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Abstract. The effects of through-the-thickness shearing strain energy on the 
geometric non-linear behavior of thin and relatively thick rectangular 

functionally graded plates are studied in this paper. It is assumed that the 
mechanical properties of the plates, graded through the thickness, are described 
by a simple power law distribution in terms of the volume fractions of 
constituents. The plates are assumed to be under lateral pressure loads. The 

fundamental equations for rectangular plates of FGM are obtained using the 
classical laminated plate theory (CLPT), first order shear deformation theory 
(FSDT) and higher order shear deformation theory (HSDT) for large deflection 
and the solution is obtained by minimization of the total potential energy.  

Keywords: Functionally graded material; Large deflection; Power law; 

Through-the-thickness shearing effect.  

1   Introduction 

The concept of functionally graded materials (FGM), as ultra-high temperature 
resistant materials for aircraft, space vehicles and other engineering applications, was 
first introduced in 1984 by a group of material scientists in Japan [1]. 

FGMs are heterogeneous composite materials usually made from a mixture of 
metals and ceramics. By gradually varying the volume fraction of constituent 

materials, the material properties of FGMs exhibit a smooth and continuous change 
from one surface to another, thus eliminating interface problems. With the escalating 
application of functionally graded materials, the attention of some researchers in the 
field has been attracted to the investigation of the non-linear behavior of the structures 
made up of these materials. Woo and Meguid [2] have given an analytical solution for 
large deflection of FGM plates and shallow shells. Chakraborty et al [3] have 

developed a new beam element to study the thermoelastic behavior of functionally 
graded beam structures. GhannadPour et al [4, 5] have given an analytical solution for 
large deflection behavior of functionally graded plates under pressure load using 
classical laminated plate theory (CLPT) and first order shear deformation theory 
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(FSDT). Yang and Shen [6] have studied the large defection and post-buckling 
responses of functionally graded rectangular plates under transverse and in-plane 
loads by using a perturbation technique in conjunction with one-dimensional 
differential quadrature approximation and Galerkin procedure. Sadr and Hajikazemi 
[7] have analyzed the large deflection behavior of functionally graded plates using 
higher order shear deformation theory. In their studies, the material properties of the 

functionally graded plate are assumed to vary continuously through the thickness of 
the plate, according to the simple power law distribution in terms of the volume 
fractions of constituents. 

In the current paper, the large deflection behavior of square plates made of 
functionally graded material concerning the effects of through-the thickness shear 
strain energy are studied. The material properties of the functionally graded plates, 

except for the Poisson’s ratio, are assumed to vary continuously through the thickness 
of the plate, according to the simple power law distribution. The plates are assumed to 
be simply supported along all edges and the Classical Plate Theory (CPT), First-order 
Shear Deformation Theory (FSDT) and higher order shear deformation theory 
(HSDT) are applied throughout this work. The solution is obtained by minimization 
of the total potential energy of the plate. The effects of material properties on through 

the thickness stress fields and central deflection of the plates are determined and 
discussed. The through-the-thickness shearing effects and the accuracy of various 
plate theories on large deflection behavior of functionally graded plates are examined 
in detail. It is noted that the current paper is an updated and revised version of the 
conference papers [5, 7]. Whilst the same formulations as those used in the 
conference papers are implemented in the current paper, the scope and application of 

the current paper are strengthened by studying more previous works in the 
introduction section as well as considering significantly more results and discussions 
about the effects of through-the-thickness shear strain energy on the large deflection 
behaviour of thin and relatively thick FGM plates. 

2   Theoretical Formulation 

A FGM square plate of side A and thickness h, made from a mixture of ceramics and 
metals, as shown in Fig. 1, is considered. It is assumed that the composition is so 
varied that the top surface of the plate (z=h/2) is ceramic-rich, whereas the bottom 

surface (z=-h/2) is metal-rich. Thus, the material properties of the FGM plate (, 
such as the Young’s modulus (E) and the shear modulus (G) are functions of depth 
(z). In this study the simple power law is used [8]. The functional relationship 

between  and z for ceramic and metal FGM plates is given by [9] as: 
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Where bttb   .  z  denotes a typical material property (E, G). t and b 

denote values of the variables at top and bottom surfaces of plates, respectively. It is 

evident that when z=-h/2,  =b and when z=h/2,  =t.  
 

 

Fig. 1. Typical FGM square plate. 

 

In the following, the fundamental equations of the large deflection analysis of 
pressure-loaded functionally graded plates are briefly outlined. The plates are 
assumed to be simply supported along all edges and the CLPT, FSDT and HSDT are 
applied throughout this work. As a result of the HSDT assumption: 
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(2) 

 

where ,u and w are components of displacement at a general point, whilst u, 

and w are similar components at the middle surfaces (z=0) and yx  ,  are rotations 

respect to xy,  axis respectively. Using Eq.2 the non-linear in-plane strains and 

through the thickness shear strains at a general point are: 
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The stress-strain relationship at a general point for the plate becomes:  
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(4) 

 
The constitutive equations for a plate can be obtained by the use of Eqs.3 and 4 and 

appropriate integration through the uniform thickness as Eq.5.  

In the Eq.5,      RQPMN ,,,,  are the stress resultants per unit length and 

sss FDAHFDEBA ,,,,,,,,  are the plate stiffness matrices. 
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The strain energy per unit volume is
TTTT


2

1

2

1
 . Using Eqs.4 and 5 to form 

the strain energy, and integrating through the thickness with respect to z gives an 
expression for the strain energy of the plate which can be put into the form: 
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As previously indicated, the present concern is the evaluation of the response of 

plates under uniform pressure. Thus the external force exists in the current problem. 
As a result, the total potential energy is equal to the summation of strain energy and 
potential energy of uniform pressure, i.e. 

 

Ps VUV   (7) 

 
where VP is the potential energy of uniform pressure and is equal to : 
 

 qwdxdyVP  
(8) 

 
Where q is the uniform pressure. Solution of the non-linear problem is sought 

through the application of the principle of Minimum Potential Energy. This, of 
course, requires the assumption of a displacement field to represent the variations of 

u,, w and yx  ,  over the middle surfaces. It is assumed that all four edges of plates 
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are simply supported with no in-plane displacements, i.e., they are prevented from 
moving in the x and y directions. These following displacement fields are same for 
both CLPT, FSDT [5], HSDT analyses. 
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And for 
yx  , in FSDT, HSDT analysis: 
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Where jiu , , jiv , , jiw , jiyjix
and

,,
, are undetermined displacement coefficients. 

The displacement functions could be in a variety of forms, but in the present work 

they are Harmonic functions. With the establishment of the plate displacement field, 
according to the above mentioned equations, the potential energy of a plate can 

ultimately be calculated in terms of jiyjixjijiji wvu ,,,,, ,,,,  . The plate 

equilibrium equations are obtained by applying the principle of minimum potential 
energy. That is to say the partial differentiation of the plate potential energy with 

respect to jiyjixjijiji wvu ,,,,, ,,,,  . In turn gives a set of non-linear equilibrium 

equations. The latter set of equations must be solved in term of undetermined 
displacement coefficients. After finding the undetermined displacement coefficients, 

it is possible to calculate the displacements u, ,w and yx  ,  at any point in plate 

using Eqs. 9 and 10, to determine stress quantities through use of Eqs. 3 and 4. 
 

3   Numerical Results and Discussion 

As previously indicated, the analysis of FGM plate is conducted for type of ceramic 
and metal combination. The set of materials considered is alumina and aluminum. 
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Young’s modulus and Poisson’s ratio were selected as being 70 GPa and 0.3 for 
aluminum, and 380 GPa and 0.3 for alumina, respectively. In all cases, the lower 
surface of the plate is assumed to be metal (aluminum) rich and the upper surface is 
assumed to be pure ceramic (alumina). 
The analytic results are presented in terms of dimensionless deflection and stress. The 
dimensionless parameters used are as follows: 

 
center deflection  W = w/h 
load parameter Q = qA

4
/(Ebh

4
) 

axial stress = xA
2
/( Ebh

4
) 

thickness coordinate Z = z/h 

 
where Eb is Young’s modulus of metal (bottom surface) used in the functionally 

graded material, q is an uniformly distributed pressure load, A is a projected length of 
the plate in the xy plane, and h is a thickness of that plate. The analysis is performed 
on square plates with A/h=20 and A/h=5. 

The number of terms needed for convergence is carefully examined. For generating 

the converged results, the essential number of terms in the displacement fields for 

vu, is 9 and for yxw  ,, is 16.  

Fig. 2 show the central deflection due to mechanically applied load Q for four 

simply supported square aluminum-alumina plates with A/h=20 using HSDT ,FSDT 
and CLPT assumptions. Under the same load, the pure aluminum plate has the largest 
central deflection. This is due to the fact that it has the lowest Young’s modulus Eb. 
Even though the FGM plate (n=2) contains a small volume fraction of alumina, it is 
much stiffer than the pure aluminum plate. This figure shows a negligible difference 
between three theories due to the high length to thickness ratio and the high level of 

in-plane restraints imposed at the edges, thus causing relatively small transverse 
deflections at the centre [5, 10]. In other words, through-the thickness shearing effects 
for relatively thin plates with high level of in-plane restraints imposed at the edges are 
negligible. 

Figs. 3 and 4 show the variation of the dimensionless axial stress  across the 

thickness Z at the center of the four plates investigated due to a load parameter Q=-
400 for A/h=20 and A/h=5 respectively. The stress distribution in the aluminum and 
alumina plates is linear; whereas, for functionally graded material, the behavior is 
nonlinear and is governed by the variation of the properties in the thickness direction. 
It is clearly seen in Fig.4, there are noticeable difference between the results obtained 

from various theories. It is noted that difference between the results obtained from 
various theories are due to consideration of through-the-thickness shearing terms in 
HSDT and FSDT and elimination of them in CLPT. Therefore, the effects of through-
the-thickness strain energy in the large deflection analysis of relatively thick 
functionally grade plates should be taken into account. 
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Fig. 2.  Dimensionless central deflection versus uniform pressure load for A/h=20. 
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Fig. 3.  Dimensionless axial stress  along the thickness Z at the center of the plate under load 
Q=-400 for A/h=20. 
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Fig. 4.  Dimensionless axial stress  along the thickness Z at the center of the plate under load 

Q=-400 for A/h=5. 

 
In Fig. 5 the effect of constituent volume fraction on the center deflection of FGM 

plate for A/h=20 and Q=-400  is presented by varying the volume fraction exponent n 
using higher order shear deformation theory and first order shear deformation theory. 
It is clearly seen that for n greater than 60, the behavior of FG plate is not very 
affected with more increasing of n. It is due to this fact that the behavior of FG plates 
in these cases is governed by metal phase.   
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Fig. 5.   Dimensionless central deflection versus power-law index n of the plate under load 
Q=400 for A/h=20. 

4   Conclusion 

The large deflection of plates made of FGMs under pressure load concerning the 
effects of through-the-thickness strain energy is studied. The material properties of 

FGM plate are assumed to vary continuously through the thickness of the plate, and 
were graded according to a power law distribution of a volume fraction of the 
constituents. The solution is obtained by minimization of the total potential energy. 
Dimensionless deflection and stresses were computed for metal-ceramic combination 
of functionally graded plates with various lengths to thickness ratio. The effects of 
material properties on the stress field through the thickness are determined and 

discussed. It is shown that through-the-thickness shearing effects in the case of 
relatively thick plates should be taken into account; however, for thin plates the 
mentioned effects are negligible. 
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