Thermodynamics and Energy

1704 Submissions

[4] viXra:1704.0351 [pdf] submitted on 2017-04-26 07:55:13

Laser Cooling

Authors: George Rajna
Comments: 23 Pages.

A team of researchers at Harvard University has successfully cooled a three-atom molecule down to near absolute zero for the first time. [15] A research team led by UCLA electrical engineers has developed a new technique to control the polarization state of a laser that could lead to a new class of powerful, high-quality lasers for use in medical imaging, chemical sensing and detection, or fundamental science research. [14] UCLA physicists have shown that shining multicolored laser light on rubidium atoms causes them to lose energy and cool to nearly absolute zero. This result suggests that atoms fundamental to chemistry, such as hydrogen and carbon, could also be cooled using similar lasers, an outcome that would allow researchers to study the details of chemical reactions involved in medicine. [13] Powerful laser beams, given the right conditions, will act as their own lenses and "self-focus" into a tighter, even more intense beam. University of Maryland physicists have discovered that these self-focused laser pulses also generate violent swirls of optical energy that strongly resemble smoke rings. [12] Electrons fingerprint the fastest laser pulses. [11] A team of researchers with members from Germany, the U.S. and Russia has found a way to measure the time it takes for an electron in an atom to respond to a pulse of light. [10] As an elementary particle, the electron cannot be broken down into smaller particles, at least as far as is currently known. However, in a phenomenon called electron fractionalization, in certain materials an electron can be broken down into smaller "charge pulses," each of which carries a fraction of the electron's charge. Although electron fractionalization has many interesting implications, its origins are not well understood. [9] New ideas for interactions and particles: This paper examines the possibility to origin the Spontaneously Broken Symmetries from the Planck Distribution Law. This way we get a Unification of the Strong, Electromagnetic, and Weak Interactions from the interference occurrences of oscillators. Understanding that the relativistic mass change is the result of the magnetic induction we arrive to the conclusion that the Gravitational Force is also based on the electromagnetic forces, getting a Unified Relativistic Quantum Theory of all 4 Interactions.
Category: Thermodynamics and Energy

[3] viXra:1704.0229 [pdf] submitted on 2017-04-18 23:39:41

Universal Topology W = P ± iV and Horizon of Dark Fluxions and Thermodynamics

Authors: C. Wei Xu
Comments: 7 pages, part II of Unified Physics (part I at http://vixra.org/abs/1704.0221)

Associated with the virtual or physical manifolds, the Universe Topology aggregates quantum objects and forms the second horizon as the group effects of the flow conservations both physically and virtually, called Dark Fluxions, a dynamics cosmology of energy flows. Inherent to its internal nature, the universe produces each of opposite dualities as a complex conjugate, the statistical representation of dark fluxions dynamically affiliated to bulk entropy, motion continuities, statistical works, and interactive fields, giving rise to the horizon of thermodynamics. As a result, this becomes a groundwork in quest for nature transformations delivered by the life energy of dark fluxions, or the dynamic flows of dark energy...
Category: Thermodynamics and Energy

[2] viXra:1704.0194 [pdf] submitted on 2017-04-14 14:03:45

Fermi Puzzle

Authors: George Rajna
Comments: 26 Pages.

In physics, the Fermi-Pasta-Ulam-Tsingou (FPUT) problem—which found that certain nonlinear systems do not disperse their energy, but rather return to their initial excited states—has been a challenge that scientists have tackled repeatedly since 1955. [15] The likelihood of seeing quantum systems violating the second law of thermodynamics has been calculated by UCL scientists. [14] For more than a century and a half of physics, the Second Law of Thermodynamics, which states that entropy always increases, has been as close to inviolable as any law we know. In this universe, chaos reigns supreme. [13] Physicists have shown that the three main types of engines (four-stroke, two-stroke, and continuous) are thermodynamically equivalent in a certain quantum regime, but not at the classical level. [12] For the first time, physicists have performed an experiment confirming that thermodynamic processes are irreversible in a quantum system—meaning that, even on the quantum level, you can't put a broken egg back into its shell. The results have implications for understanding thermodynamics in quantum systems and, in turn, designing quantum computers and other quantum information technologies. [11] Disorder, or entropy, in a microscopic quantum system has been measured by an international group of physicists. The team hopes that the feat will shed light on the "arrow of time": the observation that time always marches towards the future. The experiment involved continually flipping the spin of carbon atoms with an oscillating magnetic field and links the emergence of the arrow of time to quantum fluctuations between one atomic spin state and another. [10] Mark M. Wilde, Assistant Professor at Louisiana State University, has improved this theorem in a way that allows for understanding how quantum measurements can be approximately reversed under certain circumstances. The new results allow for understanding how quantum information that has been lost during a measurement can be nearly recovered, which has potential implications for a variety of quantum technologies. [9] Today, we are capable of measuring the position of an object with unprecedented accuracy, but quantum physics and the Heisenberg uncertainty principle place fundamental limits on our ability to measure. Noise that arises as a result of the quantum nature of the fields used to make those measurements imposes what is called the "standard quantum limit." This same limit influences both the ultrasensitive measurements in nanoscale devices and the kilometer-scale gravitational wave detector at LIGO. Because of this troublesome background noise, we can never know an object's exact location, but a recent study provides a solution for rerouting some of that noise away from the measurement. [8] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory.
Category: Thermodynamics and Energy

[1] viXra:1704.0112 [pdf] replaced on 2017-06-10 11:31:25

Heat, Gravity and Temperature Distribution of Earth, Mars and Venus

Authors: Emil Junvik
Comments: 14 Pages.

Abstract The vertical mean temperature distribution and gravity are coupled to the power of total solar irradiance. A simple geometrical modification of the two-dimensional surface of the blackbody combined with a hemispherical solar irradiation is presented as an explanation of surface temperature. Radiative heat transfer is shown to explain effective temperature and troposphere temperature. The difference between the effective temperature of the perfect blackbody and the observed effective temperature, is found to match the energy needed for the force of gravity when expressed in units of thermal resistance, stress and pressure. The power source strength needed for the effective temperature to be radiated from the atmosphere is shown to be equal to a core temperature of 5770K by using the inverse square law. Altogether this combines to a basic framework of energy distribution inside the system of Earth. It is simply an extension to the blackbody model into a more realistic definition with absorption in depth of a volume, which inevitably leads to a fraction of the heat to be turned into work. It is a suggestion for a new approach of understanding how solar radiation interacts with the planet. The method is used to analyze temperature distribution on Mars which confirms it as a useful model, although with some differences in the results. Venus, with its deep atmosphere, show similar correlation to spherical volumetric distribution, but all three planets have different relationships to Solar Irradiance. Altogether it is shown in this paper that on a bulk scale energy is what dominate the structure of the three planets independently of mass.
Category: Thermodynamics and Energy