW), and another quantum order, superconductivity, or zero electrical resistance, in the same material. [31] A potential new state of matter is being reported in the journal Nature, with research showing that among superconducting materials in high magnetic fields, the phenomenon of electronic symmetry breaking is common. [30] Researchers from the University of Geneva (UNIGE) in Switzerland and the Technical University Munich in Germany have lifted the veil on the electronic characteristics of high-temperature superconductors. Their research, published in Nature Communications, shows that the electronic densities measured in these superconductors are a combination of two separate effects. As a result, they propose a new model that suggests the existence of two coexisting states rather than competing ones postulated for the past thirty years, a small revolution in the world of superconductivity. [29] A team led by scientists at the Department of Energy's SLAC National Accelerator Laboratory combined powerful magnetic pulses with some of the brightest X-rays on the planet to discover a surprising 3-D arrangement of a material's electrons that appears closely linked to a mysterious phenomenon known as high-temperature superconductivity. [28] Advanced x-ray technique reveals surprising quantum excitations that persist through materials with or without superconductivity. [27] This paper explains the magnetic effect of the superconductive current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Quantum Theories. The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the Higgs Field, the changing Relativistic Mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Since the superconductivity is basically a quantum mechanical phenomenon and some entangled particles give this opportunity to specific matters, like Cooper Pairs or other entanglements, as strongly correlated materials and Exciton-mediated electron pairing, we can say that the secret of superconductivity is the quantum entanglement.
Category: Quantum Physics

[13] viXra:1808.0082 [pdf] submitted on 2018-08-06 10:24:46

Coherence

Authors: J.A.J. van Leunen
Comments: 4 Pages. This is part of the Hilbert Book Model Project

Quite often, reality arranges coherence in a standard way. This way produces recognizable phenomena that occur in all places where reality controls coherence in that way. The document shows the relation between the hopping path cycle of elementary particles and the Lagrangian that describes their kinematic behavior. Further, the paper describes how stochastic processes control the binding of stochastically controlled objects.
Category: Quantum Physics

[12] viXra:1808.0073 [pdf] submitted on 2018-08-07 02:49:44

Against Quantum Idealism

Authors: V.A.Kasimov
Comments: 8 Pages. In Russian

In connection with the appearance of references to works that establish a "Bridge between matter and spirit"[1], as well as discovered something in common between "Quantum mechanics, consciousness and free will" [2], it is difficult to expect a serious outcry in the scientific world from such research, however, there is an obvious reason to draw attention to the differentiation of universal existence on the material and the ideal, and especially in physics - "the birthplace of spontaneous materialists".
Category: Quantum Physics

[11] viXra:1808.0064 [pdf] submitted on 2018-08-05 07:16:20

The Origin of Wave Particle Duality

Authors: Wei Fan
Comments: 8 Pages.

what is the origin of wave-particle duality in quantum mechanics? This is an unsolved mystery in modern physics. In the latest research, I propose a possible explanation for the origin of wave particle duality. At the same time, I also proposed a feasible way to explain the origin of quantum and quantum entanglement.
Category: Quantum Physics

[10] viXra:1808.0062 [pdf] submitted on 2018-08-05 15:41:00

Refutation of Another Conjecture to Coerce Bell's Inequality to be True

Authors: Colin James III
Comments: 1 Page. Copyright © 2018 by Colin James III All rights reserved. Respond to this author's email address: info@ersatz-systems dot com .

P(A∧¬B)+P(B∧¬C)≥P(A∧¬C): TTTF TTTF TTTT TTTT. P(A⊕B)+P(B⊕C)≥P(A⊕C): TTTT TFTT TTTF TTTT. (Two more nothing-boogers.)
Category: Quantum Physics

[9] viXra:1808.0059 [pdf] submitted on 2018-08-06 04:31:56

Structure of Nucleus

Authors: Gokaran Shukla
Comments: 4 Pages.

Atom have stationary orbits. Our present understanding regarding the structure of atom is mostly dependent upon the Rutherford's gold foil alpha particle scattering experiment. presently, we know that nucleus made of proton and neutron and it occupies only very small fraction of volume of atom, while electron revolves around it in their stationary orbit. Also, scientific community believe (quantum field theory and standard model derivation are purely based on this premises only) that proton and neutrons are bind together and stay like lump ball in very small volume at the center of the atom. In this paper we will show that our understanding about nucleus are incomplete. We will show that nucleons are not only revolves anti-clockwise around the \textit{singular}-point in their well define stationary orbit but also rotates anti-clockwise (proton) and clockwise (neutron) about their axis. Also, nucleons make transition as electron does after absorbing energy from external agency. We will also show that distribution of nucleons in nuclear stationary orbit follow the $\textit{Aufbau}$ principle.
Category: Quantum Physics

[8] viXra:1808.0058 [pdf] submitted on 2018-08-04 05:49:42

Refutation of Bell's Inequality by the Zermelo-Fraenkel (ZF) Axiom of the Empty Set

Authors: Colin James III
Comments: 1 Page. Copyright © 2018 by Colin James III All rights reserved. Note that comments on Disqus are not forwarded or read, so respond to this author's email address: info@ersatz-systems dot com .

Bell's inequality is in the form of P(A not B) + P(B not C) ≥ P(A not C. By applying the ZF axiom of the empty set, Bell’s inequality takes the form of P(A not B) + P(B not C) ≠ P(A not C). Neither equation is tautologous, with the latter relatively weaker as the negated truth table result of the former. Hence, Bell's inequality and the ZF axiom of the empty set are summarily refuted in tandem.
Category: Quantum Physics

[7] viXra:1808.0036 [pdf] submitted on 2018-08-02 16:00:17

(Ezeh Version 1.0 10 Pages 2.08.2018) an Extended Zero-Energy Hypothesis: on Some Possible Quantum Implications of a Zero-Energy Universe, Including the Existence of Negative-Energy Spin-1 Gravitons (As the Main Spacetime “creators”) and a (Macrocos

Authors: Andrei Lucian Dragoi
Comments: 10 Pages.

This paper proposes an extended (e) zero-energy hypothesis (eZEH) starting from the “classical” speculative zero-energy universe hypothesis (ZEUH) firstly proposed by the mathematical physicist Pascual Jordan who argued that, in principle, since the positive energy of a star's mass and its (negative energy) gravitational field (GF) together may have zero total energy, the energy conservation principle (ECP) wouldn’t prevent a star being created by starting from a quantum transition/fluctuation of the (quantum) vacuum state. ZEUH mainly states that the total amount of energy in our universe is exactly zero: its amount of positive energy (in the form of matter and radiation) is exactly canceled out by its negative energy (in the form of gravity). eZEH “pushes” ZEUH “to its limits” and emphasizes some new possible quantum implications: (1) the existence of negative-energy spin-1 gravitons and their appearance in (evanescent) photon-graviton pairs defined as the main “creators” of the 4D spacetime; (2) a (macrocosmic) black-hole (bh) associated Casimir effect (bhCE) which may inhibit Hawking radiation (explaining why it wasn’t observed yet) and may explain the accelerated expansion of our universe; (3) a quantum strong gravitational constant (strong quantum big G) defined as a function of a Planck-like gravitational constant which measures the quantum angular momentum of the (negative energy) graviton (which is predicted to nullify the positive energy of a photon at Planck scales, solving the vacuum energy density apparent paradox); Keywords: the zero-energy universe hypothesis (ZEUH); vacuum; quantum fluctuation; gravitational field (GF); the energy conservation principle (ECP); the extended (e) zero-energy hypothesis (eZEH); negative-energy spin-1 graviton; (evanescent) photon-graviton pairs; 4D spacetime; black-hole (bh); the black-hole (bh) associated Casimir effect (bhCE), Hawking radiation inhibition; accelerated expansion of our universe; quantum strong gravitational constant (strong quantum big G); vacuum energy density;
Category: Quantum Physics

[6] viXra:1808.0033 [pdf] submitted on 2018-08-03 01:30:44

Digital Quantum Simulation of Laser-Pulse Induced Tunneling Mechanism in Chemical Isomerization Reaction

Authors: Kuntal Halder, Narendra N. Hegade, Bikash K. Behera, Prasanta K. Panigrahi
Comments: 6 pages, 7 figures

Using quantum computers to simulate polyatomic reaction dynamics has an exponential advantage in the amount of resources needed over classical computers. Here we demonstrate an exact simulation of the dynamics of the laser-driven isomerization reaction of assymetric malondialdehydes. We discretize space and time, decompose the Hamiltonian operator according to the number of qubits and use Walsh-series approximation to implement the quantum circuit for diagonal operators. We observe that the reaction evolves by means of a tunneling mechanism through a potential barrier and the final state is in close agreement with theoretical predictions. All quantum circuits are implemented through IBM's QISKit platform in an ideal quantum simulator.
Category: Quantum Physics

[5] viXra:1808.0032 [pdf] submitted on 2018-08-03 02:41:58

Unique Behavior to Carry Current

Authors: George Rajna
Comments: 18 Pages.

Laboratory have discovered a behavior in materials called cuprates that suggests they carry current in a way entirely different from conventional metals such as copper. [33] Now, Delft University of Technology have created a microchip on which two wires were placed in close proximity in order to measure the Casimir forces that act upon them when they become superconducting. [32] For a long time, physicists have tried to understand the relationship between a periodic pattern of conduction electrons called a charge density wave (CDW), and another quantum order, superconductivity, or zero electrical resistance, in the same material. [31] A potential new state of matter is being reported in the journal Nature, with research showing that among superconducting materials in high magnetic fields, the phenomenon of electronic symmetry breaking is common. [30] Researchers from the University of Geneva (UNIGE) in Switzerland and the Technical University Munich in Germany have lifted the veil on the electronic characteristics of high-temperature superconductors. Their research, published in Nature Communications, shows that the electronic densities measured in these superconductors are a combination of two separate effects. As a result, they propose a new model that suggests the existence of two coexisting states rather than competing ones postulated for the past thirty years, a small revolution in the world of superconductivity. [29] A team led by scientists at the Department of Energy's SLAC National Accelerator Laboratory combined powerful magnetic pulses with some of the brightest X-rays on the planet to discover a surprising 3-D arrangement of a material's electrons that appears closely linked to a mysterious phenomenon known as high-temperature superconductivity. [28] Advanced x-ray technique reveals surprising quantum excitations that persist through materials with or without superconductivity. [27] This paper explains the magnetic effect of the superconductive current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Quantum Theories. The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the Higgs Field, the changing Relativistic Mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Since the superconductivity is basically a quantum mechanical phenomenon and some entangled particles give this opportunity to specific matters, like Cooper Pairs or other entanglements, as strongly correlated materials and Exciton-mediated electron pairing, we can say that the secret of superconductivity is the quantum entanglement.
Category: Quantum Physics

[4] viXra:1808.0026 [pdf] submitted on 2018-08-03 08:31:16

Small Quantum Computers Complexity

Authors: George Rajna
Comments: 58 Pages.

In the meantime, researchers are busy dreaming up uses for small quantum computers and mapping out the landscape of problems they'll be suited to solving. [35] New research gives insight into a recent experiment that was able to manipulate an unprecedented number of atoms through a quantum simulator. This new theory could provide another step on the path to creating the elusive quantum computers. [34] Chinese scientists Xianmin Jin and his colleagues from Shanghai Jiao Tong University have successfully fabricated the largest-scaled quantum chip and demonstrated the first two-dimensional quantum walks of single photons in real spatial space, which may provide a powerful platform to boost analog quantum computing for quantum supremacy. [33] To address this technology gap, a team of engineers from the National University of Singapore (NUS) has developed an innovative microchip, named BATLESS, that can continue to operate even when the battery runs out of energy. [32] Stanford researchers have developed a water-based battery that could provide a cheap way to store wind or solar energy generated when the sun is shining and wind is blowing so it can be fed back into the electric grid and be redistributed when demand is high. [31] Researchers at AMOLF and the University of Texas have circumvented this problem with a vibrating glass ring that interacts with light. They thus created a microscale circulator that directionally routes light on an optical chip without using magnets. [30] Researchers have discovered three distinct variants of magnetic domain walls in the helimagnet iron germanium (FeGe). [29] Magnetic materials that form helical structures—coiled shapes comparable to a spiral staircase or the double helix strands of a DNA molecule—occasionally exhibit exotic behavior that could improve information processing in hard drives and other digital devices. [28] In a new study, researchers have designed "invisible" magnetic sensors—sensors that are magnetically invisible so that they can still detect but do not distort the surrounding magnetic fields. [27]
Category: Quantum Physics

[3] viXra:1808.0024 [pdf] submitted on 2018-08-03 10:40:26

Quantum Dot Floating Gates

Authors: George Rajna
Comments: 39 Pages.

Photoresponsive flash memories made from organic field-effect transistors (OFETs) that can be quickly erased using just light might find use in a host of applications, including flexible imaging circuits, infra-red sensing memories and multibit-storage memory cells. [27] Recent research from Kumamoto University in Japan has revealed that polyoxometalates (POMs), typically used for catalysis, electrochemistry, and photochemistry, may also be used in a technique for analyzing quantum dot (QD) photoluminescence (PL) emission mechanisms. [26] Researchers have designed a new type of laser called a quantum dot ring laser that emits red, orange, and green light. [25] The world of nanosensors may be physically small, but the demand is large and growing, with little sign of slowing. [24] In a joint research project, scientists from the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI), the Technische Universität Berlin (TU) and the University of Rostock have managed for the first time to image free nanoparticles in a laboratory experiment using a highintensity laser source. [23] For the first time, researchers have built a nanolaser that uses only a single molecular layer, placed on a thin silicon beam, which operates at room temperature. [22] A team of engineers at Caltech has discovered how to use computer-chip manufacturing technologies to create the kind of reflective materials that make safety vests, running shoes, and road signs appear shiny in the dark. [21] In the September 23th issue of the Physical Review Letters, Prof. Julien Laurat and his team at Pierre and Marie Curie University in Paris (Laboratoire Kastler Brossel-LKB) report that they have realized an efficient mirror consisting of only 2000 atoms. [20] Physicists at MIT have now cooled a gas of potassium atoms to several nanokelvins—just a hair above absolute zero—and trapped the atoms within a two-dimensional sheet of an optical lattice created by crisscrossing lasers. Using a high-resolution microscope, the researchers took images of the cooled atoms residing in the lattice. [19] Researchers have created quantum states of light whose noise level has been " squeezed " to a record low. [18] An elliptical light beam in a nonlinear optical medium pumped by " twisted light " can rotate like an electron around a magnetic field. [17]
Category: Quantum Physics

[2] viXra:1808.0017 [pdf] submitted on 2018-08-01 11:20:26

Material for the Quantum Age

Authors: George Rajna
Comments: 35 Pages.

A UCF physicist has discovered a new material that has the potential to become a building block in the new era of quantum materials, those that are composed of microscopically condensed matter and expected to change our development of technology. [25] Researchers at the University of Geneva (UNIGE), Switzerland, in partnership with CNRS, France, have discovered a new material in which an element, ytterbium, can store and protect the fragile quantum information even while operating at high frequencies. [24] Scientists at the University of Alberta in Edmonton, Canada have created the most dense, solid-state memory in history that could soon exceed the capabilities of current hard drives by 1,000 times. [23] The team showed that the single-atom magnets can endure relatively high temperatures and strong external magnetic fields. The work could lead to the development of extremely high-density data storage devices. [22] One of these are single-atom magnets: storage devices consisting of individual atoms stuck ("adsorbed") on a surface, each atom able to store a single bit of data that can be written and read using quantum mechanics. [21] Physicists have experimentally demonstrated 18-qubit entanglement, which is the largest entangled state achieved so far with individual control of each qubit. [20] University of Adelaide-led research has moved the world one step closer to reliable, high-performance quantum computing. [19] A team of researchers with members from IBM Research-Zurich and RWTH Aachen University has announced the development of a new PCM (phase change memory) design that offers miniaturized memory cell volume down to three nanometers. [18] Monatomic glassy antimony might be used as a new type of single-element phase change memory. [17] Physicists have designed a 3-D quantum memory that addresses the tradeoff between achieving long storage times and fast readout times, while at the same time maintaining a compact form. [16]
Category: Quantum Physics

[1] viXra:1808.0014 [pdf] submitted on 2018-08-01 12:19:21

Holes in Light

Authors: George Rajna
Comments: 30 Pages.

Discovered by Professor John Nye in Bristol over 35 years ago, polarisation singularities occur at points where the polarisation ellipse is circular, with other polarisations wrapping around them. In 3 dimensions, these singularities occur along lines, in this case creating knots. [18] The detectors created by ATI researchers are able to achieve high sensitivity levels that strongly compete with current technologies, while still operating at low voltages, as well as over the whole X-ray energy range spectrum. [17] There's nothing quite like an ice cream on a hot day, and eating it before it melts too much is part of the fun. [16] Studying the fleeting actions of electrons in organic materials will now be much easier, thanks to a new method for generating fast X-rays. [15] In a laboratory at the University of Rochester, researchers are using lasers to change the surface of metals in incredible ways, such as making them super water-repellent without the use of special coatings, paints, or solvents. [14]
Category: Quantum Physics