Formulas that generate subsets of 3-Poulet numbers and few types of chains of primes

Marius Coman
Bucuresti, Romania
email: mariuscoman13@gmail.com

Abstract

A simple list of sequences of products of three numbers, many of them, if not all of them, having probably an infinity of terms that are Fermat pseudoprimes to base 2 with three prime factors.

Note

I named with "3-Poulet numbers" the Fermat pseudoprimes to base 2 with 3 prime factors, obviously by similarity with the name "3-Carmichael numbers" for absolute Fermat pseudoprimes. For a list with 3-Poulet numbers see the sequence A215672 in OEIS.
I.

Poulet numbers with three prime factors of the form $p^{*}((n+1) * p-n * p) *\left((m+1) * p-m^{*} p\right)$, where p prime, m, n natural:
$10585=5 * 29 * 73=5 *(5 * 7-6) *(5 * 18-17) ;$
$13741=7 * 13 * 151=7 *(7 * 2-1) *(7 * 25-24) ;$
$13981=11 * 31 * 41=11 *(11 * 3-2) *(11 * 4-3) ;$
$29341=13 * 37 * 61=13 *(13 * 3-2) *(13 * 5-4) ;$
$137149=23 * 67 * 89=23 *(23 * 3-2) *(23 * 4-3)$.
II.

Poulet numbers with three prime factors of the form $p *((n * p-(n+1) * p) *(m * p-(m+1) * p)$, where p prime, m, n natural:
$6601=7 * 23 * 41=7 *(7 * 4-5) *(7 * 7-8)$.

Conjecture: Any 3-Poulet number which has not a prime factor of the form $30 k+23$ can be written as $p *((n+1) * p-$ $n * p) *((m+1) * p-m * p)$ or as $p *((n * p-(n+1) * p) *(m * p-(m+1) * p)$.

III.

Poulet numbers with three prime factors of the form $p^{*}(p+2 * n) *\left(p+2^{\wedge} 2 * n-2\right)$, where p prime, n natural:

```
561 = 3*11*17
p = 3; p + 2*4 = 11; p + 2^2*4 - 2 = 17, so [p,n] = [3,4];
1105 = 5*13*17
p = 5; p + 2*4 = 13; p + 2^2*4 - 2 = 17, so [p,n] = [5,4];
```


IV

Poulet numbers with three prime factors of the form $p^{*}(p+2 * n) *\left(p+2^{\wedge} k^{*} n\right)$, where p prime and n, k natural:

1729 = 7*13*19
$p=7 ; p+2 * 3=13 ; p+2 \wedge 2 * 3=19$, so $[p, n, k]=[7,3,2]$;
$2465=5 * 17 * 29$
$\mathrm{p}=5 ; \mathrm{p}+2 * 6=17 ; \mathrm{p}+2 \wedge 2 * 6=29$, $\mathrm{so}[\mathrm{p}, \mathrm{n}, \mathrm{k}]=[5,6,2]$;
2821 = 7*13*31
$\mathrm{p}=7 ; \mathrm{p}+2 * 3=17 ; \mathrm{p}+2 \wedge 3 * 3$ = 31, $\mathrm{so}[\mathrm{p}, \mathrm{n}, \mathrm{k}]=[5,6,3]$;
29341 = 13*37*61
$\mathrm{p}=13 ; \mathrm{p}+2 * 12=37 ; \mathrm{p}+2^{\wedge} 2 * 12=61$, so $[\mathrm{p}, \mathrm{n}, \mathrm{k}]=$ [13,12,2];
V.

Poulet numbers with three prime factors of the form $\left(1+2^{\wedge} k^{\star} m\right)^{\star}\left(1+2^{\wedge} k^{\star} n\right)^{\star}\left(1+2^{\wedge} k^{*}(m+n)\right)$, where k, m, n natural:
$13981=11 * 31 * 41$
$1+2^{\wedge} 1 * 5=11,1+2 \wedge 1 * 15=31,1+2 \wedge 1 *(5+15)=41$, so $[k, m, n]=[1,5,15]$;
$252601=41 * 61 * 101$
$1+2 \wedge 2 * 10=41,1+2 \wedge 2 * 15=61,1+2 \wedge 2 *(10+15)=101$, so $[k, m, n]=[2,10,15] ;$

VI.

Poulet numbers with three prime factors of the form $\left(1+2^{\wedge} k^{*} m\right)^{*}\left(1+2^{\wedge} k^{*} n\right) *\left(1+2^{\wedge} k^{*}(m+n+2)\right)$, where k, m, n natural:
$561=3 * 11 * 17$
$1+2^{\wedge} 1 * 1=3,1+2^{\wedge} 1 * 5=11,1+2^{\wedge} 1^{*}(1+5+2)=17$, so $[k, m, n]=[1,1,5]$;

VII.

Poulet numbers with three prime factors of the form $p^{*}(p+2 * n) *(p+2 * n+2 *(n+1))$, where p prime, n natural:

```
6601 = 7*23*41
p = 7; p + 2*8 = 31; p + 2*8 + 2*9 = 41, so [p,n] = [7,8].
```


VIII.

Poulet numbers with three prime factors of the form $3^{*}\left(3+2^{\wedge} k\right) *\left(3+q^{*} 2^{\wedge} h\right)$, where q prime and k, h natural:

```
645 = 3*5*43 so [q,h,k] = [5,1,3];
1905 = 3*5*127 so [q,h,k] = [31,1,2];
8481 = 3*11*257 so [q,h,k] = [127,3,1].
```


Notes

The chains of primes of the form [p, $p+2{ }^{*} n, \ldots, p+2^{\wedge} k{ }^{*} n$] seems to be a very interesting object of study; such chains are, for instance, $[3,5,7,11,19]$ for $[p, n, k]=[3,1,4]$ and $[3,13,23,43,83,163]$ for $[p, n, k]=[3,5,5]$.

Also it would be interesting to study the chains of primes formed starting from a prime p and adding $2^{\wedge} k * n$, where n is an arbitrarily chosen natural number and k the smallest values for which $p+2^{\wedge} k * n$ is prime. Such a chain is, for instance, $[7,13,19,31,103,199,1543,3079]$ for $[p, n]=[7,3]$ and $[k 1, k 2, k 3, k 4, k 5, k 6, k 7]=[1,2,3,5,6,9,10]$.

An interesting triplet of primes is [p+2*m,p+2*n,p+2*(m+n)] where p is prime and m, n natural; such triplets are $[11,13,17]$ for $[p, m, n]=[7,2,3]$ or $[23,43,59]$ for $[p, m, n]$ $=[7,8,18]$. Generalizing, the triplet would be $\left[p+2^{\wedge} k^{\star} m, p+2^{\wedge} k^{\star} n, p+2^{\wedge} k^{\star}(m+n)\right] ;$ such a triplet is $[11,19,23]$ for $[p, k, m, n]=[7,2,1,3]$.

