Thermodynamics and Energy

1609 Submissions

[20] viXra:1609.0419 [pdf] submitted on 2016-09-29 05:28:28

Thought Intervention Through Biofield Changing Metal Powder Characteristics Experiments on Powder Characterisation at a PM Plant

Authors: Mahendra Kumar Trivedi
Comments: 2 Pages.

In earlier papers the effect of Mr. Trivedi’s thought intervention through biofield in his physical presence on the atomic, crystalline and particle characteristics of first series of transition metal powders, group four metals and carbon allotropes are discussed. In the present paper we demonstrate this unusual effect on sieve size distribution, apparent density and flow of several metal powders under PM plant conditions.
Category: Thermodynamics and Energy

[19] viXra:1609.0414 [pdf] submitted on 2016-09-29 02:22:28

A Transcendental Approach to Changing Metal Powder Characteristics

Authors: Mahendra Kumar Trivedi
Comments: 8 Pages.

It's not often that Metal Powder Report departs from the path of hard facts into the somewhat ‘mushier’ area of metaphysics, but opportunities crop up. While recognising that science has its fair share of charlatans, one such opportunity was presented by a paper submitted by an Indian researcher in which he details work aimed at probing the effects on powder samples where changes were apparently generated by thought. Some will laugh, others will cry, but perhaps among our readers there are those who might be able to help elucidate further the phenomena described…
Category: Thermodynamics and Energy

[18] viXra:1609.0372 [pdf] submitted on 2016-09-26 04:30:36

Effect of Biofield Energy Treatment on Physical and Structural Properties of Calcium Carbide and Praseodymium Oxide

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 6 Pages.

Calcium carbide (CaC2) is known for its wide applications in the production of acetylene and calcium cyanamide, whereas praseodymium Oxide (Pr6O11) is used in sensors and high-temperature pigments. The present study was designed to evaluate the effect of biofield energy treatment on the physical and structural properties of CaC2 and Pr6O11 powder. The powder samples of both compounds were equally divided into two parts, referred as control and treated. The treated part of both compounds was subjected to Mr. Trivedi’s biofield energy treatment. After that, both control and treated samples were investigated using X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy. The XRD data revealed that the biofield energy treatment has increased the lattice parameter of unit cell by 3.35% in the treated CaC2 sample as compared to the control. The density of treated CaC2 sample was reduced upto 4.49% and molecular weight was increased upto 4.70% as compared to the control. The crystallite size of CaC2 was reduced from 98.19 nm (control) to 52.93 nm in the treated CaC2 sample as compared to the control. The FT-IR analysis exhibited that the absorption band attributed to C=C stretching vibration was shifted to higher wavenumber as compared to the control. Thus, above data suggested that biofield energy treatment has considerable impact on the physical and structural properties of CaC2. Besides, in Pr6O11, the XRD did not show any significant change in lattice parameter, density and molecular weight. However, the FT-IR spectra revealed that the absorption band attributing to Pr-O stretching vibration was shifted from 593 cm-1 (control) to higher wavenumber 598 cm-1 in the treated Pr6O11 sample. Therefore, the biofield energy treatment could be applied to modify the CaC2 and Pr6O11 powder for the use in chemical industries.
Category: Thermodynamics and Energy

[17] viXra:1609.0317 [pdf] submitted on 2016-09-21 13:19:05

Development of User-Friendly Software to Design Dairy Heat Exchanger and Performance Evaluation

Authors: Dipankar Mandal
Comments: 7 Pages. International Journal of Engineering Research and Applications ISSN : 2248-9622,Vol. 5, Issue 2,2015, pp.111-117

The paper proposes a calculation algorithm and development of a software in Visual Basic(Visual Studio 2012 Express Desktop) used in heat transfer studies when different heat exchangers are involved (e.g. Helical Type Triple Tube Heat Exchanger , Plate Type Heat Exchanger).It includes the easy calculation of heat transfer coefficient and followed by the design and simulation of heat exchanger design parameter by inputting general known parameters of a heat exchanger into the developed software—DAIRY-HE. A parametric study is conducted using the software interface to determine the length of tubes or dimensions of heat exchanger.
Category: Thermodynamics and Energy

[16] viXra:1609.0312 [pdf] submitted on 2016-09-21 12:24:50

Development of a Multipurpose Cold Storage Design Software MCS_BCKV V.1.14.1

Authors: Dipankar mandal
Comments: 15 Pages. International Journal of Engineering Science & Advanced Technology ISSN: 2250-3676. Volume-4, Issue-6, 519-535

The paper proposes development of an interactive, flexible and user friendly software for designing a multipurpose cold storage in Visual Studio Express Desktop2012 environment and evaluation. The developed software-MCS_BCKV has a criterion for typical load estimation and designing of cold storage, selection of evaporator, compressor and condenser in developing country. Load estimating and designing through computer automation is likely to make a positive impact in the dynamic nature of cold storage applications.
Category: Thermodynamics and Energy

[15] viXra:1609.0290 [pdf] submitted on 2016-09-20 00:07:49

Impact of Biofield Treatment on Growth and Anatomical Characteristics of Pogostemoncablin (Benth.)

Authors: Gopal Nayak, Trivedi Science
Comments: 9 Pages.

Pogostemoncablin is a known aromatic plant which is cultivated for its essential oil widely applicated in perfumery and cosmetic industries. In the present study, the effect of biofield treatment was studied on the growth of P. cablin. For this study an in-vitro culture system was set up in two groups, viz., control and treatment, each of which was derived from three different explant sources, namely leaf, node and petiole. Further these in-vitro plantlets were hardened and transferred to external environment. The stomatal cells and epidermal hair growth were also studied at various morphogenetic stages. The study revealed that a single spell of biofield energy treatment produced significant increase in growth in treated group throughout all the morphogenetic phases from in-vitro to in vivo level. A remarkable increase in stomatal cells and epidermal hair was also seen in treated group.
Category: Thermodynamics and Energy

[14] viXra:1609.0282 [pdf] submitted on 2016-09-19 01:08:12

Effect of Biofield Treatment on the Physical and Thermal Characteristics of Vanadium Pentoxide Powders

Authors: Mahendra Kumar Trivedi
Comments: 4 Pages.

In the present investigation V2O5 powders are exposed to biofield. Both the exposed and unexposed powders are later characterized by various techniques. The average particle size is found to decrease with increase in number of days after treatment upto a maximum of 15.9% in 110 days indicating severe fracture at agglomerate/crystallite boundaries. The BET surface area showed a surprising decrease (it should increase as particle size is decreased) of 7.22% in 109 days indicating the surface densification/removal of sharp surface corners/formation of large particles. SEM photographs indeed showed that samples exposed to biofield after 20 days showed increase in size as well as rounded corners. Thermal analysis indicated an increase in melting temperature by 9.9% in samples treated after 57 days along with a much reduced change in weight.
Category: Thermodynamics and Energy

[13] viXra:1609.0281 [pdf] submitted on 2016-09-19 01:10:09

Atomic, Crystalline and Powder Characteristics of Treated Zirconia and Silica Powders

Authors: Mahendra Kumar Trivedi
Comments: 6 Pages.

In the present investigation Zirconium oxide and silicon dioxide powders are exposed to Bio-field. Both the exposed and unexposed powders are later characterized by various techniques. The treated powders when characterized by X-ray diffraction are found to exhibit significant increase and decrease in the lattice parameters of the unit cell, crystallite size and density. The lattice parameters are then used to compute the molecular weight and total number of protons and neutrons in the molecule, which showed an increase up to 0.24 and decrease up to 0.31 percent. It is speculated that the Biofield energy transmitted by Mr. Trivedi is acting on the nucleus in the atoms through some reversible weak interaction of larger cross section causing changes in the proton to neutron ratios and thus energy to mass and mass to energy. Thus the effect is felt by all the atoms, and hence the unit cell, single crystal grain and grain boundaries. The stresses generated in turn may have caused deformation and fracture of the weak interfaces in the polycrystalline powders such as the crystallite and grain boundaries.
Category: Thermodynamics and Energy

[12] viXra:1609.0271 [pdf] submitted on 2016-09-19 01:04:55

Effect of Bio Field Treatment on the Physical and Thermal Characteristics of Silicon, Tin and Lead Powders

Authors: Mahendra Kumar Trivedi
Comments: 7 Pages.

In the present investigation silicon, tin and lead powders are exposed to bio field. Both the exposed and unexposed powders are later characterized by various techniques. The average particle size, after an initial decrease is found to increase with increase in number of days after treatment although the size is lee than that exhibited by untreated powder, suggesting the operation of competing mechanisms fracture and sintering. The BET surface area increased slightly in silicon powder but did not change in tin and lead powders. SEM photographs showed that samples exposed to bio field after 20 days showed fracture paths and fractures at inter and intra particle boundaries in treated powders. Thermal analysis indicated a decrease in heat of reaction and decrease in mass in treated samples.
Category: Thermodynamics and Energy

[11] viXra:1609.0252 [pdf] submitted on 2016-09-17 05:12:00

Effect of Superconsciousness External Energy on Atomic, Crystalline and Powder Characteristics of Carbon Allotrope Powders

Authors: Mahendra Kumar Trivedi
Comments: 9 Pages. 9

Scientists are searching for eluding link between spirituality and science. Some believe fundamental essences of universe to be energy and information. As per current understanding, energy and matter always coexisted and is considered one and the same. Energy is considered as 'matter in perpetual motion' and matter as 'stationary energy'. Interconversion between matter and energy has been defined by Einstein's famous energy–mass equation (E=mc2) which has been proven by nuclear physicists using complex nuclear reactions involving high energy particles. However, many spiritual masters have claimed to realise this energy–matter interconversion using their spiritual powers/energy but scientifically unknown and unverified. It is the first time that the lead author (M. K. Trivedi) has been using his unique superconsciousness energy in the form of thought intervention and information signals to bring about dramatic and radical transformations in the physical and structural properties of organic and inorganic materials. The present paper is the first scientific report that deals with the effect of consciousness energy which M. K. Trivedi uniquely communicates through thought intervention by sending an information signal that transforms carbon allotropes. The changes the energy has caused at the atomic, molecular and crystalline levels in diamond, graphite and activated charcoal have been studied very systematically and are reported in this paper. It has been observed that the superconsciousness energy when transmitted to carbon allotropes has changed the lattice parameters of unit cells, crystallite sizes and densities. Computed weight and effective nuclear charge of the treated atoms exhibited significant variation. It is believed that the energy is acting on the nuclei causing their transmutation.
Category: Thermodynamics and Energy

[10] viXra:1609.0228 [pdf] submitted on 2016-09-15 04:45:40

Impact of Biofield Treatment on Growth and Yield of Lettuce and Tomato

Authors: Trivedi Foundation
Comments: 6 Pages.

Recent studies report the effect of biofield treatment on changes in structural characteristics of organic and inorganic matter, on cancer cells in vitro and on overall plant development. This study tested the impact of the same treatment applied to lettuce and tomato seeds and transplants (Lactuca sativa var. capitata and Lycopersiconesculentum var. Roma) in commercial plantings with and without fertilizers and pesticides, in relation to yield, quality, and pest inhibition. Treated lettuce plants with fertilizer and pesticide applications were more vigorous, exhibited less incidence of soil-borne fungal wilt, and subsequent yield was statistically greater 43% compared to untreated plants. Treated plants with no fertilizer or pesticide applications in the field behaved similarly to untreated plants that received routine fertilizer and pest control inputs. Similarly, fertilizer applied and fertilizer non-applied treated tomato plants exhibited a 25% and 31% increase in total observable yields respectively. Treated tomato and lettuce plants also measured higher in total leaf tissue chlorophyll content. The combination of biofield treatment along with administration of chemical additives demonstrated the best results with statistically increased yields and higher pest resistance in both test cropping systems. The specific mechanisms that lead to these preliminary results have yet to be determined.
Category: Thermodynamics and Energy

[9] viXra:1609.0147 [pdf] submitted on 2016-09-12 00:12:56

Influence of Biofield Energy Treatment on Isotopic Abundance Ratio in Aniline Derivatives

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 5 Pages.

The aim of this study was to evaluate the impact of biofield energy treatment on the isotopic abundance of 13C/12C or 2H/1H or 15N/14N ≡ (PM+1)/PM in aniline; and (PM+1)/PM and 81Br/79Br ≡ (PM+2)/PM in 4-bromoaniline using Gas Chromatography-Mass Spectrometry (GC-MS). Aniline and 4-bromoaniline samples were divided into two parts: control and treated. The control part remained as untreated, while the treated part was subjected to Mr. Trivedi’s biofield energy treatment. The treated samples were subdivided in three parts named as T1, T2, and T3 for aniline and four parts named as T1, T2, T3, and T4 for 4-bromoaniline. The GC-MS data revealed that the isotopic abundance ratio of (PM+1)/PM in aniline was increased from -40.82%, 30.17% and 73.12% in T1, T2 and T3 samples respectively. However in treated samples of 4-bromoaniline the isotopic abundance ratio of PM+1/PM was increased exponentially from -4.36 % (T1) to 368.3% (T4) as compared to the control. A slight decreasing trend of the isotopic ratio of (PM+2)/ PM in 4-bromoaniline was observed after biofield energy treatment. The GC-MS data suggests that the biofield energy treatment has significantly increased the isotopic abundance of 2H, 13C and 15N in the treated aniline and 4-bromoaniline, while slight decreased the isotopic abundance of 81Br in treated 4-bromoaniline as compared to their respective control.
Category: Thermodynamics and Energy

[8] viXra:1609.0127 [pdf] submitted on 2016-09-10 04:12:36

Evaluation of Isotopic Abundance Ratio in Naphthalene Derivatives After Biofield Energy Treatment Using Gas Chromatography-Mass Spectrometry

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 7 Pages.

Naphthalene and 2-naphthol are two naphthalene derivatives, which play important roles in the chemical and pharmaceutical industries. The aim of this study was to evaluate the impact of biofield energy treatment on the isotopic abundance of 13C/12C or 2H/1H and 18O/16O in naphthalene and 2-naphthol using gas chromatography-mass spectrometry (GCMS). Naphthalene and 2-naphthol samples were divided into two parts: control and treated. The control group remained as untreated, while the treated group was subjected to Mr. Trivedi’s biofield energy treatment. The treated samples were subdivided into four parts named as T1, T2, T3 and T4. Control and treated samples were characterized using GC-MS. The GC-MS data revealed that the isotopic abundance ratio of 13C/12C or 2H/1H, (PM+1)/PM and 18O/16O, (PM+2)/PM were increased significantly in treated naphthalene and 2-naphthol (where PM-primary molecule, (PM+1) isotopic molecule either for 13C or 2H and (PM+2) is the isotopic molecule for 18O). The isotopic abundance ratio of (PM+1)/PM in the treated T2 samples of naphthalene and 2-naphthol was increased up to 129.40% and 165.40%, respectively as compared to their respective control. However, the isotopic abundance ratio of (PM+1)/PM in the treated T1, T3 and T4 samples of naphthalene was decreased by 44.41%, 33.49% and 30.3%, respectively as compared to their respective control. While in case of 2- naphthol, the isotopic abundance ratio of (PM+1)/PM was decreased by 39.57% in T1 sample and then gradually increased up to 9.85% from T3 to T4 samples. The isotopic abundance ratio of (PM+2)/PM in treated T2 sample of 2-naphthol was increased up to 163.24%, whereas this value was decreased by 39.57% in treated T1 sample. The GC-MS data suggest that the biofield energy treatment has significantly altered the isotopic abundance of 2H, 13C in naphthalene and 2H, 13C and 18O in 2- naphthol as compared to the control.
Category: Thermodynamics and Energy

[7] viXra:1609.0124 [pdf] submitted on 2016-09-09 22:00:50

Search for Physical Origin of Intelligence

Authors: Michail Zak
Comments: 29 Pages.

The challenge of this work is to connect physics with the concept of intelligence. By intelligence we understand a capability to move from disorder to order without external resources, i.e. in violation of the second law of thermodynamics. The objective is to find such a mathematical object described by ODE that possesses such a capability. The proposed approach is based upon modification of the Madelung version of the Schrodinger equation by replacing the force following from quantum potential with non-conservative forces that link to the concept of information. A mathematical formalism suggests that a hypothetical intelligent particle, besides the capability to move against the second law of thermodynamics, acquires such properties like self-image, self-awareness, self- supervision, etc. that are typical for Livings. However since this particle being a quantum-classical hybrid acquires non-Newtonian and non-quantum properties, it does not belong to the physics matter as we know it: the modern physics should be complemented with the concept of the information force that represents a bridge to intelligent particle. As a follow-up of the proposed concept, the following question is addressed: can artificial intelligence (AI) system composed only of physical components compete with a human? The answer is proven to be negative if the AI system is based only on simulations, and positive if digital devices are included. It has been demonstrated that there exists such a quantum neural net that performs simulations combined with digital punctuations. The universality of this quantum-classical hybrid is in capability to violate the second law of thermodynamics by moving from disorder to order without external resources. This advanced capability is illustrated by examples. In conclusion, a mathematical machinery of the perception that is the fundamental part of a cognition process as well as intelligence is introduced and discussed. The discovery of isolated dynamical systems that can decrease entropy in violation of the second law of thermodynamics, and resemblances of these systems to livings implies that Life can slow down heat death of the Universe, and that can be associated with the purpose of Life.
Category: Thermodynamics and Energy

[6] viXra:1609.0107 [pdf] submitted on 2016-09-08 23:41:48

Characterization of Physicochemical and Thermal Properties of Biofield Treated Ethyl Cellulose and Methyl Cellulose

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 9 Pages.

Cellulose and its derivatives are used as potential matrices for biomaterials and tissue engineering applications. The objective of present research was to investigate the influence of biofield treatment on physical, chemical and thermal properties of ethyl cellulose (EC) and methyl cellulose (MC). The study was performed in two groups (control and treated). The control group remained as untreated, and biofield treatment was given to treated group. The biofield treated polymers are characterized by Fourier transform infrared spectroscopy (FT-IR), CHNSO analysis, X-ray diffraction study (XRD), Differential Scanning calorimetry (DSC), and thermogravimetric analysis (TGA). FT-IR analysis of treated EC showed downward shifting in C-O-C stretching peak from 1091→1066 cm-1 with respect to control. However, the treated MC showed upward shifting of –OH stretching (3413→3475) and downward shifting in C-O stretching (1647→1635 cm-1) vibrations with respect to control MC. CHNSO analysis showed substantial increase in percent hydrogen and oxygen in treated polymers with respect to control. XRD diffractogram of EC and MC affirmed the typical semi-crystalline nature. The crystallite size was substantially increased by 20.54% in treated EC with respect to control. However, the treated MC showed decrease in crystallite by 61.59% with respect to control. DSC analysis of treated EC showed minimal changes in crystallization temperature with respect to control sample. However, the treated and control MC did not show any crystallization temperature in the samples. TGA analysis of treated EC showed increase in thermal stability with respect to control. However, the TGA thermogram of treated MC showed reduction in thermal stability as compared to control. Overall, the result showed substantial alteration in physical, chemical and thermal properties of treated EC and MC.
Category: Thermodynamics and Energy

[5] viXra:1609.0103 [pdf] replaced on 2017-02-28 08:44:22

Statistical Characterization of Heat Release Rates from Electrical Enclosure Fires for Nuclear Power Plant Applications

Authors: Raymond HV Gallucci, Brian Metzger
Comments: 32 Pages. Accepted at PSAM13 (Seoul, October 2016) and RAMS2017 (Orlando, January 2017), but not presented due to lack of travel funds; published in Fire Technology, 2017 (http://link.springer.com/article/10.1007/s10694-016-0633-z)

Since the publication of NUREG/CR-6850 / EPRI 1011989 in 2005, the US nuclear industry has sought to re-evaluate the default peak heat release rates (HRRs) for electrical enclosure fires typically used as fire modeling inputs to support fire probabilistic risk assessments (PRAs), considering them too conservative. HRRs are an integral part of the fire phenomenological modeling phase of a fire PRA, which consists of identifying fire scenarios which can damage equipment or hinder human actions necessary to prevent core damage. Fire ignition frequency, fire growth and propagation, fire detection and suppression, and mitigating equipment and actions to prevent core damage in the event fire damage still occurred are all parts of a fire PRA. The fire growth and propagation phase incorporates fire phenomenological modeling where HRRs have a key effect. A major effort by the Electric Power Research Institute and Science Applications International Corporation in 2012 was not endorsed by the US Nuclear Regulatory Commission (NRC) for use in risk-informed, regulatory applications. Subsequently the NRC, in conjunction with the National Institute of Standards and Technology, conducted a series of tests for representative nuclear power plant electrical enclosure fires designed to definitively establish more realistic peak HRRs for these often important contributors to fire risk. The results from these tests are statistically analyzed to develop two probabilistic distributions for peak HRR per unit mass of fuel that refine the values from NUREG/CR-6850, thereby providing a fairly simple means by which to estimate peak HRRs from electrical enclosure fires for fire modeling in support of fire PRA. Unlike NUREG/CR-6850, where five different distributions are provided, or NUREG-2178, which now provides 31, the peak HRRs for electrical enclosure fires can be characterized by only two distributions. These distributions depend only on the type of cable, namely qualified vs. unqualified, for which the mean peak HRR per unit mass is 11.3 and 23.2 kW/kg, respectively, essentially a factor of two difference. Two-sided, 90th percentile confidence bounds are 0.091 to 41.15 kW/kg for qualified cables, and 0.027 to 95.93 kW/kg for unqualified cables. From the mean (~70th percentile) upward, the peak HRR/kg for unqualified cables is roughly twice that that for qualified, increasing slightly with higher percentile, an expected phenomenological trend. Simulations using variable fuel loadings are performed to demonstrate how the results from this analysis may be used for nuclear power plant applications.
Category: Thermodynamics and Energy

[4] viXra:1609.0095 [pdf] submitted on 2016-09-08 04:41:56

Characterization of Thermal and Physical Properties of Biofield Treated Acrylamide and 2-Chloroacetamide

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 6 Pages.

Acrylamide (AM) and 2-chloroacetamide (CA) are widely used in diverse applications such as biomedical, drug delivery, waste water treatment, and heavy metal ion removal. The objective of this study was to evaluate the influence of biofield treatment on physical and thermal properties of amide group containing compounds (AM and CA). The study was performed in two groups (control and treated). The control group remained as untreated, and biofield treatment was given to treated group. The control and treated compounds were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and surface area analysis. XRD of treated AM showed decrease in intensity of peaks as compared to control sample. However, the treated AM showed increase in volume of unit cell (0.16%) and molecular weight (0.16%) as compared to control. The crystallite size was decreased by 33.34% in treated AM as compared to control Whereas, the XRD diffractogram of treated CA showed increase in intensity of crystalline peaks as compared to control. The percentage volume of unit cell (-1.92%) and molecular weight (-1.92%) of treated CA were decreased as compared to control. However, significant increase in crystallite size (129.79%) was observed in treated CA as compared to control. DSC of treated AM showed increase in melting temperature as compared to control sample. Similarly, the treated CA also showed increase in melting temperature with respect to control. Latent heat of fusion (ΔH) was significantly changed in treated AM and CA as compared to control samples. TGA showed increase in thermal stability of treated AM and CA which was evidenced by increase in thermal decomposition temperature (Tmax) as compared to control. Surface area analysis of treated AM showed increase (31.6%) in surface area as compared to control. However, a decrease (30.9%) in surface area was noticed in treated CA as compared to control. Study results suggest that biofield treatment has significant impact on the physical and thermal properties of AM and CA.
Category: Thermodynamics and Energy

[3] viXra:1609.0085 [pdf] submitted on 2016-09-07 07:14:57

Evaluation of Plant Growth, Yield and Yield Attributes of Biofield Energy Treated Mustard (Brassica Juncea) and Chick Pea (Cicer Arietinum) Seeds

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 5 Pages.

The present study was carried out to evaluate the effect of Mr. Trivedi’s biofield energy treatment on mustard (Brassica juncea) and chick pea (Cicer arietinum) for their growth, yield, and yield attributes. Both the samples were divided into two groups. One group was remained as untreated and coded as control, while the other group (both seed and plot) was subjected to Mr. Trivedi’s biofield energy treatment and referred as the treated. The result showed the plant height of mustard and chick pea was increased by 13.2 and 97.41%, respectively in the treated samples as compared to the control. Additionally, primary branching of mustard and chick pea was improved by 7.4 and 19.84%, respectively in the treated sample as compared to the control. The control mustard and chick pea crops showed high rate of infection by pests and diseases, while treated crops were free from any infection of pests and disease. The yield attributing characters of mustard showed, lucidly higher numbers of siliquae on main shoot, siliquae/plant and siliquae length were observed in the treated seeds and plot as compared with the control. Moreover, similar results were observed in the yield attributing parameters of chick pea viz. pods/plant, grains/pod as well as test weight of 1000 grains. The seed and stover yield of mustard in treated plots were increased by 61.5% and 25.4%, respectively with respect to the control. However, grain/seed yield of mustard crop after biofield energy treatment was increased by 500% in terms of kg per meter square as compared to the control. Besides, grain/seed yield of chick pea crop after biofield energy treatment was increased by 500% in terms of kg per meter square. The harvest index of biofield treated mustard was increased by 21.83%, while it was slight increased in case of chick pea. In conclusion, the biofield energy treatment could be used on both the seeds and plots of mustard and chick pea as an alternative way to increase the production and yield.
Category: Thermodynamics and Energy

[2] viXra:1609.0068 [pdf] submitted on 2016-09-06 05:12:54

Determination of Isotopic Abundance of 2H, 13C, 18O, and 37Cl in Biofield Energy Treated Dichlorophenol Isomers

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 7 Pages.

2,4-Dichlorophenol (2,4-DCP) and 2,6-dichlorophenol (2,6-DCP) are two isomers of dichlorophenols, have been used as preservative agents for wood, paints, vegetable fibers and as intermediates in the production of pharmaceuticals and dyes. The aim of the study was to evaluate the impact of biofield energy treatment on the isotopic abundance ratios of 2H/1H or 13C/12C, and 18O/16O or 37Cl/35Cl, in dichlorophenol isomers using gas chromatography-mass spectrometry (GC-MS). The 2,4- DCP and 2,6-DCP samples were divided into two parts: control and treated. The control sample remained as untreated, while the treated sample was further divided into four groups as T1, T2, T3, and T4. The treated group was subjected to Mr. Trivedi’s biofield energy treatment. The GC-MS spectra of 2,4-DCP and 2,6-DCP showed three to six m/z peaks at 162, 126, 98, 73, 63, 37 etc. due to the molecular ion peak and fragmented peaks. The isotopic abundance ratios (percentage) in both the isomers were increased significantly after biofield treatment as compared to the control. The isotopic abundance ratio of (PM+1)/PM and (PM+2)/PM after biofield energy treatment were increased by 54.38% and 40.57% in 2,4-DCP and 126.11% and 18.65% in 2,6-DCP, respectively which may affect the bond energy, reactivity and finally stability to the product.
Category: Thermodynamics and Energy

[1] viXra:1609.0033 [pdf] submitted on 2016-09-03 06:46:46

Physical, Thermal, and Spectroscopic Characterization of Biofield Energy Treated Murashige and Skoog Plant Cell Culture Media

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 8 Pages.

The Murashige and Skoog medium (MS media) is a chemically defined and widely used as a growth medium for plant tissue culture techniques. The present study was attempted to evaluate the impact of biofield energy treatment on the physical, thermal, and spectral properties of MS media. The study was performed in two groups; one was kept as control while another was subjected to Mr. Trivedi’s biofield energy treatment and coded as treated group. Afterward, both the control and treated samples were analyzed using various analytical techniques. The X-ray diffraction (XRD) analysis showed 19.92% decrease in the crystallite size of treated sample with respect to the control. The thermogravimetric analysis (TGA) showed the increase in onset temperature of thermal degradation (Tonset) by 9.41% and 10.69% in first and second steps of thermal degradation, respectively after the biofield energy treatment as compared to the control. Likewise, Tmax (maximum thermal degradation temperature) was increased by 17.43% and 28.61% correspondingly in the first and second step of thermal degradation in the treated sample as compared to the control. The differential scanning calorimetry (DSC) analysis indicated the 143.51% increase in the latent heat of fusion of the treated sample with respect to the control sample. The Fourier transform infrared spectroscopy (FT-IR) spectrum of treated MS media showed the alteration in the frequency such as 3165→3130 cm-1 (aromatic C-H stretching); 2813→2775 cm-1 (aliphatic C-H stretching); 1145→1137 cm-1 (C-N stretching), 995→1001 cm-1 (S=O stretching), etc. in the treated sample with respect to the control. The UV spectra of control and treated MS media showed the similar absorbance maxima (λmax) i.e. at 201 and 198 nm, respectively. The XRD, TGA-DTG, DSC, and FT-IR results suggested that Mr. Trivedi’s biofield energy treatment has the impact on physical, thermal, and spectral properties of the MS media. As a result, the treated MS media could be more stable than the control, and might be used as better media in the plant tissue culture technique.
Category: Thermodynamics and Energy