Thermodynamics and Energy

1708 Submissions

[5] viXra:1708.0249 [pdf] submitted on 2017-08-21 09:02:44

The Conservation of Kinetic Energy in Elastic Collisions

Authors: Guido F. Nelissen
Comments: 11 Pages.

The 'conservation of energy' is a postulated law that implies the transformation of different forms of 'energy' into one another, while the total amount of 'energy' remains constant. In this paper I demonstrate that the conservation of 'kinetic energy' in perfectly elastic collisions, as well in its macroscopic form as 'kinetic energy of bulk motion' as in its microscopic form as 'kinetic energy of internal motion', is a quantitative expression of which the numerical value remains constant when the total amount of motion of the particle system at the given velocity level is physically conserved.
Category: Thermodynamics and Energy

[4] viXra:1708.0248 [pdf] replaced on 2017-11-15 15:35:34

The Physical Nature of Pressure, Temperature and Thermal Energy

Authors: Guido F. Nelissen
Comments: 12 Pages.

The kinetic theory defines the temperature of an ideal monatomic gas as a measure for the average translational kinetic energy of its particles. This definition ignores the fact that temperature is inevitably characterized by an isotropic distribution of the velocities of the particles over all possible directions and the continuous collisions and thermal radiation that this brings about. In this paper I first demonstrate that ‘the thermal energy’ of an ideal gas is in fact a mathematical expression of the total amount of isotropic momentum flow. This allows me to conclude that the pressure in an ideal gas is a measure for the average two-sided momentum flow across any unit area of the particle system and that the temperature of an ideal gas is a measure for the average two-sided momentum flow across any unit area of that gas, for a unit number density of its molecules, so that the temperature is in fact the pressure for a unit number density. In that way I am able to demonstrate that the Maxwell-Boltzmann speed distribution function is not the fundamental characteristic of thermal motion, but that it is a result of the all-sided collisions that are typical for systems consisting of elastic particles with isotropic motion.
Category: Thermodynamics and Energy

[3] viXra:1708.0053 [pdf] submitted on 2017-08-06 04:31:47

Kirchhoff’s Law of Thermal Emission: What Happens When a Law of Physics Fails an Experimental Test?

Authors: Pierre-Marie Robitaille, Joseph Luc Robitaille
Comments: 6 Pages.

Kirchhoff’s Law of Thermal Emission asserts that, given sufficient dimensions to neglect diffraction, the radiation contained within arbitrary cavities must always be black, or normal, dependent only upon the frequency of observation and the temperature, while independent of the nature of the walls. With this in mind, simple tests were devised to demonstrate that Kirchhoff’s Law is invalid. It is readily apparent that all cavities appear black at room temperature within the laboratory. However, two completely different causes are responsible: 1) cavities made from good emitters self-generate the appropriate radiation and 2) cavities made from poor emitters are filled with radiation already contained in the room, completely independent of the temperature of the cavity. The distinction between these two scenarios can be made by placing a heated object near either type of cavity. In the first case, the cavity emission will remain essentially undisturbed. That is because a real blackbody can do work, instantly converting incoming radiation to an emission which corresponds to the temperature of its walls. In the second case, the cavity becomes filled with radiation which is not characteristic of its own temperature. Contrary to current belief, cavity radiation is entirely dependent on the nature of the walls. When considering a perfect reflector, the radiation will not be black but, rather, will reflect any radiation which was previously incident upon the cavity from the surroundings. This explains why microwave cavities are resonant, not black, and why it is possible to acquire Ultra High Field Magnetic Resonance Imaging (UHFMRI) images using cavity resonators. Conversely, real blackbodies cannot contain any radiation other than that which is characteristic of the temperature of their walls, as shown in Planck’s equation. Blackbody radiation is not universal, Kirchhoff’s Law is false, and cavity radiation is absolutely dependent on the nature of the walls at every frequency of observation. Since they were derived from this law, the concepts of Planck time, Planck temperature, Planck length, and Planck mass are not universal and are devoid of any fundamental meaning in physics.
Category: Thermodynamics and Energy

[2] viXra:1708.0041 [pdf] submitted on 2017-08-04 09:15:56

Limits of Quantum Engines

Authors: George Rajna
Comments: 23 Pages.

Quantum engines are known to operate differently than—and in some cases, outperform—their classical counterparts. [13] Any understanding of the irreversibility of the arrow of time should account the quantum nature of the world that surrounds us. [12] Entropy, the measure of disorder in a physical system, is something that physicists understand well when systems are at equilibrium, meaning there's no external force throwing things out of kilter. But new research by Brown University physicists takes the idea of entropy out of its equilibrium comfort zone. [11] Could scientists use the Second Law of Thermodynamics on your chewing muscles to work out when you are going to die? According to research published in the International Journal of Exergy, the level of entropy, or thermodynamic disorder, in the chewing muscles in your jaw increases with each mouthful. This entropy begins to accumulate from the moment you're "on solids" until your last meal, but measuring it at any given point in your life could be used to estimate life expectancy. [10] There is also connection between statistical physics and evolutionary biology, since the arrow of time is working in the biological evolution also. From the standpoint of physics, there is one essential difference between living things and inanimate clumps of carbon atoms: The former tend to be much better at capturing energy from their environment and dissipating that energy as heat. [8] This paper contains the review of quantum entanglement investigations in living systems, and in the quantum mechanically modeled photoactive prebiotic kernel systems. [7] The human body is a constant flux of thousands of chemical/biological interactions and processes connecting molecules, cells, organs, and fluids, throughout the brain, body, and nervous system. Up until recently it was thought that all these interactions operated in a linear sequence, passing on information much like a runner passing the baton to the next runner. However, the latest findings in quantum biology and biophysics have discovered that there is in fact a tremendous degree of coherence within all living systems. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to understand the Quantum Biology.
Category: Thermodynamics and Energy

[1] viXra:1708.0003 [pdf] submitted on 2017-08-01 04:14:32

Thermoelectric Properties

Authors: George Rajna
Comments: 25 Pages.

A newly discovered collective rattling effect in a type of crystalline semiconductor blocks most heat transfer while preserving high electrical conductivity-a rare pairing that scientists say could reduce heat buildup in electronic devices and turbine engines, among other possible applications. [13] Scientists at Aalto University, Finland, have made a breakthrough in physics. They succeeded in transporting heat maximally effectively ten thousand times further than ever before. The discovery may lead to a giant leap in the development of quantum computers. [12] Maxwell's demon, a hypothetical being that appears to violate the second law of thermodynamics, has been widely studied since it was first proposed in 1867 by James Clerk Maxwell. But most of these studies have been theoretical, with only a handful of experiments having actually realized Maxwell's demon. [11] In 1876, the Austrian physicist Ludwig Boltzmann noticed something surprising about his equations that describe the flow of heat in a gas. Usually, the colliding gas particles eventually reach a state of thermal equilibrium, the point at which no net flow of heat energy occurs. But Boltzmann realized that his equations also predict that, when gases are confined in a specific way, they should remain in persistent non-equilibrium, meaning a small amount of heat is always flowing within the system. [10] There is also connection between statistical physics and evolutionary biology, since the arrow of time is working in the biological evolution also. From the standpoint of physics, there is one essential difference between living things and inanimate clumps of carbon atoms: The former tend to be much better at capturing energy from their environment and dissipating that energy as heat. [8] This paper contains the review of quantum entanglement investigations in living systems, and in the quantum mechanically modeled photoactive prebiotic kernel systems. [7] The human body is a constant flux of thousands of chemical/biological interactions and processes connecting molecules, cells, organs, and fluids, throughout the brain, body, and nervous system. Up until recently it was thought that all these interactions operated in a linear sequence, passing on information much like a runner passing the baton to the next runner. However, the latest findings in quantum biology and biophysics have discovered that there is in fact a tremendous degree of coherence within all living systems. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to understand the Quantum Biology.
Category: Thermodynamics and Energy