Thermodynamics and Energy

1607 Submissions

[11] viXra:1607.0490 [pdf] submitted on 2016-07-26 07:42:34

On Space Power

Authors: S.Kalimuthu
Comments: 07 Pages. NA

To generate power from water , coal , wind and nuclear energies we require basic raw materials and the costs are high .Due to the scarcity of the above mentioned items , the developing countries like India are facing a number of challenges and problems. In order to avoid this, the author proposes to generate power directly from gravitons. The accepted physics says that the gravitons are the mediators of gravity. Albert Einstein told that we cannot separate gravity from space .Gravity is a part of space. Einstein’s variance of mass with velocity equation says that as the velocity of an object increases, its mass also increases .The author postulates that this mass is gained by the moving object directly from SPACE whenever its velocity increases. Pauli’s exclusive principle , Heisenberg’s uncertainty principle , Einstein’s equivalence principle and his two postulates of special relativity theory created ground breaking results in physics.
Category: Thermodynamics and Energy

[10] viXra:1607.0426 [pdf] submitted on 2016-07-22 23:25:10

Physicochemical and Spectroscopic Characterization of Biofield Energy Treated P-Anisidine

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 8 Pages.

The p-anisidine is widely used as chemical intermediate in the production of various dyes, pigments, and pharmaceuticals. This study was aimed to evaluate the effect of biofield energy treatment on the physicochemical and spectroscopic properties of p-anisidine. The study was performed after dividing the sample in two groups; one was remained as untreated and another was subjected to Mr. Trivedi’s biofield energy treatment. Afterward, both the control and treated samples of p-anisidine were evaluated using X-ray diffraction (XRD), surface area analyzer, differential scanning calorimetry (DSC), thermogravimetric analysis-derivative thermogravimetry (TGA-DTG), Fourier transform infrared (FT-IR), and ultraviolet-visible (UV-Vis) spectroscopy. The XRD analysis showed the increase in unit cell volume from 683.81 → 690.18 × 10-24 cm3 and crystallite size from 83.84→84.62 nm in the treated sample with respect to the control. The surface area analysis exhibited the significant increase (25.44%) in the surface area of treated sample as compared to control. The DSC thermogram of control p-anisidine showed the latent heat of fusion and melting temperature and 146.78 J/g and 59.41°C, respectively, which were slightly increased to 148.89 J/g and 59.49°C, respectively after biofield treatment. The TGA analysis showed the onset temperature of thermal degradation at 134.68°C in the control sample that was increased to 150.02°C after biofield treatment. The result showed about 11.39% increase in onset temperature of thermal degradation of treated p-anisidine as compared to the control. Moreover, the Tmax (temperature at which maximum thermal degradation occurs) was also increased slightly from 165.99°C (control) to 168.10°C (treated). This indicated the high thermal stability of treated p-anisidine as compared to the control. However, the FT-IR and UV spectroscopic studies did not show any significant changes in the spectral properties of treated p-anisidine with respect to the control. All together, the XRD, surface area and thermal analysis suggest that Mr. Trivedi’s biofield energy treatment has the impact on physical and thermal properties of the treated p-anisidine.
Category: Thermodynamics and Energy

[9] viXra:1607.0399 [pdf] submitted on 2016-07-21 23:29:51

Evaluation of Physical, Thermal and Spectroscopic Properties of Biofield Treated P-Hydroxyacetophenone

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 7 Pages.

P-Hydroxyacetophenone (pHAP) is an aromatic ketone derivative that is mainly used in the manufacturing of various pharmaceuticals, flavours, fragrances, etc. In the present study, the impact of Mr. Trivedi’s biofield energy treatment was analysed on various properties of pHAP viz. crystallite size, surface area, melting temperature, thermal decomposition, and spectral properties. The pHAP sample was divided into two parts; one was kept as control sample while another part was named as treated sample. The treated sample was given the biofield energy treatment and various parameters were analysed as compared to the control sample by X-ray diffraction (XRD), surface area analyser, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), ultravioletvisible (UV-VIS), and Fourier transform infrared (FT-IR) spectroscopy. The XRD studies showed the decrease in crystallite size of the treated sample (61.25 nm) as compared to the control (84.18 nm); however the intensity of peaks in diffractogram was increased in treated sample. Besides, the surface area of treated sample was decreased by 41.17% as compared to the control. The TGA analysis revealed that onset temperature as well as Tmax (maximum thermal decomposition temperature) was increased in the treated sample. However, the latent heat of fusion (ΔH) was decreased from 124.56 J/g (control) to 103.24 J/g in the treated sample. The treated and control samples were also evaluated by UV-Vis and FT-IR spectroscopy and did not show any significant alteration in spectra of treated sample as compared to the respective control. Hence, the overall results suggest that there was an impact of biofield energy treatment on the physical and thermal properties of pHAP sample.
Category: Thermodynamics and Energy

[8] viXra:1607.0398 [pdf] submitted on 2016-07-21 23:32:54

Isotopic Abundance Analysis of Biofield Treated Benzene, Toluene and P-Xylene Using Gas Chromatography-Mass Spectrometry (GC-MS)

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 6 Pages.

Benzene, toluene and p-xylene are derivatives of benzene, generally produced from crude petroleum and have numerous applications in industry. The aim of the present study was to evaluate the impact of biofield treatment on isotopic abundance of these benzene derivatives by gas chromatography-mass spectrometry (GC-MS). Benzene, toluene and p-xylene samples were divided into two parts: control and treatment. Control part was remained as untreated and treatment part was subjected to Mr. Trivedi’s biofield treatment. Control and treated samples were characterized using GC-MS. GC-MS data revealed that isotopic abundance ratio of 13C/12C or 2 H/1 H (PM+1/PM) of treated samples were significantly increased from un-substituted to substituted benzene rings (where, PM- primary molecule, PM+1- isotopic molecule either for 13C/12C and/or 2 H/1 H). The isotopic abundance ratio of 13C/12C or 2 H/1 H (PM+1/PM) in benzene was decreased significantly by 42.14% as compared to control. However, the isotopic abundance ratio of (PM+1/PM) in treated toluene and p-xylene was significantly increased up to 531.61% and 134.34% respectively as compared to their respective control. Thus, overall data suggest that biofield treatment has significantly altered the isotopic abundance ratio of (PM+1/PM) in a different way for un-substituted and substituted benzenes.
Category: Thermodynamics and Energy

[7] viXra:1607.0386 [pdf] submitted on 2016-07-20 23:20:06

Evaluation of the Impact of Biofield Treatment on Physical and Thermal Properties of Casein Enzyme Hydrolysate and Casein Yeast Peptone

Authors: Mahendra Kumar Trivedi
Comments: 7 Pages.

In the present study, the influence of biofield treatment on physical and thermal properties of Casein Enzyme Hydrolysate (CEH) and Casein Yeast Peptone (CYP) were investigated. The control and treated samples were characterized by Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), Thermo Gravimetric Analysis (TGA), particle size and surface area analysis. The FTIR results revealed that biofield treatment has caused reduction of amide group (amide-I and amide-II) stretching vibration peak that is associated with strong intermolecular hydrogen bonding in treated CEH as compared to control. However, no significant changes were observed in FTIR spectrum of treated CYP. The TGA analysis of treated CEH showed a substantial improvement in thermal stability which was confirmed by increase in maximum thermal decomposition temperature (217° C) as compared to control (209° C). Similarly, the treated CYP also showed enhanced thermal stability as compared to control. DSC showed increase in melting temperature of treated CYP as compared to control. However the melting peak was absent in DSC of treated CEH which was probably due to rigid chain of the protein. The surface area of treated CEH was increased by 83% as compared to control. However, a decrease (7.3%) in surface area was observed in treated CYP. The particle size analysis of treated CEH showed a significant increase in average particle size (d50) and d99 value (maximum particle size below which 99% of particles are present) as compared to control sample. Similarly, the treated CYP also showed a substantial increase in d50 and d99 values which was probably due to the agglomeration of the particles which led to formation of bigger microparticles. The result showed that the biofield treated CEH and CYP could be used as a matrix for pharmaceutical applications.
Category: Thermodynamics and Energy

[6] viXra:1607.0288 [pdf] submitted on 2016-07-18 10:07:50

A Proposal for an Improved Solar Still

Authors: Herbert Weidner
Comments: 4 Pages.

The yield from solar stills depends upon meteorological parameters and design. Below improvement opportunities are presented using heat pipes. The changes may increase the yield of potable water without the need for external energy.
Category: Thermodynamics and Energy

[5] viXra:1607.0165 [pdf] submitted on 2016-07-13 23:15:55

The Potential Impact of Biofield Treatment on Physical, Structural and Mechanical Properties of Stainless Steel Powder

Authors: Mahendra Kumar Trivedi
Comments: 5 Pages.

Stainless steel (SS) has gained extensive attention due to its high corrosion resistance, low maintenance, familiar lustre, and superior mechanical properties. In SS, the mechanical properties are closely related with crystal structure, crystallite size, and lattice strain. The aim of present study was to evaluate the effect of biofield treatment on structural, physical and mechanical properties of SS powder. SS (Grade-SUS316L) powder was divided into two parts denoted as control and treatment. The treatment part was received Mr. Trivedi’s biofield treatment. Control and treated SS samples were characterized using particle size analyzer, X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) spectroscopy. Result showed that biofield treatment has significantly reduced the particle size d10, d50, d90, and d99 (size, below which 10, 50, 90, and 99% particles were present, respectively) of SS powder up to 7.42, 12.93, 30.23, and 41.38% respectively, as compared to control. XRD result showed that the unit cell volume of SS was altered after biofield treatment. Moreover, crystallite size was significantly reduced upto 70% in treated SS as compared to control. The yield strength calculated using Hall-Petch equation, was significantly increased upto 216.5% in treated SS, as compared to control. This could be due to significant reduction of crystallite size in treated SS after biofield treatment. In FT-IR spectra, intensity of the absorption peak at wavenumber 1107 cm-1 (control) attributing to Fe-O-H bond was diminished in case of treated SS. These findings suggest that biofield treatment has substantially altered the structural, physical and mechanical properties of treated SS powder.
Category: Thermodynamics and Energy

[4] viXra:1607.0164 [pdf] submitted on 2016-07-13 23:17:52

Fourier Transform Infrared and Ultraviolet-Visible Spectroscopic Characterization of Biofield Treated Salicylic Acid and Sparfloxacin

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 6 Pages.

Salicylic acid is a naturally occurring derivative of benzoic acid, and widely used in organic synthesis and as a plant hormone. Sparfloxacin is fluorinated quinolone antibiotic having broad spectrum antimicrobial property. The present study was aimed to evaluate the impact of biofield treatment on spectral properties of salicylic acid and sparfloxacin using FT-IR and UV-Vis spectroscopic techniques. The study was carried out in two groups, one was set to control, and another was subjected to biofield treatment. FT-IR spectrum of treated salicylic acid showed the upstream shifting in wavenumber of C-H stretching from 2999 to 3004 cm-1 and 2831 to 2837 cm-1 and C=O asymmetric stretching vibration from 1670 to 1683 cm-1 and 1652 to 1662 cm-1. The peak intensity in treated salicylic acid at 1558 cm-1 (aromatic C=C stretching) and 1501 cm-1 (C-C stretching) was increased as compared to control. FT-IR spectrum of treated sparfloxacin showed a downstream shifting in wavenumber of C-H stretching from 2961 to 2955 cm-1 and 2848 to 2818 cm-1, and upstream shifting in wavenumber of C=O (pyridone) stretching from 1641 to 1648 cm-1. Besides, increased intensity of peaks in treated sparfloxacin was found at 1628 cm-1 [C=C stretching (pyridone)] and 1507 cm-1 (N-H bending) as compared to control. UV spectrum of biofield treated salicylic acid exhibited a shifting of wavelength (λmax) from 295.8 to 302.4 nm and 231.2 to 234.4 nm, with respect to control. Likewise, biofield treated sparfloxacin showed the shifting in UV wavelength (λmax) from 373.8 to 380.6 nm and 224.2 to 209.2 nm. Over all, the results suggest that alteration in wavenumber of IR peaks in treated samples might be occurred due to biofield induced alteration in force constant and dipole moment of some bonds. The changes in UV wavelength (λmax) of treated sample also support the FT-IR results. Due to alteration in force constant and bond strength, the chemical stability of structure of treated drugs might also be increased, which could be beneficial for self-life of biofield treated drugs.
Category: Thermodynamics and Energy

[3] viXra:1607.0156 [pdf] submitted on 2016-07-13 01:23:34

Evaluation of Biofield Treatment on Physical and Structural Properties of Bronze Powder

Authors: Mahendra Kumar Trivedi
Comments: 6 Pages.

Bronze, a copper-tin alloy, widely utilizing in manufacturing of gears, bearing, and packing technologies due to its versatile physical, mechanical, and chemical properties. The aim of the present work was to evaluate the effect of biofield treatment on physical and structural properties of bronze powder. Bronze powder was divided into two samples, one served as control and the other sample was received biofield treatment. Control and treated bronze samples were characterized using x-ray diffraction (XRD), particle size analyzer, scanning electron microscopy (SEM), and Fourier transform infrared (FT-IR) spectroscopy. XRD result showed that the unit cell volume was reduced upto 0.78% on day 78 in treated bronze as compared to control. Further, the crystallite size was significantly reduced upto 49.96% in treated bronze sample on day 106 as compared to control. In addition, the biofield treatment has significantly reduced the average particle size upto 18.22% in treated bronze powder as compared to control. SEM data showed agglomerated and welded particles in control bronze powder, whereas fractured morphology at satellites boundaries were observed in treated bronze. The yield strength of bronze powder calculated using HallPetch equation, was significantly changed after biofield treatment. The FT-IR analysis showed that there were three new peaks at 464 cm-1, 736 cm-1, and 835 cm-1 observed in treated bronze as compared to control; indicated that the biofield treatment may alter the bond properties in bronze. Therefore, the biofield treatment has substantially altered the characteristics of bronze at physical and structural level.
Category: Thermodynamics and Energy

[2] viXra:1607.0036 [pdf] submitted on 2016-07-03 23:20:25

Characterization of Physical and Structural Properties of Aluminium Carbide Powder: Impact of Biofield Treatment

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 4 Pages.

Aluminium carbide (Al4 C3 ) has gained extensive attention due to its abrasive and creep resistance properties. Aim of the present study was to evaluate the impact of biofield treatment on physical and structural properties of Al4 C3 powder. The Al4 C3 powder was divided into two parts i.e. control and treated. Control part was remained as untreated and treated part received biofield treatment. Subsequently, control and treated Al4 C3 samples were characterized using X-ray diffraction (XRD), surface area analyser and Fourier transform infrared spectroscopy (FTIR). XRD data revealed that lattice parameter and unit cell volume of treated Al4 C3 samples were increased by 0.33 and 0.66% respectively, as compared to control. The density of treated Al4 C3 samples was reduced upto 0.65% as compared to control. In addition, the molecular weight and crystallite size of treated Al4 C3 samples were increased upto 0.66 and 249.53% respectively as compared to control. Furthermore, surface area of treated Al4 C3 sample was increased by 5% as compared to control. The FT-IR spectra revealed no significant change in absorption peaks of treated Al4 C3 samples as compared to control. Thus, XRD and surface area results suggest that biofield treatment has substantially altered the physical and structural properties of treated Al4 C3 powder.
Category: Thermodynamics and Energy

[1] viXra:1607.0035 [pdf] submitted on 2016-07-03 23:22:28

Fourier Transform Infrared and Ultraviolet-Visible Spectroscopic Characterization of Ammonium Acetate and Ammonium Chloride: An Impact of Biofield Treatment

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 6 Pages.

Ammonium acetate and ammonium chloride are the white crystalline solid inorganic compounds having wide application in synthesis and analytical chemistry. The aim of present study was to evaluate the impact of biofield treatment on spectral properties of inorganic salt like ammonium acetate and ammonium chloride. The study was performed in two groups of each compound i.e., control and treatment. Treatment groups were received Mr. Trivedi’s biofield treatment. Subsequently, control and treated groups were evaluated using Fourier Transform Infrared (FT-IR) and Ultraviolet-Visible (UV-Vis) spectroscopy. FT-IR spectrum of treated ammonium acetate showed the shifting in wavenumber of vibrational peaks with respect to control. Like, the N-H stretching was shifted from 3024-3586 cm-1 to 3033-3606 cm-1, C-H stretching from 2826-2893 cm-1 to 2817-2881 cm-1, C=O asymmetrical stretching from 1660-1702 cm-1 to 1680-1714 cm-1, N-H bending from 1533-1563 cm-1 to 1506-1556 cm-1 etc. Treated ammonium chloride showed the shifting in IR frequency of three distinct oscillation modes in NH4 ion i.e., at ν1 , 3010 cm-1 to 3029 cm-1; ν2 , 1724 cm-1 to 1741 cm-1; and ν3 , 3156 cm-1 to 3124 cm-1. The N-Cl stretching was also shifted to downstream region i.e., from 710 cm-1 to 665 cm-1 in treated ammonium chloride. UV spectrum of treated ammonium acetate showed the absorbance maxima (λmax) at 258.0 nm that was shifted to 221.4 nm in treated sample. UV spectrum of control ammonium chloride exhibited two absorbance maxima (λmax) i.e., at 234.6 and 292.6 nm, which were shifted to 224.1 and 302.8 nm, respectively in treated sample. Overall, FT-IR and UV data of both compounds suggest an impact of biofield treatment on atomic level i.e., at force constant, bond strength, dipole moments and electron transition energy between two orbitals of treated compounds as compared to respective control.
Category: Thermodynamics and Energy