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Abstract

A 1986 experiment involving a two-particle entangled system is analyzed, and it
is shown that: (1) the measurement results of that experiment are in contradiction
to  the  discrete  degenerate  form  of  the  quantum  measurement  postulate
(DDQMP) and (2) the measurements done in the experiment are of the positive
operator valued measure (POVM) type.  Thus there exist POVM measurements
which contradict the DDQMP.  A modification to the DDQMP is provided which
agrees with the experimental results.  The modified DDQMP is then applied to a
proposed  experiment  involving  a  three-particle  Greenberger-Horne-Zeilinger
state.

Introduction

The discrete degenerate form of the quantum measurement postulate (DDQMP,
or postulate four in the text of Cohen-Tannoudji, Diu and Laloë [1]) states, in part,
the following:

(DDQMP) The  probability  of  measuring  eigenvalue  k  of  observable  A  on  a

normalized system ( )j
ij iij

c E Ay j= Îå  = eigenspace of A is given by

( )
2

1

J
j

A k
j

p k j y
=

= å  (1)

where J is the degeneracy of the kth basis eigenstate 
j

kj .

For a system of two or more particles, the DDQMP is used when only one part of
the system is being considered during measurement.  For example, consider a

two-particle  system  y ,  a  superposition  of  discrete  eigenstates  ,i jj q =

i jj qÄ  i jj q=  given by 
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,

,ij i j
i j

cy j q= å (2)

where 
2

1ijij
c =å .  Let there be two observers of the system y , “Alice” and

“Bob,”  and  suppose  Alice  wishes  to  make  a  measurement  associated  to

observable A on the system, whose eigenbasis is { }ij .  Now y  is an element

of the eigenspace ( )E A BÄ , where B is Bob’s observable with eigenbasis { }jq

, so Alice’s observable is more properly BA IÄ , where BI  is the identity operator

in the  B eigenspace.  The basis eigenvectors of  Bob then are considered as

degeneracies  in  Alice’s  eigensubspace  ( )BE A IÄ .   That  is,  ( )BE A IÄ  has

eigenbasis  { } { }, j
i j ij q j=  where  for  every  eigenvalue  i there  are  J

degenerate  basis  eigenvectors  denoted  by  the  j index.   The  DDQMP  then
prescribes the probability of Alice measuring eigenvalue k as:

( )
2

1

,
J

A k j
j

p k j q y
=

= å . (3)

In other words, for a two particle system, we have the discrete form of the QMP
for a system of two particles where one part of the system is measured:

(DQMP2) The probability of Alice measuring eigenvalue k of observable  BA IÄ

on a normalized  two-particle  system  ( ),ij i jij
c E A By j q= Î Äå  is  given by

equation (3).

At  this  point  a  question  naturally  arises:  if  Alice  is  uncertain  as  to  which
(degenerate) eigenvector gave rise to eigenvalue k, then why is the DQMP2 not

( )
2

1

,
J

A k j
j

p k j q y
=

= å% ? (4)

After all, for a single particle system, if a result is obtained from one of several
identical intermediate states, (hence it cannot be determined which state gave
the result)  then interference effects arise and the probability  formula,  as with
equation (4), involves a  sum inside the norm, not the other way around, as in
equation (3) and the DQMP2.  On the other hand, for a single-particle system,
the  norm goes  inside the  sum only if  the  pathways  are  distinguishable (and
hence the state which gave the result can in principle at least, be known).  It is
well  understood  that  interference  effects  do  not occur  in  such  instances.
Therefore  it  is  suspected that  equation (3)  does  not account  for  interference
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effects in two-particle systems, although such effects in those systems are well-
known in experiment; see for example, Dopfer’s PhD thesis [2].

Continuing with the Alice and Bob thought experiment above, it should then in
some  instances  be  possible  for  Alice  to  notice  interference  effects  in  her
probability data.   As will be shown below, it  turns out  that  if Bob performs a
projective measurement on his end of the system; i.e. determines an eigenvalue

of AI BÄ , then equation (3) and the DQMP2, is applicable for Alice.  On the other

hand,  if  Bob  destroys  the  eigenvalue  or  “which-way”  information,  then  the
DQMP2 fails for Alice.  However, switching the sum and norm in (3) remedies the
problem in that case:

( )
2

2
1

1
,

J

A k j
j

p k
N

j q y
=

= å% , (5)

together  with  the  factor  
2

2 ,i ji j
N j q y= å å ;  a  normalization  factor.   The

normalization factor appears since there is no guarantee that such measurement
has the completeness property.  Equation (5) was originally proposed by Srikanth
[3] in application to a proposed experiment.

Thus a modified DQMP2 is offered:

(MDQMP2) (i)  The probability  of  Alice  measuring  eigenvalue  k  of  observable

BA IÄ  on  a  normalized  system  ( ),ij i jij
c E A By j q= Î Äå  is  given  by

equation (3) if Bob performs a projective measurement, and consequently Alice
can in principle at least, determine which degenerate eigenbasis vector gave rise
to the result.

(ii) On the other hand, the probability  is  given by equation  (5) if Bob destroys
such information and so Alice cannot be certain which degenerate eigenbasis
vector gave rise to the result.  If, due to Bob’s actions, Alice’s measurements are
given by operators constituting a POVM, then 2 1N =  and equation (4) applies.

Positive operator valued measures (POVM) are defined below.  An important
point to realize here is the following:

The  old  form  of  the  quantum  measurement  postulate  for  two  particles,  the
DQMP2,  assuming  consistency,  cannot  be  proved  or  falsified,  except  by
experimental evidence.

It is therefore not the objective of this article to falsify the DQMP2 on the basis of
theoretical arguments, but rather:
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The primary objective of  this article is  to show that  there exists experimental
evidence that is in contradiction to equation (3) and thus the DQMP2.

This primary objective is the subject of the next section.  In the section following
the next,  it is shown that the measurements made in the experiment are of a
more general type than the standard projective or von-Neumann measurements,
the former usually referred to as POVM measurements, defined as follows [4]:

A set { }iE  of observable positive semidefinite operators iE  in some space is a

POVM if the sum of the operators over the entire set is the identity in that space:

i
i

E I=å . (6)

Projection operators or “projectors” obey equation (6), and so are a subcategory

of  POVM operators.   Eigenvalue probabilities of  a system  y  are calculated

from POVM operators iE  in the same manner as with projectors:

( ) kp k Ey y= (7)

Only with projectors, there is the added restriction that they be idempotent:

2
i iP P= . (8)

Equation (8) does not necessarily hold for the more general POVM operators.  

Since we will only work with POVM operators here, completeness holds and so
N  2 =  1  in equation (5)  for  both  experiments  below.   Therefore equation (4)
applies.

Experimental evidence in contradiction to postulate four

The experimental evidence examined here is from Aspect, Grangier and Roger
[5], hereafter referred to as the “Aspect experiment.”  In that experiment, systems
of correlated photon pairs were produced from a single source.  The photons,
being correlated, are represented by a system of the following form:

( )1 1 2 2

1
, ,

2

ie y j q j q= + (9)

where the subscripts 1 and 2 signify polarity and  is a relative phase factor.  In
the  experiment,  for  each  pair  produced  by  the  source,  one  photon  passes
through observer Alice’s Mach-Zehnder (MZ) interferometer and the other serves
as a registration gatekeeper, collected by Bob.  The purpose of the latter is to
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eliminate noise from singles passing into the interferometer.  The experimental
set-up is shown in figure 1.

Figure 1.  The experimental set-up of Grangier, Aspect and Roger [5].  A two-
photon system is emitted by the source.  Alice’s apparatus on the right is a MZ
interferometer together with detectors D1 and D2.  Bob’s apparatus consists of a
single  detector  D3  whose  photon  serves  as  a  gatekeeper  for  Alice’s  photon
counting.  The gates G cut off noise from singles and both only open when Bob’s
photon is detected.  Otherwise both are shut.

For the Aspect experiment, let ij  in equation (9) represent the states of Alice’s

MZ photon, and jq  the states of Bob’s gatekeeper photon.  There are only two

polarity states  i,  j =  1,  2  for  each  photon,  which  correspond to  reflection  or
transmission  upon  interaction  with  a  half-silvered  mirror  respectively.   For

transforming  Alice’s  ij  into  the  basis  lj%  of  the  detectors  (l =  1,  2),  the

rotation transformation is used:

cos sin

sin cos

 

 

-é ù
F = Fê ú

ë û
% , (10)

where  
T

1 2j jé ùF = ë û ,  
T

1 2j jé ùF = ë û
% % %  and   is  the  rotation  angle,

proportional  to  the  phase  shift  between  arms  in  MZ.   Note  that  the  rotation
transform (10) is a generalization of the Hadamard transform in that the latter
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results from the former when / 4 p= .  The transformation (10), applied to state
(9) results in:

(

)

1 1 2 1

1 2 2 2

1
cos sin

2

sin cosi ie e 

y  j q  j q

 j q  j q

= -

+ +

.   (11)

where the tilde has been dropped for  notational simplicity.  In state (11), it is

evident  that  there  are  degenerate  eigenstates  present:  1 1 1 2,j q j q  for

Alice’s  eigenvalue  1  which  corresponds  to  registration  by  detector  1,  and

degenerate  eigenstates  2 1 2 2,j q j q  for  eigenvalue  2;  i.e. detector  2

registration.  In applying the quantum measurement  postulate DQMP2 to state
(11),  the  probability  of  detection  in  detector  1  can  be  calculated;  i.e. the
probability of Alice measuring eigenvalue 1:

( )
2 2

1
1

1 ,

1
.

2

A j
j

p j q y
=

=

=

å
 (12a)

Similarly, for detector 2:

( )
1

2 .
2

Ap =  (12b)

Clearly equations (12a) and (12b) predict that there is no intensity variation with
respect  to  .   This contradicts  the experimental  evidence, shown in figure 2.
Hence:

The old form of the discrete quantum measurement postulate for two particles
DQMP2  predicts  that  the  detection  probability  in  the  Aspect  experiment  is
independent  of  phase  shift  .   This  is  in  contradiction  to  the  experimental
evidence shown in figure 2.

Next, we apply the new form of the discrete quantum measurement postulate for
two  particles  MDQMP2,  using  equation  (4)  since  we  assume  Bob  destroys
which-way  information  and  Alice  performs  a  POVM  measurement.   The
registration probability for detector 1 then becomes:
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( )
2

2

1
1

1 ,

1 1
sin2 cos .

2 2

A j
j

p j q y

 

=

=

= +

å%

 (13a)

Similarly, for detector 2:

( )
1 1

2 sin2 cos
2 2

Ap  = -% . (13b)

Figure 2.   Data from the  Aspect  experiment  [5].   The intensity  variation with
respect to relative phase  between arms of MZ is in contradiction to DQMP2 and
in  concurrence  with  the  MDQMP2.  (c)  1986  Europhysics  Letters.   Reprint
permission pending.

Unlike equations (12), equations (13) suggest an oppositely-modulated periodic
dependence of detection probability with respect to phase difference  between
detectors, for at least some values of   , as seen in figure 2.  In particular, the
equations (13) match the normalized data when  = 0 .  Thus:

The new form of the discrete quantum measurement postulate for two particles
MDQMP2 is in concurrence with the results of the Aspect experiment shown in
figure 2, whereas the old form DQMP2 fails to predict the results.  This follows,
since Bob destroys his eigenvalue or “which-way” information in the experiment.

Operations performed in the Aspect experiment are of the POVM type

Recall that equation (3) prescribes Alice’s probability for eigenvalue k when Bob
allows her to determine which degenerate eigenvector gave the result.  It can be
written in terms of operators as
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( )A kP k Py y= (14)

where Pk is the projector

1

J

k k j k j
j

P j q j q
=

= å . (15)

Since condition (6) holds:

1 1 1

I I J

i i j i j
i i j

P jq jq
= = =

= =å åå I ,  (16)

where I is the identity of Alice’s A I-dimensional eigensubspace, the projectors Pk

of A are said to form a complete basis.

Recall also that equation (5) prescribes Alice’s probability of eigenvalue k if Bob
destroys  information which  could lead to Alice determining which  degenerate
eigenvector gave her result.  It can be written in terms of operators as well:

( ) 2

1
A kp k P

N
y y= %%  (17)

where

1 2

1 2, 1

, ,
J

k k j k j
j j

P j q j q
=

= å%
. (18)

The operator (18) can be decomposed into two terms:

k k kP P P¢= +%  (19)

where

j q j q
=

¹

¢ = å 1 2

1 2

1 2

, 1

, ,
J

k k j k j
j j
j j

P  (20)

is the component of kP%  which gives rise to interference effects.  From equations

(16) and (19), it follows that

1 1

I I

i i
i i

P P
= =

¢= +å åI% .  (21)

Generally,

1

I

i
i

P
=

¢ ¹å 0 . (22)
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Thus there is no guarantee that the kP%  form a complete basis.  In the case where

inequality  (22)  applies,  the  measurement  made  by  Alice  is  said  to  be  an
incomplete measurement.  It may be the case that incomplete measurements are
forbidden.  But that is not a problem here, since both experiments analyzed here
involve only complete measurements; in particular for the Aspect experiment, we
have that:

2

1
i

i

P
=

¢ =å 0 . (23)

Thus:

The measurements  made by  Alice  in  the  Aspect  experiment  are  made in  a
complete basis; i.e.:

2

1
i

i

P
=

=å I% .  (24)

Further, the operators kP%  can be shown to be positive semidefinite observables.

Hence:

The measurements done in the Aspect experiment are represented by operators
which are elements of a POVM.

Since kP  is a projector, it is idempotent;  i.e. 
2

k kP P= .  On the other hand, kP%  is

not idempotent, but rather:

2
k kP JP=% % , (25)

where J is again, the degeneracy of the kth eigenvalue, and hence the dimension
of the kth eigensubspace.

In the case of ensembles of several  states  iy  with frequency  ip , one works

with density operators i i ii
pr y y= å , and a more general form of equations

(3)  and  (14)  for  calculating  Alice’s  probabilities  if  Bob  performs  a  projective
measurement:

( ) ( )trA kP k P r=  (26)

where “tr” is the trace.  If Bob destroys his which-way information, then equations
(17) and (19) generalize to:
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( ) ( ) ( )2

1
tr trA k kp k P P

N
r r¢é ù= +ë û

% . (27)

Thus the MDQMP2 for ensembles prescribes:

(MDQMP2E) The  probability  of  Alice  measuring  eigenvalue  k  of  observable

BA IÄ  on an ensemble of systems represented by ρ is given by equation (26) if

Bob performs a projective measurement, and by equation  (27) if  Bob destroys
which-way information.  2 1N =  if Bob performs a POVM type operation.

A  Greenberger-Horne-Zeilinger  (GHZ)  experiment  is  analyzed  in  the  next
section, using an extension of MDQMP2 to three particles.  Like with the Aspect
experiment, measurements are done in a complete basis, whether or not Bob
destroys which-way information.

Greenberger-Horne-Zeilinger experiment

GHZ states  involve  entanglements  of  more  than  two  particles.  Here  we  will
consider a 3-photon state given by

( )1 1 1 2 2 2

1

2
A B C A B Cy = + (28)

where the A, B and C represent entangled photons, and these can each occur in
one of two states: 1 or 2, hence the subscripts.  Here, the three photons are
emitted by a common source along coplanar trajectories.   Each encounters a
beam  splitter,  which  splits  the  beam  within  a  plane  with  angle  α,  β or  γ
respectively,  with respect  to the normal  vector  n to  the original  plane.  Alice
receives photons B and C and Bob receives photon A.  The set-up is similar to
Mermin’s gedanken experiment  [6]  and is sketched in figure 3.   An important
thing to realize is that in this experiment:

Alice measures correlation between her two photons vs. relative angle between
her polarizers.

“Relative angle” is defined below.  To the author’s knowledge, this experiment
has not yet been performed.

Upon transforming equation (28) into the basis of the beam splitters using the
rotation transformation (10), the following state is obtained:
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( )

( )

( )

( )

1 1 1

1 1 2

1 2 1

2 1 1

1
cos cos cos sin sin sin

2

sin sin cos cos cos sin

sin cos sin cos sin cos

cos sin sin sin cos cos

A B C

A B C

A B C

A B C

y  b g  b g

 b g  b g

 b g  b g

 b g  b g

é= +ë

+ -

+ -

+ -

(29)

( )

( )

( )

( )

1 2 2

2 1 2

2 2 1

2 2 2

cos sin sin sin cos cos

sin cos sin cos sin cos

sin sin cos cos cos sin

cos cos cos sin sin sin

A B C

A B C

A B C

A B C

 b g  b g

 b g  b g

 b g  b g

 b g  b g

+ +

+ +

+ +

ù+ - û

Figure 3.  A sketch of the GHZ experimental set up.  Three photons are emitted
by a source and travel in the same blue plane.  Two go to Alice, and one to Bob.
Each photon reaches a beam splitter and afterwards may take one of two paths,
coplanar with respect to a yellow plane.  The yellow planes have relative angles
 , b  or g  with respect to the normal of the blue plane.  In the experiment, Alice
measures photon correlation.

For  calculating  the  joint  probability  for  Alice  finding  eigenvalues  (detector
numbers)  b and  c (=  1,  2),  given angles   ,  b  and  g ,  an extension of  the
MDQMP2 and equation (3) is used, since Bob will be measuring “which way”
information on his end:

( )
2

| j b c
j

bc

p b c A B C

P

 b g y

y y

Ù Ù Ù =

=

å
(30)
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where  the  projector  bc j b c j b c
j

P A B C A B C= å .   Applying the  state  (29)  to

equation (30), one finds the probability for example,  of both photons  B and  C
being detected by detectors numbered 1, given angles  , b  and g :

( ) ( )2 2 2 21
1 1| cos cos sin sin

2
p  b g b g b gÙ Ù Ù = + . (31)

Note that probability (31) is independent of Bob’s polarizer angle  , therefore 
is dropped hereafter.  To continue, define the relative angle θ between Alice’s
angles β and γ:

q b g= - . (32)

Using equation (32), (31) becomes

( ) ( )

( )

1 1| 1 1|

1 1
cos2 cos 4 2 .

4 8

p pb g  b q

q b q

Ù Ù = Ù Ù Ù

é ù= + + -ë û
(33)

To get the probability of measuring b = c = 1 given relative angle θ and any angle
β, equation (25) is integrated over the domain of the uniform random variable β
and normalized:

( )
( )

( )

0

0

0

2

1 1|
1 1|

1 1 1
cos2 cos 4 2

4 8

1 1
cos .

8 4

p d
p

d

d

p

p

p

 b q b
q

b

q b q b
p

q

Ù Ù Ù
Ù =

æ ö
é ù= + + -ç ÷ë û

è ø

= +

ò

ò

ò
 (34)

Similarly, 

( ) ( )

2

1 2 | 2 1|

1 1
sin

8 4

p pq q

q

Ù = Ù

= +
 (35)

and
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( ) 21 1
2 2 | cos

8 4
p q qÙ = + . (36)

Note that

( )
2

, 1

| 1
b c

p b c q
=

Ù =å ;  (37)

as expected, since earlier it was claimed that measurement has been done in a
complete basis.

Next, we claim that equations (34) through (36) obey the Bell inequality [7]: given

four variables 1b , 2b , 1c  and 2c  each with domain { }1, 1- , the function

1 1 1 2 2 1 2 2b c b c b c b cG = + + -  (38)

must have range  { }2, 2-  and hence the average  G  over many trials must

obey

2 2- £ G £ . (39)

Suppose then that  1b ,  2b ,  1c  and 2c  are the outcomes of photons B and C at

angles (b = ) 1b , 2b , and (g = ) 1g , 2g  respectively.  These outcomes each are

either 1 or -1.  Further, suppose that 

2 1 1 1 1 2b g j b g b g- = = - = - ; (40)

as illustrated in figure 4.

Consider the two angles b  and g  set to 1b  and 1g  respectively.  For photon B,

the outcome 1b  can be 1 or -1.  Likewise, for photon C, the outcome 1c  can be 1

or -1.  Then, the mean value of the product 1 1b c  is

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1

1

1 1 1 1 1 1
, 1

,

1, 1 1, 1 1,1 1,1

2 2 | 1 2 | 2 1| 1 1|

1
cos2 .

2

b c

b c p b c b c

p p p p

p p p pj j j j

j

=-

=

= - - - - - - +

= Ù - Ù - Ù + Ù

=

å

  (41)
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In calculating equation (41) outcome 1 is associated to detection by detector 1,
and outcome -1, detector 2.

Figure  4.   Diagram showing  the  relative  angles  f  between  Alice’s  polarizer

settings 1 2 1, ,b b g  and 2g .

Similarly,

1 2 2 1

1
cos2

2
b c b cj= = (42)

and

2 2

1
cos6

2
b c j= . (43)

Combining the average of equation (38) with (41) through (43) results in:

1 1 1 2 2 1 2 2

3 1
cos2 cos6 .

2 2

b c b c b c b c

j j

G = + + -

= -
 (44)

Since

3 1
2 cos2 cos6 2

2 2
j j- £ - £ ,  (45)

it follows that 

In the GHZ experiment, Bell’s inequality is satisfied for Alice if Bob measures his
which-way information.  
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For the case where Bob destroys which way information, Alice’s probabilities are
predicted by an extension of equation (4).  To make the calculations easier, Bob
fixes his polarizer angle to 0 = . (Since Bob erases which-way information, he
might set up an MZ to accomplish it, with the plane of MZ set to this angle.  It is
left  as  an  exercise  for  the  reader,  to  determine  what  happens  when  Bob
randomizes  .)  This reduces equation (21) to

y b g b g

b g b g

b g b g

b g b g

é= -ë

- +

+ +

ù+ + û

1 1 1 1 1 2

1 2 1 2 1 1

1 2 2 2 1 2

2 2 1 2 2 2

1
cos cos cos sin

2

sin cos sin sin

sin sin sin cos

cos sin cos cos .

A B C A B C

A B C A B C

A B C A B C

A B C A B C

 (46)

From state  (46),  Alice’s  probability  of  measuring  1  from both  photons  given
angles b  and q  is thus:

( )
2

1 1

2

1 1|

1
cos .

2

j
j

p A BCb q y

q

Ù Ù =

=

å%

 (47)

Since equation (47) is independent of angle β, it follows that

( ) 21
1 1| cos

2
p q qÙ =% .  (48)

Similarly,

( ) ( )

2

1 2 | 2 1|

1
sin

2

p pq q

q

Ù = Ù

=

%

 (49)

and

( ) 21
2 2 | cos

2
p q qÙ =% . (50)

Note that probabilities (48) through (50) sum to unity.  Further, these probabilities
give a violation of the Bell inequality (39).  In fact,
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2G = G% (51)

where G%  is the correlation function obtained from probabilities (48) through (50)

and G  was given in equation (44). Hence:

If  Bob destroys which-way information,  then Alice will  determine a violation of
Bell’s inequality in the GHZ experiment.

Conclusion

It  has  been  shown  that  there  exists  experimental  evidence  from two-particle
systems showing a violation of the discrete degenerate quantum measurement
postulate.   A  modification  to  the  postulate,  originally  proposed  by  Srikanth,
involving a positive operator valued measure is then used to describe the results
successfully. This modification accounts for interference effects, which are the
source of the contradiction.  The modification of the postulate is then applied to a
second  proposed  experiment  involving  a  three-particle  “Greenberger-Horne-
Zeilinger” state.
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