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Abstract: Corrections to general relativity are derived from classical theory and applied to the standard 

model. The perspective offered is the conceptual inverse of Einstein’s theory, where particles exist as localized 

fields. These vacuum fields undergo affine transformations that are locally invariant with respect to the space-

time metric. It is demonstrated that the proper vacuum solution to the Einstein-Maxwell field equations is the 

limit of the single particle vacuum field solution. The existence of event horizon within Einstein’s field 

equations is linked to the application of point-like sources in the local field theory. With vacuum field theory, 

it is observed that event horizon can no longer form without infinite classical energy. Gravitational waves are 

also discussed relative to the use of point-like sources in Einstein’s field equations and similar geometric field 

theories. Methods for determining the space-time metric of any object on a per particle basis are provided. The 

continuous model of the universe is further introduced, where the solutions to several grand cosmological 

problems are discussed. It is demonstrated that an asymptotically flat universe will appear linear with respect 

to local observers. The inferred accelerated expansion is an illusion due to local geodesics deflecting towards 

the center of an asymptotically flat, linear universe. With recent constraints on the abundance of faint blue 

galaxies and observed evolution, ∧CDM is found to be off in galactic number densities by         and 

         at      and      respectively. These galaxies are also observed to be similar to local disk and 

irregular populations, where ∧CDM underestimates their size by           prior to     . This implies that 

an expanding model predicts the incorrect shape of the universe, which induces systematic lensing errors. After 

eliminating all viable explanations, an expanding universe is conclusively ruled out. The purposed model 

however agrees with all observations by applying only classical assumptions. The shape of the universe for 

example supports a central core, which is responsible for the cosmic background radiation. It is further argued 

that Einstein’s field equations are incompatible with such universe due to predictions of event horizon. 
 

Table of Contents 

    Preface 

1. Foundations                                            

   1.1. Space                                        

   1.2. Time                                                            

   1.3. Energy                                                               

   1.4. Continuum Mechanics 

   1.5. Electromagnetic Fields 

   1.6. Quantum Mechanics 

   1.7. Applying Vacuum Fields 

   1.8. The Standard Model 
 

2.   Relativity and Differential Geometry 

   2.1. General Relativity 

   2.2. Gravitational Waves 

   2.3. Single Particle Metric 

   2.4. Gravitational Force and Potential 

   2.5. Arbitrary Space-Time Metric 

   2.6. Numerical Methods 

   2.7. Relativistic Pressure and Bulk Flow 

 
 

3.   The Universe 

   3.1. The Big Bang Theory 

   3.2. Redshift and Distance Modulus  

   3.3. Galactic Evolution 

   3.4. Angular Scales and Weak Lensing 

   3.5. The Faint Blue Galaxy Problem 

   3.6. Metallicity  

   3.7. Statistical Analysis 

   3.8. The Cosmic Background Radiation 

   3.9. Baryon Asymmetry 
 

References 

 

 

 

 

Table of Contents 

1 

2 

5 

6 

7 

9 

11 

14 

17 

19 
 

22 

23 

25 

27 

28 

30 

32 

34 

 

Page Page 

36 

37 

38 

41 

45 

48 

53 

55 

57 

59 
 

62 

mailto:theonestation@hotmail.com


1 | P a g e 

 

 
     Due to the diversity of subjects discussed, this 

page is meant to provide an overview of the paper. 

The two theories included herein are referred to as 

vacuum field theory and the continuous model of 

the universe. These deeply interrelated theories are 

necessary for complete consistency between general 

relativity and cosmology. The cosmological aspects 

are further applied to rule out various theories of 

general relativity. The foundations of vacuum field 

theory arise from three postulates with respect to a 

unified field theory. These postulates however are 

only introduced for additional insight, as vacuum 

field theory can be derived from classical laws of 

physics. The first is a 1 �⁄  gravitational potential for 

any particle, e.g. an electron or proton. The second 

is Einstein’s equivalence principle, where a particle 

in one local frame will be identical to itself in any 

other local frame.  

    Rather than particles being point-like sources, it 

is argued that they instead exist as localized fields 

throughout chapters 1 and 2. The foundations of 

vacuum field theory can be viewed in terms of 

waves travelling through a relative medium. The 

medium is an energy density with respect to the 

localized field interpretation of particles. It is 

demonstrated that the gravitational and electric 

potential of a charged, non-composite particle are 

directly proportional to vacuum energy density. 

After applying the Lorentz transformation to 1 �⁄  

fields, deceleration of a charged particle is directly 

related to a change in vacuum energy density in the 

form of bremsstrahlung. The field dynamics within 

classical electrodynamics are mimicking those of 

vacuum field theory. It is therefore possible to 

formulate theories with point-like sources that agree 

with observations. The underlying vacuum energy 

density however defines a locally isotropic space-

time metric for general relativity. It would therefore 

be incorrect to treat the space-time metric as an 

additional medium for the continuum limit of point-

like  sources  to  influence.  By  knowing  how  each 

 

particle’s field varies due to the background field 

induced by all others in consideration, the effective 

space-time metric can be determined for objects on 

a per-particle basis. With the per-particle method 

provided in chapter 2, it is observed that conical 

singularities or event horizon can no longer form 

without infinite energy. The application of point-

like sources and coupling to space-time metric is 

responsible for the predictions of event horizon and 

gravitational waves in modern general relativity. 

Direct proof for the localized nature of particles will 

therefore arise from a null detection of gravitational 

waves with direct methods. Although a null result 

would invalidate the coupling of point-like sources 

to a space-time metric, the cosmological aspects 

already rule out any theory that allows event 

horizon from finite energy.  

     The cosmological model is the central discovery 

of this paper, where it is demonstrated that the 

universe is asymptotically flat. In other words, the 

inferred accelerated expansion is an illusion due to 

local geodesics deflecting towards the center of the 

universe. With redshift arising from relative motion 

and gravitational potential, the observed state of the 

universe can only be fit by accelerated expansion or 

an asymptotically flat shape. All observations are 

further in agreement with a linear, asymptotically 

flat universe as discussed throughout chapter 3. 

These include galactic number densities, angular 

size versus the absolute magnitude of faint blue 

galaxies and time-dependence. Although Hawking 

radiation is theorized to exist with respect to event 

horizon, the 3000 � temperature of the cosmic 

background radiation would require the core to be 

many orders of magnitude less massive than the 

Moon. Countless galaxies and clusters are however 

continuously flowing towards the center of the 

universe. The central core must therefore be more 

massive than any local object, i.e. the observed 

cosmic background radiation offers direct proof 

against the existence of event horizon. 

Preface 
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Introduction 
     Throughout the history of modern physics, many 

attempts at developing a viable unified theory have 

been made. These attempts have diverse underlying 

principles, most lacking physical interpretation. 

Without providing the entire unified field theory, it 

is possible to reformulate general relativity with 

three fundamental postulates. These postulates are 

derived from classical principles, which are further 

discussed relative to the standard model and 

Einstein field equations (EFE). Methods are derived 

that allow the effective space-time metric of any 

object to be determined. These require a revision of 

general relativity for several reasons, which are 

discussed throughout the first and second chapters.  

     (1) EFEs are based upon a continuum limit of 

point-like sources, which act locally on the space-

time metric. The metric is in return mimicking the 

localized nature of particles; i.e. similar to classical 

electrodynamics, space-time acts as a medium for 

waves. However, the actual field general relativity 

depicts is the underlying vacuum energy density. 

This includes contributions from classical and semi-

classical fields, although only the electromagnetic 

field is thoroughly discussed herein. It is argued 

that the principle of locality is invalid and particles 

exist as localized field rather than point-like objects. 

     (2) Special relativity demands that a particle’s 

field will deform from variations in relative motion. 

General relativity should be restricted to similar 

mechanisms. When multiple particles interact, the 

field of each is deformed due to its locally invariant 

nature with respect to the space-time metric.  

     (3) All massive particles are known to display 

electromagnetic behavior; however, EFEs decouple 

mass from the electromagnetic field. Therefore, the 

Schwarzschild solution cannot represent realistic 

objects, as even neutrons display non-zero magnetic 

dipole moments and electromagnetic form factors.  

1.1. GUT Foundations 

     Postulate I: Classical forces are mathematical 

constructs, approximating the time dependence 

of vacuum fields. At this introductory level of 

vacuum field theory, the focus is directed at both 

classical and free field force(s). Classical force is a 

time-dependent variation that acts upon a point-like 

particle. Regardless if the discussion is general 

relativity or electrodynamics, force determines the 

time-dependence of momentum and position. Some 

theories also produce abstract fields that are related 

to position and momentum. For example, quantum 

mechanics provides probabilistic wave functions of 

an underlying semi-classical system. 

     In a free field theory, force refers to the action at 

each point in space; this is not necessarily in a 

classical sense. For example, say a field existed that 

represented a single electron. Regardless of the 

underlying complexity, the electron will have a 

classical location in space. In addition to the finite 

energy density at the particle’s classical position, all 

other points in space will have finite energy density. 

The introduction of another electron displaced from 

the original would further vary the underlying field 

at all points in space. The force(s) between these 

two localized fields arise from the infinitesimal 

action of the effective field at each point in space. 

Particles are therefore localized entities displaying 

action at a distance. 

     References to quantization throughout this paper 

refer to reducing the localized nature of particles to 

point-like objects. Classical forces are then applied 

to determine the time dependence of position and 

momentum in quantum systems. This is achieved 

by applying the Lorentz transformation or space-

time metric to a scalar field; the scalar field is 

related to vacuum energy density. The vacuum 

energy density of a single particle can further be 

approximated with classical theory, i.e. 1 �⁄ . 

1. Foundations 
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    Postulate II: All particles consist of localized 

vacuum fields. This is relevant to the concept of 

field-particle duality, where all particles display 

decaying fields and point-like structure. Under the 

most fundamental considerations, objects would 

cease to exist if matter was not localized. This 

concept can further be extended to what it means 

for a field to be localized. Localization requires that 

the underlying energy is self-reinforced, i.e. any 

stable vacuum field will not dissipate over time. For 

this to be plausible, at least two forms of field 

energy must exist. A complex scalar-vector field is 

defined below; however, this is inadequate for an 

interacting theory. Additional degrees of freedom 

are instead required for time-dependent evolution. 

The main objective of this paper is to bridge the gap 

between electrodynamics and general relativity. 

These additional degrees of freedom can therefore 

be ignored by applying classical forces.  

     Vacuum energy density is related to a complex 

scalar-vector field � that is conserved throughout 

interactions. Due to this conservation, the envelope 

of fields can be approximated with linear wave-like 

equations. Furthermore, classical physics requires 

for the far-field of massive particles to decay as �� �⁄  in Planck units; this is later discussed in 

section (1.3). With the wave function 	 
 � � 
����, a 

complex Helmholtz equation (1) is needed. It is 

superficially similar to the Schrodinger equation of 

a free particle, but does not depict probability. 
 ��� � ���� � 0 
 

Equation (1) can be divided into both real (2) and 

imaginary (4) parts. 
 ��� � ���	 � 0 
 

In spherical coordinates, solutions to (2) involve 

spherical harmonics and Bessel functions (3). 
 	�� � 
���������
, �� 

The complex component of equation (1) takes a 

similar form (4). 
 ��� � ������� � 0 
 

Solutions to (4) can be determined from the scalar 

component via (5). 
 ������ � 1� �	�� 
 

    Conservation of vacuum energy can be achieved 

by introducing the continuity equations (6) and (7). 

These relate to an underlying geometric structure 

after reducing the additional degrees of freedom. 

The equations however do not depict the correct 

time dependence of vacuum fields, which can 

instead be approximated with classical theory. All 

that is required after the quantization of a localized 

field is the Lorentz transformation and assumption 

of 1 �⁄  gravitational potentials. The application of a 

single scalar-vector field is important due to the 

quantization process. It is therefore assumed that � 

remains constant at the classical position of a 

massive, non-composite particle. These variables 

are further related to a scalar invariant and motion 

of a point contained within ��. 
 1� �	�� � �� · ���� � ��	� 
 

 1� ������� � �	 � �� · ������� 

 

The complex Hamiltonian density 	 defines the 

vacuum energy density at any point in space with a 

quaternion norm (8). 
 ��� � ���� � ��	�� � ���� 
 

The linear wave solutions can be quantized with 

equation (9), i.e. the point of maximum field energy 

depicts the classical energy. 
 

 � ! ����"������

�
 

��� 

 

 

 

��� 

 

��� 

 

��� 

 

��� 

 

��� 

 

�	� 

 

�
� 

 

��� 
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    Postulate III: The vacuum field is the result of 

transforming the non-linear geometric degrees 

of freedom. A crucial metaphysical aspect of 

matter is usually overlooked in modern physics, i.e. 

what do particles physically consist of? Initial 

attempts tried to attribute a physical substance to 

matter, or material upon space that formed particles. 

However, this perspective is plagued by cyclic 

reasoning, i.e. if such substance existed, what 

would be the physical essence of it? Indeed this 

reasoning is no different from the modern concept 

of fields. For example, electromagnetic fields are 

mathematical constructs created in abstract to 

understand the universe at the quantized level. At 

any scale however, one fundamental property of the 

universe is undeniable; i.e. space itself.  

     In the classical perspective space is a rigid, time-

independent structure that quantized mechanics is 

founded upon. Switching to the more abstract view 

of general relativity, the properties of space vary 

from the Euclidean model. It becomes possible to 

deform space, varying the location of a continuum 

of points in a smooth manner. However, Einstein’s 

view of relativity is incompatible with quantum 

mechanics and the cosmological model discussed 

in chapter 3. He also applied the only physical 

property of the universe to a single classical force, 

i.e. gravity. It is demonstrated in section (1.4) that 

general relativity can be reinterpreted as a tool for 

quantization. Einstein’s perspective is therefore the 

conceptual inverse of vacuum field theory. This 

opens a profound path to unification, as an 

underlying geometric structure can be used to 

depict all classical forces. Therefore, unification no 

longer refers to the energy scale where classical 

forces merge into one, but instead the manifestation 

of all forces from a single unified field. The essence 

of matter can now be attributed to something that is 

physically real rather than a mathematical construct. 

     Assuming tensors and/or a geometric foundation 

are capable of fulfilling the first two postulates, the 

necessity for additional degrees of freedom is clear. 

The vacuum field represents the energy of an 

underlying geometric structure, although the actual 

structure is beyond this papers scope. Regardless, 

acknowledging its existence offers an intuitive 

explanation for the universe. It is trivial that a 

geometric structure should be time-dependent if it 

does exist. Therefore, in the most general sense 

matter is nothing more than fluctuations of space 

itself. These are much smaller than the macroscopic 

world, as vacuum field theory indicates structure at 

the Planck scale. Without assuming Planck scale 

fluctuations of space are responsible for fields and 

matter, there is literally no other way of writing a 

unified field theory. For example, the standard 

model applies several scalar-vector fields to 

complete symmetries and fill gaps; however, they 

are solely mathematical constructs.  

     As earlier theories developed, the original aether 

became a resistive medium throughout space rather 

than mysterious substance that formed particles. 

This transition was the product of the corpuscle 

theory of light, attributed to Newton. It was later 

argued against with the Michelson-Morrison 

experiment, which tested for a variation in the 

speed of light relative to the local motion of Earth. 

This concept of anisotropy is flawed, which had 

been pointed out by Hendrik Lorentz[A] . As an 

object’s momentum varies in a local frame, the field 

is transformed in such a way that any anisotropic 

affects cancel. Motion is instead relative to the 

vacuum field of all other particles and aether only 

becomes conceptually crucial for a single particle 

universe. In other words, the scalar vacuum energy 

density creates a relative medium upon space, 

which must further be applied to determine the 

effective space-time metric. 
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1.2.  Space 
 

     When describing the dynamics of particles in a 

gravitational field, general relativity is a useful 

theory. However, the theory can be interpreted in 

two unique perspectives. The first is the mainstream 

view, where the four-dimensional manifold is to be 

taken literally; i.e. the coupled entity of space-time 

physically exists. Gravitational acceleration within 

this perspective is not induced by the curvature of 

space, but instead the curvature of time. The 

curvature of spatial components only varies the path 

of particles in motion or under classical force. 

Regardless, the physical existence of space-time is 

crucial for not only Einstein’s interpretation, but 

also the validity of mainstream astronomy and 

cosmological models. The undermining of this 

perspective however originates from the predictions 

of singularities and gravitational waves. The use of 

quantized point sources in the geometric Laplace 

equation (EFEs) produces these artifacts. Particles 

instead exist as localized fields rather than point-

like sources and must be treated as so.   

     The second view insists that the universe does 

not physically exist as a four-dimensional space-

time manifold. Space and time should instead be 

treated as two independent entities; i.e. space is 

depicted by a classical manifold mapped to physical 

locations, while time is a manifestation of relativity 

or event comparison. Within this perspective, the 

vacuum field of each particle is relative to a 

Euclidean reference space (���), which can be 

arbitrarily chosen. Upon this reference space or 

frame, particles exist as localized scalar-vector 

fields. Affine transformations are applied to the 

field of each particle rather than varying the metric 

of space, in agreement with the principles of special 

relativity and electrodynamics. Any reference space 

is further held static so that it does not allow metric 

or gravitational waves.  

     In differential geometry, a metric is defined that 

maps all points (��) bound to a manifold in space to 

a curvilinear coordinate system (��), or vice-versa. 

This can be defined as an infinitesimal variation in 

distance between two points in space, with respect 

to the original configuration. A two dimensional 

example is depicted in figure 1.1. It is always valid 

to vary the points on a manifold as long as they 

never overlap; this is referred to as a Riemann 

manifold. This deformation is possible due to the 

infinitesimal property of nature, i.e. there exist an 

infinite number of infinitesimal intervals between 

two points in space.  

     In another perspective or the one previously 

argued for is the deformation of a ruler, which 

consists of a linear lattice of atoms. These atoms 

contain many quantized particles, although each is 

relatively localized at a single point in space. When 

vacuum energy density increases, each particle’s 

field must remain locally invariant with respect to 

the space-time metric. The space-time metric is 

therefore encoding the deformations or affine 

transformations experienced by localized fields, 

which can further be treated as point-like objects. In 

a situation where the gravitational potential is 

increasing with respect to time, distance from the 

perspective of the ruler remains constant. However, 

an observer in the reference space will note that 

length contraction of the ruler has taken place. Only 

the lattice of atoms becomes deformed with respect 

to the reference state rather than space itself. 
 

 

 

 

 

 

 
 

Figure 1.1. A smoothly connected manifold (�) is transformed 
from an initial state (�) to a final state (��). 

1.1. Space 
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1.3.  Time 
 

    Quantization or the transformation of a localized 

field into a point-like object allows for the creation 

of systems. A system exists in a finite region of 

space and may contain many quantized particles, 

usually coupled to kinematic equations. Therefore, 

systems are time-dependent and obey classical 

energy conservation, i.e. Lagrangian formulations. 

Within classical mechanics, the trajectory of a 

particle through a potential can be determined with 

the Lagrangian equation (10); where # is the kinetic 

energy minus potential. 
 ��� $ %#%&'�( � %#%&�

� 0 

 

The 1-dimensional Lagrangian can be written as 

(11), where ) is the classical potential. 
 

# � 12 +�,' � � )�,� 

 

In this perspective, time is a comparative scalar 

related to a change in position with respect to some 

constant rate of observation. It allows for a coupling 

between quantized energy and the rate at which 

quantized fields move through space.  

     Relativity introduces additional complexity as 

the rate of observation can vary between different 

scenarios. Both special and general relativity 

require a Lorentz scalar, where an increase in 

vacuum energy density forces a field to evolve at a 

decreased rate. This time dependence of classical 

variables is seen throughout various phenomenon 

including decay rates, classical kinematics and 

intrinsic spin. For example, it is experimentally 

known that an unstable particle has a relatively 

longer half-life when moving with respect to a 

background field. Particle decay depends upon 

internal degrees of freedom, which cannot be 

explained by classical mechanics. The longer half-

life is instead modeled by relativity, where all 

variables evolve at a decreased rate. When quantum 

mechanics is discussed, it is demonstrated that the 

intrinsic spin rate of an electron also decreases as 

vacuum energy density increases. The Dirac 

equation is further related to relativistic field 

dynamics, discussed throughout section (1.6). It is 

clear that time is more fundamental than the 

kinematics of point particles, i.e. time is a scalar 

quantity that depicts change in abstract variables.  

     Under certain conditions, it is possible for time 

to be undefined. If no energy exists, then there is 

nothing to compare and space at all scales becomes 

Euclidean (���). The other extreme is a region of 

infinite vacuum energy density such as an event 

horizon or conical singularity. Time in this situation 

is undefined because the underlying field(s) cannot 

evolve. At this limit, quantum mechanics fails 

under classical considerations since the observables 

become static. Einstein’s field equations allow such 

anomalies due to the use of point-like sources in a 

local geometric field theory. This results in the non-

linearity between vacuum energy density and space-

time metric. The only way to produce infinite 

vacuum energy density in vacuum field theory is 

with infinite classical energy, which is impossible.  

     EFEs are more abstract with respect to time, or 

space-time. For example, time-dependent variations 

in the stress-energy tensor can produce gravitational 

waves. By applying quantized mass and momentum 

in such a local field theory, the field of point-like 

sources becomes geometric in nature. EFEs provide 

the framework to determine the time dependence of 

these localized fields, in which some scenarios 

allow quantized variables to be transformed into 

geometric waves. General relativity is however 

depicting the vacuum energy density of field(s) 

responsible for classical forces. Time in a more 

general sense is therefore a comparative scalar 

between the various variables of a quantized system 

or underlying field theory. 

1.2. Time 

���� 

 

���� 
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1.4.  Energy 
 

     Effective energy is defined from quantized rest 

mass and momentum (12). 
  � ��-��� � �+����� 
 

Returning to the classical wave-like equation (1), 

effective energy can also be written as a quaternion 

norm. With a particle’s scalar-vector field (�), 

quantized energy is related to the vacuum energy 

density (13). From the third axiom, this density is 

related to the underlying geometric degrees of 

freedom. The goal is to transform the non-linear 

geometric structure into a scalar-vector field that is 

linearly proportional to classical energy. 
  ��� � ���� 
 

In order to quantize the vacuum field, similar 

methods are applied with respect to the linear wave 

approach (9); i.e. applying a Dirac delta defines 

quantized energy (14). 
 

 � ! ���"������

�
 

 

The wave function can be written as (15), where 

quantized mass depicts the scalar field and 

momentum replaces the vector component. Scalar 

mass no longer exists solely at the particle’s center, 

as it is a fundamental part of all field solutions. 
 ��0� /  ���0 � 0����� 
 

With the quaternion norm used to define vacuum 

energy, it possible for scalar mass to be negative. 

Relative to the Dirac equation, the charge conjugate 

is applied to ensure only positive mass exists. 

Negative scalar mass however always results in 

positive vacuum energy density, which depicts the 

gravitational force. Thus  will always be positive 

and the quantized scalar field will have the same 

sign as charge for non-composite massive particles. 

     With the second axiom and the expected inverse 

distance far-field, a spherically symmetric solution 

is possible. This is derived from the classical wave-

like equation and is only meant to approximate the 

field’s envelope. After applying spherical Bessel 

functions, two linear wave solutions are found for 

non-composite particles in Planck units (16). These 

solutions have an �� �⁄  far-field with energy density 

at the classical position proportional to ��. 
 

�
� � ��
��� sin���� �� � �� sin�����

� cos���� ��

 

 

The approximate wavelength that corresponds to an 

electron or positron is therefore 2� in Planck units. 

In SI units however the wavelength is 2���, where 

Planck length is defined as (17).  
 

1	 � 23�� 4 1.616199 · 10
�� + 

 

     As previously stated, the scalar-vector notation 

is not adequate for time-dependent evolution; i.e. 

(16) finds no real application beyond approximating 

the far-field vacuum energy envelope. In general, 

solutions for actual electrons and positrons are only 

approximated by equation (1) and the resulting 

linear solutions (16). All that is required by the 

purposed postulates is for vacuum energy density to 

be indefinitely localized in space, creating a stable 1 �⁄  far-field. Planck units are used due to a relation 

between the space-time metric and vacuum energy 

density. This effectively sets �� 
 ħ� 
 c� 
 k� 
k� 
 1; i.e. the far-field gravity-electric potential of 

an electron is defined as (18), where � is the charge 

to mass ratio. Classical energy variations from this 

potential are now directly proportional to variations 

in vacuum energy density or � �� �⁄ . 

 � 
 �1 �  �      ! � 
 "15.15612�63 &�'�

 

���� 

 

���� 

 

���� 

 

��	� 

 

��
� 

 

1.3. Energy 

���� 

 

���� 
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    Energy (12) can be reformulated by introducing 

the Lorentz scalar defined by (19), which is relative 

to a local frame of reference or space-time metric. 
 

( 
 )1 � *+, (-� 
 1.1 " *+,-�
 

 

The Lorentz factor scales rest energy, resulting in 

the effective quantized energy (20). 
  �  �8 
 

The Lorentz factor (19) is simply the ratio of energy 

to rest energy, and has a range from 1 to ∞. For 

agreement between a relative and general frame, a 

scalar field (	 is introduced.  Generalization of (	 is 

achieved by looking for a function similar to ( with 

a range from 1 to ∞.  This is accomplished by first 

defining the reference vacuum energy density (21), 

which any observer will consistently measure as 

constant.  plays the role of �� as defined in (20), 

which is a product of quantized energy being 

proportional to vacuum energy density. 
 
 ,�
��

  
 

The net vacuum energy density is defined as (22). 

There also exists a simple relation (23) between  

and  similar to � 
 ��(.  
 � �  
   �  8� 
 

The domain can also be extended from 0 to ∞ when 

considering reference frames within a local field. 

However, all applications within this paper use a 

reference frame where the local source is removed 

(� 0 ∞), or as 0 0. To ensure equivalence as 

previously purposed, the correct equation meeting 

all requirements is (24). 
 

8� � � 1 � � 1
1 �         

    Newtonian energy principles (25) can be derived 

by equating (	 
 (. The general Lorentz scalar is 

defined relative to 1��, while the velocity within 8 

is with respect to 2��. 
 ���


 1 � ∆���


 
 1 �  

 
 

Special relativity defines force as the change in 

proper momentum with respect to metric time    

(26). The following notation will be used for 

common variables; 4 
 567 58⁄  is proper velocity, + 
 567 597⁄  is metric velocity and : 
 56 59⁄ . 
 

9�� � �:�����; � 8�+��<��
� ���� � 8+�=��� 

 

The equations can be simplified by considering an 

object moving at escape velocity along the gradient 

of . If  is a single static particle, the escape 

velocity (27) relative to the particle’s field is 

derived via ( 
 (	. Taking the limit of (27) as � 0 ∞ is ;����; 
 0, while the limit as < 0 ∞ results 

in ;����; 
 ,�. When transforming (27) to the frame 

relative to a distant observer or , the velocity as < 0 ∞ is ;=����; 
 0 implying infinite vacuum 

energy density. This is a consequence of 0 ∞ 

rather than < 0 ∞.  
 

;����; 
 ,�) 2��<�,�� � ��< " > ��<�,�� � ��<?�   
 

Acceleration is derived by differentiating (27) with 

respect to 9’ and applying the chain rule. The 

derivative with respect to �7 can be transformed to � 

by applying another chain rule (28). 
 ���; � ����; ��� � 18�

��� 

 

Acceleration relative to the space-time metric at 

escape velocity is therefore equal to (29). 
 

< � ���


��
� � � >�?��8�
� 

���� 

 

���� 

 

���� 

 

���� 

 

���� 

 

���� 

 

���� 

 

��	� 

 

���� 
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1.7.  Continuum Mechanics 

     A localized field can be represented as a group 

of sections or wave fronts, where the space-time 

metric is applied for the quantization process. This 

reference to quantization is not with respect to 

quantum gravity, but instead the transformation of 

localized fields into point-like objects. From the 

perspective being argued within this paper, the 

proper view is that of localized fields deforming 

due to the presence of other localized fields. 

Classical mechanics are therefore replaced by 

continuum mechanics and resulting metric(s). For 

example, a finite manifold (<) can be equipped 

with an arbitrary metric (A��). The metric will then 

undergo affine transformations as depicted in figure 

1.2. For simplicity, each manifold is smoothly 

connected and semi-rigid. Manifolds of this type are 

useful for describing vacuum fields, although the 

concept is further complicated by intrinsic spin. 

Relative to vacuum field theory, each particle exists 

as an independent manifold (A��) that is equipped 

with a scalar field. The scalar field or vacuum 

energy density is in return relative to the preferred 

reference frame. Each localized vacuum field also 

has a reference state (@) with respect to the space-

time metric. With special relativity and classical 

electrodynamics, it is known that additional energy 

or momentum induces length contraction of the 

underlying field(s). This can be extended to general 

relativity by applying the spatial components of the 

contravariant metric tensor. Figure 1.3 demonstrates 

how general relativity allows for the quantization of 

a localized field.  

 

 

 
 

 
 

 

Figure 1.2. A finite 2-dimensional manifold in depicted in an 
initial (O) and final state (O’). Several affine transformations 
are applied including translation, rotation and deformation.    

     Applying the contravariant and covariant metrics 

together results in any underlying field to be 

transformed back to the ��� state; this is due to the 

equivalence principle and equation (30). 
 

������ � ��
� 

 

Transforming each field in this manner allows for 

quantization, where the velocity of each point upon 

the field is equivalent in both direction and 

magnitude. The dynamics of the field can therefore 

be reduced to the point-like particle perspective. 

Without quantization, each point along a particle’s 

manifold will travel at various velocities. This will 

further require continuum mechanics to determine 

the proper translation, rotation and deformation. 

     A particle’s manifold will vary depending upon 

the background vacuum energy density that it 

resides in. Under realistic considerations, the 

particle also influences the gravitational potential 

generated by the background field. If the effective 

energy and proper velocity of each particle is 

known, then it is possible to determine the effective 

space-time metric of any object; this is discussed in 

chapter 2. If a particle is moving with respect to a 

local field, both special and general transformations 

must be applied. From (30), it was shown how 

wave fronts become equivalent to the ��� frame 

when space-time is deformed. Any Lorentz boost 

(38) must be applied relative to this configuration 

and then mapped from A�� 0  ���. This ensures that 

all field transformations are invariant for local 

observers; i.e. any stationary observer will view 

space relative to the space-time metric.  

 
 
 

 

 

 

 

 

 

 

 

 

 
 

Figure 1.3. Sections of two manifolds ��� are depicted relative 
to a specific reference frame. (Left) The frame is with respect 
to the Euclidean frame ���. (Right) The frame is with respect 
to the deformed space-time metric ���. 

1.4. Continuum Mechanics 

���� 
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    Assuming a particle’s classical position is with 

respect to the preferred reference frame (���), �� 

denotes an independent coordinate system for each. 

The notation can be simplified by introducing 
�, 

which is the non-effective field from particle � to a 

point in the B�� coordinate system. The effective 

field from particle � at the same point relative to 

the B�� coordinate system is C

�. Equation (31) is 

based upon the equivalence principle, where each 

particle is relative to the effective background field 

or space-time metric. 
 A

������ � B + � C D  0             + E C D A
����� F 

 

The effective field of particle C due to all other 

particles is defined by equation (32), 
 A

����� � ���

�� 

 

where �

� is determined by integration (33). 

 

��
� 
 �� � 1 D  E F C


�

�


��

��� G
��

�

5�� 

 

Relative to the Euclidean line element (5H), the 

transformed radial coordinate is defined as (34). 
 

�

� � � ��� 	
��� 
�

��

�
� � 
�

��

�
 

 

The line element can be written in terms of the 

metric tensor (35). 
 ��G�� � H���,��,� 
 

If only a single non-composite particle existed, (	 
 1 and the field would be in the original 

configuration with respect to the co-moving frame. 

Therefore, the field of a single electron or positron 

would exhibit the �� �⁄  far-field envelope in 

agreement with classical theory. The maximum 

value of this localized field is proportional to � at 

the classical position. 

     If a point or region of infinite vacuum energy 

density ( ) exists, (	 also becomes infinite. The 

previous mapping (33) fails at boundaries of infinite 

vacuum energy density or points beyond them. For 

example, if the field of an external particle is 

calculated, any radial lines at or beyond the 

singularity will be mapped to the event horizon. 

The wave fronts or sections also become non-

continuous, violating the assumption of smoothly 

connected vacuum field manifolds. It is known 

from classical electrodynamics, QED and QCD that 

particles exist as localized fields. Due to these fields 

following the metric of space-time, they become 

restricted to any boundary of infinite vacuum 

energy. Since these fields are in return responsible 

for all classical forces including gravity, a black 

hole with event horizon would lack an external 

field. This is contradictory to EFEs, where objects 

with event horizon display external fields.  

     Finite black holes are predicted to exist with 

respect to vacuum field theory, although their 

surfaces must have finite vacuum energy density. 

Therefore, black holes should not only demonstrate 

external fields, but also nearly perfect black body 

spectrums. With vacuum field theory, it is literally 

impossible to create a point of infinite vacuum 

energy density from finite classical energy. From 

the methods herein, the effective field of any object 

can now be determined down to the Planck scale. 

With the advent of QCD and resulting states of 

dense quark matter, it is now possible to model the 

finite fields of quark stars and black holes. The 

name given to black holes remains valid since they 

demonstrate near perfect black body spectrums and 

immense gravitational fields. Energy will escape 

over time due to relativistic jets and free field 

radiation. The non-existence of event horizon and 

singularities is later discussed with respect to the 

cosmic background radiation and observed shape of 

the universe. 

���� 

 

���� 

 

���� 

 

���� 

 

���� 
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1.8.  Electromagnetic Fields 

     Relativistic electrodynamics provides additional 

insight into how the vacuum field of a particle 

varies due to relative velocity. As the momentum of 

a uniformly charged particle increases, the electric 

field lines and magnitude loss isotropy. The electric 

field in terms of the particle’s classical position is 

given by (36)[B], where I 
 0° is parallel with ����. 
 J�� 
 K�

&��
��(� L1 " * +,�-� sin��I P� �⁄

 

 

The magnitude of the electric field is therefore (37). 
 E � ��

&8�� J8�cos��
� � sin��
�P
� �⁄  
 

As the particle’s momentum increases, the electric 

field is compressed in the direction of motion. The 

magnitude of the field perpendicular to motion also 

increases, while the electric field tangent to the 

particle’s trajectory weakens. As the limit of � Q � 

is approached the field becomes compressed into a 

cylindrical plane of infinite vacuum energy density, 

depicted in figure 1.4. These field dynamics with 

respect to the Lorentz transformation are crucial to 

the application of point-like sources in classical 

electrodynamics. This however does not indicate 

that the use of point-like sources in other field 

theories is valid. 
 

 

 
 
 

 

 
Figure 1.4. (Top) The electric field of an electron is provided 
in several states: (Bottom) An electron’s manifold undergoing 
length contraction in the direction of motion. 

     For a massive non-composite particle, vacuum 

energy density is not proportional to the electric 

field. The electric potential can instead be related to 

vacuum energy density as demonstrated by equation 

(18). Returning to the foundations of vacuum field 

theory, there is a distinction between quantized 

energy and vacuum energy density. This is because 

quantized energy is with respect to the amount of 

vacuum energy density at the classical position. It is 

important to notice however that the gravitational 

potential is both equal to vacuum energy density 

and the variations in classical energy due to a 

potential. Since quantized energy has only two 

components, the classical dynamics of a point-like 

particle can therefore be retained. The remaining 

field dynamics are derived by applying a Lorentz 

transformation to the vacuum field of a particle.  

     The Lorentz transformation Λ (38)[B] allows 

mathematically defined objects to be transformed in 

space-time. The objects in this case are individual 

manifolds equipped with a scalar field, which 

depicts the vacuum energy density of each particle.  
 

S �
TU
UU
V 8 �8W� �8W� �8W��8W� �1 � W��� W�� W���8W� W�� X1 � W��Y W���8W� W�� W�� �1 � W���Z[

[[
\     

 

Where W�� is defined as (39). 
  

W�� � �8 � 1�W�W�W� � �8 � 1� ����������� 

    

In general any 4-vector can be transformed via (40), 

including the electromagnetic 4-potential. 
 ]; � SR 
 

Two consecutive Lorentz boost can be determined 

with matrix multiplication (41). 
 S�_��� � _���� �  S�_����S�_���� 

��	� 

 

���� 

 

��
� 

���� 

 

���� 

 

���� 
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     With respect to the electromagnetic nature of 

matter, vacuum field theory would be incomplete 

without discussing photons. From the approximate 

field of a non-composite massive particle (16), 

vacuum energy density is determined from the 

classical gravitational potential and linear wave-like 

equation (1). This says nothing about how the 

electromagnetic field relates back to the unified 

scalar-vector field. There is also a distinction 

between individually localized photons and free 

electromagnetic energy. Classically, an electro-

magnetic field can be described in terms of a 

superposition of waves. However, there is no 

guarantee that these are individual packets of 

vacuum energy. Unlike the electric field, super-

positioned vacuum fields do not display field 

interference; i.e. positive and negative electric field 

contributions will result in no electric field, while 

vacuum energy density is always positive. It is 

therefore possible to use Fourier series to create a 

super-position of many waves, although these will 

not represent actual particles. Two processes in 

nature provide insight into the distinction between 

free electromagnetic energy and localized photon 

(or quantized particle); these are electron-positron 

annihilation and bremsstrahlung.  

     Electron-positron annihilation demonstrates the 

particle nature of the electromagnetic field, where a 

particle and its anti-particle produce gamma rays 

after colliding. The localized scalar fields of the 

electron and positron cancel, creating two or more 

massless photon. Assuming conservation of energy, 

the resulting photons will split quantized energy. 

Since the total vacuum energy of a single electron is 

infinite, only the conservation of classical energy 

can be considered. The gamma rays resulting from 

the annihilation process also remain localized in 

space indefinitely. This has implications for the 

CMBR, or black body spectrum observed in all 

directions of local space. 

     Each photon or localized packet of electro-

magnetic energy remains localized due to the 

reinforcement of vacuum energy density. Assuming 

the symmetry of a photon is cylindrical, Bessel 

functions of the first kind (42) are applied 

perpendicular to the direction of propagation.  
 Q��6 
 F �"1 
'! S�' � B � 1 *62-�
��

�


��

 

 

If a linear wave equation is used similar to (1), the 

gradient of the scalar component must have the 

opposite sign of the vector field. This will 

essentially require for the central region of the field 

to have quantized mass. Therefore, the linear-wave 

approximations cannot be taken literally. An actual 

photon will have no scalar mass at the classical 

position, and will therefore be anti-symmetric with 

respect to the vacuum scalar field. The wave 

equation is instead applied to approximate the far-

field envelope under consideration of vacuum 

energy conservation. The exact nature of the 

underlying vacuum field is therefore irrelevant, as 

only vacuum energy density is required with respect 

to general relativity. Applying the linear wave 

approximation (1), a photons field perpendicular to 

propagation is (43). 
 �  ���`a��� � �ba��� c  �√� 

 

In order to determine the 3-dimensional vacuum 

energy density of a single photon, the envelope in 

the z-direction is required. Without a rigorous 

method capable of providing the exact vacuum field 

of a photon, the linear wave approximation must 

once again be applied. The vacuum field of an 

individually localized photon in Planck units is 

therefore (44), where coordinates are with respect to 

the particle’s classical position. 
 ��, I, U 
 ��V�|�|W�Q� � � �Q� � X ��√� V�|�| 

���� 

 

���� 
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     Bremsstrahlung is the second case of electro-

magnetic energy, where a charged particle passing 

close to another emits braking radiation. Unlike the 

previous case, electromagnetic energy is radiated as 

a free field over a range of frequencies. The free 

field should be treated as an independent manifold 

with respect to other localized fields and particles. 

In other words, the free electromagnetic field is 

locally invariant with respect to the space-time 

metric. This emission of electromagnetic energy in 

the framework of point-like sources is similar to the 

gravitational waves in general relativity. In general, 

theories that couple fields to point-like sources will 

generate waves upon the respective medium due to 

variations in a quantized source. 

     The emission of electromagnetic energy can 

further be related to a variation in vacuum energy 

density. For the non-relativistic case, the radial 

Poynting flux is defined as (45)[B]. 
 

e� � C�� &�<�4g����
� sin��
� 

 

The electromagnetic energy radiated per unit solid 

angle is therefore (46)[B]. 
 �h���Ω � &�<�4g��

� sin��
� 

 

The first order approximation of bremsstrahlung 

indicates that a charged particle will emit a free 

field electromagnetic dipole. It is important to 

realize that electromagnetic energy in this situation 

is not localized, but continuous over a range of 

angles and frequencies. It is distinct from the 

annihilation case, where two photons are emitted at 

unique angles in order to preserve quantized energy. 

With results from chapter 2, the effective vacuum 

far-field of a moving electron is defined by (47).  
 A � �,’, k’, l’� �  �8��x�� � �y�� � �z8��

   

     Relative to quantized energy, the Lorentz scalar 

is the only free variable. Therefore 8 will assume 

two states, i.e. prior to bremsstrahlung ((�) and after 

((�). The variation of vacuum energy density 

between these states can be derived by subtracting C �(�  from A �8��, i.e. equation (48). 
 ∆ C

�� 
 ��� L (�W�(� cos I � � �sin I �" (�W�(� cos I � � �sin I �P 

 

The initial and final states from (47) are expanded 

via Taylor expansion at ( 
 1 resulting in (49). 
 

1 � �� � 1� sin��
� �
3

2
�� � 1�� sin��
� cos��
� � ···    

 

Ignoring higher order contributions, equation (49) 

reduces to a dipole field approximation (50).  
 ∆ C

�� � ��� �∆( sin��I  
 

The Lorentz transformation derived from classical 

electrodynamics is therefore directly related to a 

fundamental scalar field. The electromagnetic field 

cannot be easily related to vacuum energy, since 

only the electric potential is proportional to . 

Therefore, the �� in (45) is expected, while vacuum 

energy decays proportional to the inverse distance. 

The vacuum energy emitted in terms of non-

relativistic motion becomes (51). In consideration 

of a unified field theory, all particles would exist 

upon a single field in space. However, vacuum field 

theory depicts each localized field as a deformable 

manifold relative to a reference space (���). In this 

perspective, vacuum energy density ( ) radiated 

due to bremsstrahlung is physically detached from 

the electron’s manifold into a free field described 

by Maxwell’s equations. 
 ' 4 +��<� sin��
� 
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Classical Quantum Mechanics 

    Quantum mechanics was introduced by Erwin 

Schrodinger, who had initially attempted to create a 

relativistic theory. Due to the many difficulties 

related to the relativistic form, the time-dependent 

Schrodinger equation (52)[C] was instead published. 
 

03�' � p� � q) � 3�2+ ��r � 

 

In consideration of a classical potential such as the 

electric field produced by a proton, the probability 

of an electron being detected at any given position 

is 		 . This should not be confused with the wave- 

function attributed to vacuum field theory, which 

depicts a Hamiltonian density. The wave function 

of quantum mechanics can be interpreted in various 

ways. Vacuum field theory agrees with the path-

integral approach to quantum mechanics, where 

each particle has a classical location in space. It 

attributes no physical meaning to the quantum wave 

other than probability. This is known as the 

minimalist perspective or ensemble interpretation 

attributed to Max Born[D]. 

     In order to comprehend fermion spin and mass, 

the field of spin 1 particles must be initially 

discussed. Photons are the most fundamental spin 1 

particle and can be either polarized or non-

polarized. For a circularly polarized photon, the 

spin state is either  �[. To simplify the problem, the 

photon will be reduced to a plane-wave that has a 

helix shaped electric field. Relative to a massive 

particle located at a fixed point in space, the 

propagating EM field will appear to spin around a 

fixed axis. The electric field however is actually 

traversing space at the speed of light perpendicular 

to the spin plane. The field is therefore not spinning 

with respect to the reference frame. The quantized 

energy of a photon can be written with respect to 

the perceived angular frequency or wavelength by 

equation (53). Circular polarization is identical to 

two super positioned plane-waves, so (53) remains 

true for all photons.  
  � 3s � tu � t� v⁄  
 

The photon’s luminal field can be carried over to 

fermions. By applying spacetime algebra, it is 

observed that the field of an electron orbits the spin-

plane at the speed of light. If this is true, then there 

must be kinematic effects due to the coupling 

between light-like field dynamics and space-like 

trajectories. The classical structure of the electron is 

discussed at the end of this section, for now the 

Dirac equation (54)[E] is examined for its connection 

to relativistic field dynamics. 
 03�' � p� � ��x · :� � W+����� 
 

This can be rewritten in a more intuitive way since 

���� is actually related to the intrinsic spin (55). 
 0� %�%� � $x · :�3 � y +��3 ( � 

 

Setting the rest energy of the electron equal to the 

spin angular frequency (53) results in a spin radius 

of (56); this is the reduced Compton wavelength. 

The radius (��) is constant relative to the metric of 

space, tracking a set of points along the field.  
 �� � 3 +��⁄  
 

     In consideration of the quantization process used 

within relativity, the objective is to demonstrate that 

tracking a single point upon the electron’s field 

satisfies the equations of motion at the classical 

position. To simplify the motion of the field, a local 

orthogonal coordinate system (\�, \�, \�) is defined 

relative to the classical position. Historically, 

Schrodinger was the first to apply the Heisenberg 

picture in order to determine the time dependence 

of the position operator (57). 
 D �03,'� � Jp, ,�P              D ,'� � �3 z� 

1.6. Quantum Mechanics  
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After integrating (57) twice with respect to time, the 

position operator becomes (58). 
 

��� � � ���0� �  ��"�#
� $%�2# '(��0� ) �"�# * +,����� �⁄ ) 1-   

 

The last term is the complex quantum oscillation 

known as zitterbewegung; it is complex due the 

connection with spinors. Furthermore, the first two 

terms provide the classical trajectory of the particle, 

which is the average zitterbewegung path. Applying 

the Heisenberg picture, particle motion is combined 

with a non-classical rotation of the field and cannot 

be directly interpreted in the classical sense. From 

(58), the zitterbewegung angular frequency and 

radius are (59). 
 ! :�!" 
 2][ 
 2'�,�[        ! ��!" 
 ,:�


 [2'�,  
 

Spinors in general require two rotations in order to 

return to the initial state. Picking half the classical 

radius upon the spin-plane remains a valid option. It 

is claimed that the field has an angular velocity 

equivalent to the speed of light; therefore, the 

angular frequency also doubles. Choosing the 

classical radius (56) simplifies the situation since it 

returns to the original state after a single rotation; 

i.e. the relativistic spin period is defined as (60). 
 {� � - �

t+�� � t8 �
4 t+��� 

 

     To develop a mathematical model of the local 

coordinate system and spin, spacetime algebra is 

applied. Geometric (spacetime) algebra allows the 

geometric product to be defined as (61)[F].  
 |� � | · � � | } � 
 

The orthogonal reference vectors are related to the 

initial set by Lorentz spinors (62)[F], i.e. H^�2, _ . 
 ~� � ]��]� 

Spin arises as a bi-vector defined as (63)[F], where `�`� is the spin plane. 
 e � 0�� � 32 0/�/� � 32 ]����]� 
 

For the free wave solution to the Dirac equation, the 

Dirac rotor becomes (64)[F]. 
 ] � ��� �⁄ ]�             D Ω � 2+��3 ~�~� 
 

 

The time dependence of the local coordinates is 

related to the angular velocity bi-vector via (65)[F]. 
 ( 5\�59 
 � Ω · \� 
 

On the spin plane c 
 1, 2 resulting in (66), where 9 

is relative to metric time. 
 ! 5\�59 
 � 2'�,�([ \�\�\� 
 d 2'�,�([ \� 

 ! 5\�59 
 � 2'�,�([ \�\�\� 
 � 2'�,�([ \� 

 

These equations define the time dependence of the 

local coordinate system attached to the electron’s 

classical position. Since an electron moving at the 

speed of light violates relativity (19), intrinsic spin 

and zitterbewegung must be field related. 

    Comparing the Heisenberg approach to the 

geometric algebra derivation, the only self-

consistent interpretation of the Dirac equation is 

mechanical in nature. The Heisenberg picture 

demonstrates that the position operator is following 

a complex, light-like trajectory. Geometric algebra 

demonstrates that the electron has a classical 

velocity (0) and an attached coordinate system at 

the local position. In addition, a multivector rotation 

is an active transformation, which acts on a field 

independent of the reference coordinate system. 

The original space-like geodesics must therefore be 

modified so that the field always follows time-like 

geodesics. This in return allows the relativistic 

dynamics of a localized field to be reduced to a 

point in space-time. 
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     The classical structure of electrons/positrons is 

required to further the localized field interpretation 

of the Dirac equation. Quantum theory hides the 

localized nature of particles through Lorentz 

transformations. Similar to general relativity, a 

localized field can be reduced to a point like object. 

Since the Dirac equation is Lorentz invariant, 

knowing the trajectory of any point along the field 

allows all others to be determined. Therefore, it is 

assumed that the active transformation applied to 

the spin-plane carries over to all other points along 

the field. According to classical electrodynamics, 

which is implied by quantum theory via minimal 

coupling, a moving electric field will produce a 

magnetic field equal to (67). 
 

���� �  ��� X���� �  �Y 

 

The active transformation must be light-like acting 

on the entire field of the electron; i.e. the magnetic 

field becomes (68). 
 � � k�q��r� φ� 

 

The classic definition for a magnetic dipole is (69), 

where � is the dipole moment. 
 

������	��� � �������
�2 cos��� �̂ � sin��� ���     

 

Since it is claimed that the Dirac equation is 

specific to a single point on the spin-plane, 

equations (68, 69) are combined resulting in (70). 
 k�q�� � ������  

 

Plugging in the classical radius (56) as defined in 

the Dirac equation results in a spin magnetic dipole 

moment equal to (71). 
 +� � ��� � q���� � q�3+�

 

     Measuring the magnetic field along the spin-

plane (at ��) results in a magnetic dipole moment 

that is twice the Bohr magneton (72). If the 

zitterbewegung radius is used instead, the dipole 

moment becomes equivalent to the Bohr magneton. 
 c# 
 q�[2'�

 

 

It is obvious that the field generated by a spinning 

electron is not a true magnetic dipole. This is 

irrelevant until the hyperfine structure, where the 

nucleus interacts with the electron’s far-field. The 

relativistic electric field also deforms with respect 

to the appropriate Lorentz transformations, while 

vacuum energy density must also be included.  

     Ignoring higher order effects, the approximate 

evolution of a spin 1 2⁄  quantum system can be 

described by relativistic field dynamics. Returning 

to the spin bi-vector, the equation can be expanded 

with the geometric product (73)[G]. 
 e � 0�� � 0�� · � �  � } �� 
 

The Hodge dual (74) allows for an identity between 

the wedge product and cross product. 
 � } � � � �� � �� � 0�� � �� 
 

The spin bi-vector (75) is composed of a real scalar 

and imaginary vector, relative to the angle between 

the intrinsic spin and classical velocity.  
 e � 0G�J��G�W� � 0��G0C�W�P 
 

Figure 1.5 demonstrates how quantum mechanics 

reduces a field’s relativistic spin to a single point in 

space-time.  

 

 

 

 
Figure 1.5. For an electron moving in a straight line without 
external field, � � � 2⁄  to ensure the fields velocity remains ��. 
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 1.9.2. Applying Vacuum Fields 
    Vacuum field theory bridges the gap between 

general relativity and electrodynamics. It is argued 

within the previous sections that particles exist as 

localized field(s). This is contrary to Einstein’s field 

equations, which depict particles as point-like 

sources. In perspective, EFEs take the quantized 

attributes of localized fields and couples them to a 

geometric field equation. The principle of locality is 

essential to Einstein’s interpretation of general 

relativity, i.e. it allows point-like sources to have a 

local effect on the surrounding space-time metric. 

Quantum mechanics on the other hand demonstrates 

that local hidden variable theories are invalid via 

Bell’s theorem. By applying vacuum field theory, 

the Dirac equation can be interpreted as a quantized 

field theory. The non-local hidden variables become 

visible once spacetime algebra is applied, which 

reveals the underlying relativistic field dynamics. 

Ignoring the significance of localized fields rather 

than point-like sources will result in theories that 

allow gravitational waves. For example, both EFEs 

and the Brans-Dicke theory allow these waves. 

Gravitational waves however have not been ruled 

out experimentally, although one has never been 

directly detected. Gravitational waves and the 

current probability of non-existence are further 

discussed throughout section (2.2).  

     The Lorentz transformation is a crucial aspect of 

quantum field theory or classical electrodynamics. 

Section (1.5) demonstrated that an accelerating 

charged particle emits vacuum energy density. This 

is related to the emission of electromagnetic energy 

in terms of bremsstrahlung. Therefore, application 

of locality in classical electrodynamics is valid 

because the electric potential is directly related to 

vacuum energy density. Application of point-like 

sources in quantum mechanics is also valid when 

considering the process of quantization. This allows 

for hidden non-local variables in agreement with 

Bell’s theorem and action at a distance. Quantum 

mechanics itself is based upon quantized variables 

such as rest mass, position and momentum. Spin 

only complicates the situation by offsetting the 

point of quantization from the classical position, i.e. 

the electric field will always travel at the speed of 

light. Satisfying the equations of motion for a point 

along the field will automatically solve all others.       

     It is difficult to define vacuum energy density in 

terms of the additional fields within QFT and the 

standard model. However, the electric potential is 

proportional to vacuum energy density with the far-

field approximation. The mass of a single fermion 

is also directly proportional to an underlying scalar 

field. The energy density at the classical position of 

a particle is crucial in terms of the quantization 

process. It allows a localized entity to be reduced to 

a point-like object, where classical mechanics can 

be applied. Vacuum energy density can also exist 

without the presence of classical fields. Neutrons 

for example are massive compared to electrons, but 

demonstrate minimal electromagnetic properties. 

Although the charge of negative and positive quarks 

can cancel, the underlying vacuum energy density 

must be conserved. The unified field theory would 

therefore require classical quantized forces to be 

abandoned. This is not required to arrive at a theory 

that predicts the outcome of any experiment. For 

example, it is always possible to include additional 

factors into mathematical models for agreement 

with observations. However, this does not mean the 

resulting theory will depict what is actually taking 

place. It will also be difficult if not impossible to 

arrive at an exact formulation connecting general 

relativity and the standard model. With vacuum 

field theory, far-field approximations can instead be 

applied in order to arrive at a perturbative theory of 

everything.   

1.7. Applying Vacuum Fields 
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     The Dirac equation written in covariant form is 

defined as (76).  
 �8�%� � 0 +��3 � � � 0 
 

In order to include general relativity or external 

fields into equation (81), f� 0 g$ is the covariant 

derivative (77) with respect to the local frame. 
 �08��� � +��3 � � � 0 

 

The anholonomic Dirac matrices (8�) are related to 

the Dirac matrices (78) by a vierbein field. 
 8� � ��

�8� 
 

The vierbein field is related to the metric tensor via 

equation (79). 
 

H�� � %��%,�

%� %,� �� � ��
���

 ��  

 

Equation (78) finds its origins from the commuter 

of the Dirac matrices (80). 
 J8� , 8 P � 2��  
 

In order to relate the local tetrad frame to the 

metric, the general commuter is defined as (81).  
 ���

�8�, ��
 8 � � 2H�� 

 

The local frame is attached to the electron’s 

classical position and remains light-like. Therefore, 

the Dirac equation with respect to the preferred 

reference frame (c, +, …) becomes (82). 
 �0��

�8��� � +��3 � � � 0 

 

The covariant derivative (83)[H] includes variations 

from the metric of space and any external electro-

magnetic field defined upon it. 
 

�� � %� � 14 s�
� �� � 0�3� �� 

     Since Planck units offer a natural scale for 

vacuum fields, the equations for the remainder of 

this section are written with [ 
 , 
 � 
 1. The 

metric relative to vacuum field theory in accordance 

with section (1.5) is isotropic, i.e. it must be defined 

by a single scalar field ((	). Therefore, the vierbein 

defined in (78) is directly related to the effective 

vacuum energy density (84). 
 ��

� � 8� � 1 � A  
 

Neglecting any sub-structure of the nucleus or self- 

interactions, the static field is approximately (85). 
 

	 c +	�  
 

The Dirac equation with an external field is (86). 
 

�08� $%� � 14 s�
� �� � 0���( � +�8�

� � � 0 

 

In order to ensure that the field remains light-like, 

the spin connection (87)[H] must be introduced into 

the covariant derivative. The Christoffel symbols 

(i %�& ) are further derived from vacuum energy 

density and resulting space-time metric. 
 s�

� � ��
�%��� � ��

��! � "�
#  

 

The space-time indices can be raised or lowered by 

applying 1�� or  1�� respectively; i.e. (88). 
 �� � H����

 � 12 ���
�8�, ��

 8 ���
  

 

     Solutions that are more exact require for the 

interaction between individually localized vacuum 

fields to be accounted for, i.e. the nucleus and 

electron. This usually involves solving continuous 

fractions by iteration discussed in section (2.6). 

Since the inverse distance is an approximation for 

the far-field, it is also necessary to apply an energy 

cut-off when the radius is 1 in Planck units. This 

ensures that vacuum energy density does not 

surpass the maximum value depicted by quantized 

or classical energy. 
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Classical Quantum Mechanics 

     The standard model is an extension of quantum 

field theory, which is based upon classical electro-

dynamics and special relativity. It includes several 

other fields such as the electroweak and Higgs, 

which model weak interactions and mass. Many of 

the previous principles from the Dirac equation 

carry over to quantum electrodynamics (QED) and 

the standard model. The Lagrangian density (89)[I]  

of QED for example consists of the Dirac equation 

and classical electromagnetic contributions. 
 

���� � ��� � +�� � 14 �$%�$% 
 

QED is formulated with classical fields coupled to 

spinning light-like manifolds. In this perspective, 

the mass term offers no additional insight beyond 

semi-classical Lagrangian dynamics. Due to this, 

extensions of quantum theory fail to explain the 

physical essence behind classical fields and mass. 

This however does not make the theory useless, as 

experiments can only measure quantized variables 

including rest mass, position and momentum. The 

electromagnetic field is also closely related to 

vacuum field theory and depicts time dependence of 

quantized charged particles. 

     The transition from QED to a more general 

theory requires the addition of neutral currents and 

weak interactions. The standard model unifies weak 

interactions and QED with electroweak theory, 

defined by the H��2 '  j  ��1 ( gauge group. 

Neutral vector bosons k� (photon) and l� (l� mass 

eigenstates) are related to the fields responsible for 

weak interactions via the Weinberg angle (90)[I] . 

The coupling angle varies according to the energy 

scale or momentum transfer involved. It is also 

related to the running coupling constants of 23�2�� 

and ��1 ( (A  and  A’ respectively). 
 

�����
� � � cos 
& sin 
&� sin 
& cos 
&

� � ��h�
�� 

The neutral components are included within the 

interaction Lagrangian density (91)[I] , along with 

the running coupling constants. In order to ensure 

that H��2 ' invariance in not violated, a current (J�() 

is added which preserves the symmetry.  
 

#��'
(&) � �0HJ�

�h�� � 0 H;2 J�
*�� 

 

The H��2 ' j ��1 ( gauge group (92)[I]  shares 

similarities with the 2-dimensional rotors applied in 

space-time algebra.  
 �+ Q �;+ � ��,�!� �⁄ ��� �⁄ �+ 
 

The projections for left-handed and right-handed 

components are (93)[I] . 
 ! 	' 
 12 �1 � () 	       ! 	* 
 12 �1 " () 	      
 

In canonical form, even sub-algebra solutions (n�,�
� ) 

to the Dirac equation for 		o p 0 are (94)[G]. 
 � � �¡��� �⁄ ] 
 

     The connection between (92) and (94) arises 

because the group of 2D rotors and unitary group ��1  are locally isomorphic. However, there are 

two unique copies of ��1 : ��1 �� and ��1 ( with 

generators defined as (95)[I]  respectively. 
 ! q 
 r2 � I�                !  q 
 r 
 

The second component of (92) is locally isomorphic 

to Ht�3 , although requires two complete rotations 

in order to return to the original state. The Pauli 

matrices define the axis of rotation, while I$ is the 

gauge parameter; i.e. the amount of rotation on each 

spin axis. Since the lie algebra of H��2  and Ht�3  

are isomorphic, the general rotor in n� is defined as 

(96). Thus 
�$ are the infinitesimal generators 

of  H��2 , similar to  T$. 
 ] � cos 
2 � T��� sin 
2 

1.8. The Standard Model 
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     Returning to the conical solution of the Dirac 

equation, the beta factor encodes the angle between 

the spin-plane and velocity. Furthermore, the rotor 

determines the rotation of the field with respect to 

spin-coordinates. Combining these properties with 

the 23�2�� 4 3�1�� gauge demonstrates the degrees 

of freedom for the underlying field. Either the spin-

plane to velocity angle is varied, or an active 3-

dimensional rotation is applied with respect to a 

rotational-axis. Similar to the Dirac equation, the 

process of quantization is crucial to understanding 

these transformations. It allows a localized field to 

be treated as a point-like object. Spin for example 

allows the quantization process to take place away 

from the classical position. This allows an active 3-

dimensional transformation to be reduced to the 

motion of a single point in space-time. 

     It should be no surprise that the standard model 

is not capable of becoming a unified field theory. 

Renormalization is the first of many signs that the 

choice of fields is poor, i.e. classical and/or multiple 

scalar-vector fields should not be applied. Beyond 

the initial choice of electromagnetism, the non-

classical fields are a consequence of preserving 

symmetry and/or filling gaps. The standard model 

also requires a minimum of 19 free parameters and 

several running coupling constants determined 

experimentally[J]. Any unified field theory should 

have zero free variables except for the fundamental 

constants (,�, ��, ħ, k�), which depict underlying 

properties of space. For example, the electron rest 

mass should be determined from the only stable 

non-composite solution to the unified field theory. 

Quantized mass takes the particular value due to the 

non-linear nature of the field, i.e. there is only one 

stable value. The standard model in original form 

however does not attribute mass to fermions and 

other massive particles. An attempt to resolve this 

absence requires an additional field and resulting 

scalar particle, i.e. the Higgs field and boson 

respectively. 

     The Higgs field was introduced in 1962 by 

Philip Anderson to compensate for the lack of mass 

for gauge bosons within the standard model. The 

relativistic model was further developed in 1964 by 

independent groups who were awarded the Nobel 

Prize. The additional field predicted the existence of 

a Higgs boson, which gives mass to other particles. 

The mass of the Higgs boson can be theoretically 

determined from the mass of the top quark and w-

boson. Earlier measurements of these particles 

predicted a Higgs boson with an expected mass of 85���
�	� 7,8; however, recent world averaged values 

(March 2012)[K]  of the top quark and W-boson vary 

the preferred value to 94�
�
�
� 7,8. The standard 

model therefore predicts that the mass of the Higgs 

boson ranges from 70 – 123 7,8 with theoretical 

methods. These values are relative to the top quark 

having a bare mass of 173.2 � 0.9 7,8 and W-boson 

of 80.399 � 0.023 7,8.  

     Direct methods of detecting the Higgs boson 

initially began at CERN with LEP2. Preliminary 

results from data collected over the year 2000 

claimed that four LEP2 experiments were consistent 

to the 2.9 sigma level (“1.4 in 1000 chance of 

statistical fluctuation”) of a 115 7,8 Higgs boson[L] . 

This was reported in November 2000, based upon 

an excess of events over the theoretical background 

rates. Results were published in December 2001 

conserving the previously predicted mass, although 

the combined probability had decreased to 2.4 ·10��[M] . From the four individual experiments, 

ALEPH provided the most significant results. The 

excess of events over background was initially 

placed at 3.4�, which was further reduced to 3.2� in 

the final report. The more recent large hadron 

collider began operations in November 2009, which 

also contains multiple experiments for detecting the 

Higgs boson. Initial results were released in July 

2011 with respect to ATLAS and CMS, showing an 

excess of events around 144 �Vw[N]. This was 

compatible with a Higgs boson at the 2.9 sigma 
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level. An article published in nature around mid-

august of the same year later revised the confidence 

to a sigma of 2.0[O]. Results that are more recent 

were published in December of 2011, where 

ATLAS had a signal at 126 �Vw with 3.6 sigma; 

CMS showed an excess of events around 124 �Vw 

with 2.6 sigma[P]. An additional weak signal was 

detected by both experiments around 119 �Vw with 

a 2.1 sigma. Figure 1.6 depicts these recent results 

and theoretical mass as derived from the top quark 

and W-boson. 

     Between LEP2 and LHC, there seems to be a 

disagreement with the observed excess of events. 

The results of ALEPH demonstrated a sigma that is 

relatively close to ATLAS. If the Higgs boson 

exists in accordance to the standard model, both 

results cannot be correct. This raises concerns over 

the understanding of background processes and 

their contribution to excess events. There also lacks 

a single region that demonstrates a Higgs boson 

signal, i.e. mass has varied between individual 

experiments and runs. This of course can be 

explained by lack of data, both by the results of 

LEP2 and preliminary results at LHC. Relative to 

theoretical  predictions,  there  exists  a  large  margin  
 

 
 

 

 

 

 
 

 

 

 
 
Figure 1.6. The thick red line is the theoretical Higgs mass 
determined from the top quark and W-boson; dashed lines are 
error boundaries as of March 2012 for the 68% confidence 
level[K] . The hatched area at the bottom depicts regions that 
have already been ruled out by other experiments. 

between experimental results and the preferred 

mass range. Due to the uncertainty of the top 

quark’s mass, recent claims of a Higgs-like particle 

between 4.5 to 5.0 sigma (125 �Vw)[Q] are border-

line acceptable up to the 68% confidence level[K] . 

However, only decay products of the Higgs boson 

are being directly detected, which coincide with the 

decay products of other known particles. Even at 6 

sigma in agreement with the standard model, there 

lacks explanation for the physical essence of mass 

and additional deflection a particle experiences in 

external fields. 

     From vacuum field theory, the classical energy 

(97) of a single fermion is proportional to the point 

of maximum vacuum energy density. It is this 

central point of a quantized particle that depicts the 

kinematics of the entire localized field. This is in 

accordance with the process of quantization and 

affine transformations previously applied. 
  � ��-��� � �+����� 
 

It is also predicted that massive particles such as 

electrons will have symmetric scalar fields, while 

massless photons consist of anti-symmetric scalar 

fields. This symmetry allows massive particles to 

have a finite amount of scalar mass at the classical 

position. Massive particles will therefore require 

momentum to move through an external field due to 

a localized scalar field rather than a massless scalar-

vector field. Mass in QED is not well defined 

because the Dirac equation uses it to quantize spin. 

This relativistic spin is in return balanced with the 

quantized velocity so that all points upon the spin 

plane move at the local speed of light. The unified 

field theory should instead reduce to a single scalar-

vector field (98), where mass is a localized scalar 

field (��) depicting matter and anti-matter for each 

pair of fundamental particles.  
 �¥� � ���� � ��	�� � ���� 
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     Vacuum field theory requires a single scalar 

field determined from quantized variables and 

affine transformations. From this scalar field, it is 

possible to define the space-time metric similar to 

Einstein’s field equations. Identical mathematical 

tools are required for either field theory, i.e. 

differential geometry and Riemann manifolds are 

necessary for quantizing a field’s motion. Vacuum 

field theory also explains the mechanism behind 

gravitational force. Variations in time dependence 

at each point in space forces a quantized field to 

accelerate. Similar to section (1.4), applying the 

space-time metric to the particle’s manifold ensures 

the underlying field’s time dependence resembles 

the initial ��� configuration. Differential geometry 

and Riemann manifolds are therefore indispensable 

tools for general relativity, regardless of the 

underlying field theory. 

    A crucial modification to the theory of general 

relativity is the coupling between point-like sources 

and the corresponding space-time metric. If this 

coupling is poor, artifacts will appear under certain 

scenarios; i.e. gravitational waves and singularities. 

After discussing the correct metric from vacuum 

field theory, it becomes clear that EFEs are using 

the manifold of space-time in disguise of a localized 

field. The coupling between EFEs and Maxwell’s 

equations is also poor, i.e. the contributions to the 

space-time metric are incorrect. The space-time 

metric should instead include all vacuum energy 

components, i.e. the electric and neutral fields. 

EFEs instead decouple these fields from quantized 

mass, depicting them as separate entities. The 

Schwarzschild solution in return cannot represent 

realistic objects since all massive particles display 

some electromagnetic component. Attempting to 

produce a proper field solution via the Einstein-

Maxwell equations is also incorrect.  

2.1. Special Relativity 
 

     With respect to classical electrodynamics, a 

charged particle will have an effective electric field 

defined by (99). The velocity must be relative to the 

metric of space-time, or background vacuum energy 

density due to all other particles. 
 

¦�� � & �����

8�8� cos��
� � sin��
��� �⁄  

 

The electromagnetic field does not easily transform 

to a particle’s vacuum energy density. However, the 

electric potential is proportional to  with respect 

to charged particles. Since the electric field lines are 

parallel with yz, the electric field is proportional to 

the radial derivative of the effective vacuum energy 

density (100); where � is the charge to mass ratio 

and Planck units are applied. 
 J�� 
 "� > ff� C ? yz 
 

Assuming that the field is only compressed relative 

to the direction of motion, the effective vacuum 

field is (101). 
 A �  � 1��8 cos 
�� � �sin 
��

 

 

The partial derivative of the transformed field (101) 

is therefore (102). 
 

� �
�����

8�8� cos��
� � sin��
��� �⁄        
 

Equation (100) is equivalent to the effective electric 

field of a moving charged particle (103). 
 "� > ff� C ? yz � & �z�2

8�82 cos2�
 � sin2�
��3 2⁄    
 

Vacuum energy density is therefore directly related 

to the electric potential of a non-composite massive 

particle. This connection allows localized fields to 

be treated as point-like sources in electrodynamics. 

2.  Relativity and Differential Geometry 
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2.2.  General Relativity 
 

     The foundational aspects of general relativity 

discussed over the previous sections are sufficient 

for understanding the coupling between EFEs and 

classical electrodynamics. The Maxwell-Einstein 

field equations are introduced (104)[R], where {�� is 

the electromagnetic stress-energy tensor. 
 

]�� � 12 H��] � 2>���
�§�

�
�� 

 

The Reissner-Nordstrom metric (105) is a static 

solution to the Maxwell-Einstein field equations. It 

defines the gravitational field around a charged, 

non-rotating, spherically symmetric object. 
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Where (7	 is (106)[S] and the Schwarzschild radius 

is defined as  �, 
 2�⁄ .  
 8;�

� � 1
1 � ��� � $��¨� (�      

 

This is the limit as Q  relative to the vacuum 

field definition (107), after the proper electric field 

contribution (18, 100) is taken into consideration. 
 

8�
� � 1

$1 � (�   �  1
1 � ��� � $ (� 

 

It is no coincidence that equations (106, 107) have 

similar form. Vacuum field theory unifies mass and 

external fields into a single entity. A simple case 

would be that of an electron, which is spherically 

symmetric with respect to any co-moving frame. 

According to the second axiom, the conservation of 

vacuum energy creates an � �⁄  far-field via the 

linear wave-equation (1). Since the electromagnetic 

field is based upon classical dynamics, it should not 

contribute to vacuum energy density with respect to 

a charged particle; i.e. the EM components are 

already included in (24). The Reissner-Nordstrom 

metric for a single particle therefore reduces to the 

derived vacuum far-field of a charged particle after 

proper field contributions are considered.  

     Returning to electromagnetic fields, quantized 

conservation laws can be written as (108)[B]. The 

electromagnetic stress-energy tensor ({��) is once 

again related to classical mechanics. 
 %�{�� � ��/u/ � 0 
 

The field tensor (109)[B] is derived from the 

electromagnetic four-potential, it is therefore related 

to quantized lagrangian dynamics and should not 

contribute to the vacuum energy density. Once 

again, there is a distinction between vacuum energy 

density and quantized energy due to classical force. 
 

��� � ���� � ���� 
 

The four-potential (110)[B] is proportional to the 

scalar and vector potentials. 
 

�/ � ����
, 
� 

 

Einstein’s field equations apply quantized densities 

in order to determine the curvature and metric of 

space-time. The quantized source term on the right 

side of EFEs (111) allows for mass and momentum 

to be applied in a continuum limit. The left side 

couples the quantized source(s) to a local geometric 

field or space-time metric.  
 

]�� � 12 H��] �  8g>���
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With the foundations offered from vacuum field 

theory, it is clear that Einstein’s field equations 

contain several flaws. Up to this point, the three 

reasons initially offered for a revision of general 

relativity have been discussed.  
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2.1. General Relativity 
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     The first was the coupling of point-like sources 

to the space-time metric. The metric further mimics 

the underlying vacuum field from which matter 

originates. Similar to electrodynamics, the coupling 

of a localized field to a point-like source allows for 

waves upon the relative medium; i.e. the classical 

electromagnetic field or space-time metric of 

general relativity. The vacuum field of a single non-

composite particle however is proportional to its 

electric potential. When the electric potential of a 

particle varies relative to some background field, so 

does the underlying vacuum energy. This was 

previously discussed relative to bremsstrahlung, 

where this variation was directly related to the 

variation in vacuum energy density and Lorentz 

transformation. Since the space-time metric is 

defined solely by vacuum energy density, it is 

incorrect to include the electric field of a single 

particle as a separate entity. 

     The second flaw is similar to the first, where 

particles must exist as localized fields rather than 

point-like objects. Similar to relativistic electro-

dynamics, the field of a particle becomes deformed 

when the background vacuum energy density 

varies. Therefore, the metric of space-time is of 

mathematical origin and plays no role in the 

physical structure of space. An observer will always 

view space relative to the metric of space-time. 

However, space does not deform at the large-scale 

structure as purposed by Einstein. This also pertains 

to gravitational waves, as it is claimed by the third 

postulate that matter is Planck scale fluctuations of 

space. It is contradictory to allow space-time waves 

from the quantized variables of vacuum fields, 

when vacuum fields are a representation of Planck 

scale waves. Furthermore, if vacuum fields were 

responsible for classical force, objects with event 

horizon would lack external gravitational fields; this 

is contradictory to EFEs vacuum solutions. 

     The third flaw is the incorrect coupling between 

electrodynamics and classical gravitational field. 

From section (2), it was argued that the electric 

field is a component of the underlying vacuum 

field. With the conservation of vacuum energy 

density or classical theory, a non-composite 

charged particle should display an �� �⁄  far-field. 

The Maxwell-Einstein vacuum solution ({�� 
 0) 

gives a squared Lorentz scalar of (112). 
 8;�

� � 1
1 � 2 � $��¨� (� 

 

For a single particle, {�� 
 0 everywhere except at 

the particle’s classical position. Therefore, (112) is 

essentially the far-field solution of a single charged 

particle. However, the Lorentz scalar does not obey 

the �� �⁄  law as derived under the assumption of 

vacuum energy conservation. According to vacuum 

field theory, the correct squared Lorentz scalar for a 

single particle reduces to (113). 
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(113) is the limit of equation (112) as Q  and 

reduces to the Maxwell-Einstein vacuum solution 

after proper coupling of the electromagnetic field 

via equations (18, 100).  
 8�

� � 1
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$1 � (� 

 

The limit produces a singularity when � , while 

the proper vacuum field solution (115) is always 

finite. Without proper electromagnetic contributions, 

the singularity instead arises when 2 �  as 

demonstrated by the Schwarzschild solution.  
 

8�
� � 1

1 � 2 8�
� $ 8�

(� � $1 � (�

 

 

����� 

 

����� 

 

����� 

 

����� 

 



25 | P a g e 

 

2.7.  Gravitational Waves 

     The existence of gravitational waves is crucial to 
the validity of EFEs. From a theoretical standpoint, 
variations in certain stress-energy moments allow 
quantized variables to transform into metric waves. 
If these waves do not exist, then the conservation of 
energy is clearly violated within EFEs. Indirect 
evidence for gravitational waves comes from the 
binary system PSR B1913+16. This system consists 
of orbiting neutron stars that emit pulsed radio 
signals at nearly constant periods. After measuring 
these pulses, their arrival was observed to oscillate 
over a period of about 7.75 hours. Additional 
observations allowed for the change in epoch of 
periastron to be measured, which agreed with the 
predictions of general relativity to within 0.2%[T]. 
However, it is the assumption that EFEs are correct 
which defines the plausible attributes of the system. 
It is possible for PSR B1913+16 to have parameters 
that vary from EFE solutions, i.e. these observations 
only provide indirect evidence for the existence of 
gravitational waves. Complications arise from 
uncertainties in the structure of neutron stars, their 
effective field, orbital parameters and classical 
energy flux.  
      Direct evidence by physically measuring the 
distortion due to gravitational waves appears to be 
the only valid option for proving their existence. 
Several experiments have been conducted over the 
previous 52 years; however, only LIGO, GEO600 
and VIRGO are discussed due to precession. The 
probability of detecting a gravitational wave from a 
BH-BH event is approximated from table 2.2.  
 

TABLE 2.2. Theoretical BH-BH detection rates 

ID Source Published BH-BH Detection Rates (yr -1) 

A [U] 1999 0.19���,   400������  

B [V] 2007 2,   500��� 

C [W] 2010 82 · 10��, 0.5:  

D [X] 2010 80.05, 4.9: 

E [Y] 2008 80.01, 1.7:, 80.11, 18:��� 

F [Z] 2011 0.8 

G [AA] 2009 - 

H [AB] 2004 - 

I [AC] 2012 80.08, 0.17:��� 
 

Note: (a) indicates LIGO IE and (b) are older models. 

     The theoretical event rates are required for 
determining the probability of gravitational waves 
existing. They have varied drastically over the 
previous 15 years as demonstrated by table 2.3. The 
running length of each experiment is also provided 
in table 2.4.  
 

TABLE 2.3. Theoretical event rates 

ID Experiment 
Event Rate (yr-1) 

NS-NS NS-BH BH-BH 

A* 
LIGO I 0.03 0.25 0.19 

LIGO IE 50 400 400 

B* LIGO I 100 30 500 

B LIGO I 20 1 2 

C 
LIGO I �2 · 10��, 0.2
 �7 · 10��, 0.1
 �2 · 10��, 0.5
 

LIGO II -0.4, 4001 -0.2, 3001 -0.4, 10001 

DI  
LIGO I 0.01 0.02 4.9 

LIGO II 45.1 85.8 21, 425 

DII  
LIGO I 0.002 0.01 0.05 

LIGO II 9.5 42.8 242 

E 

LIGO I -0.015, 0.151 - -0.01, 1.71 

LIGO IE -0.15, 1.51 - -0.11, 181 

LIGO II -20, 2001 - -16, 2701 

F 
LIGO I 0.05 0.02 0.8 

LIGO II -60, 5001 80 2,000 

G 

Virgo I -0.002, 0.041 - - 

LIGO IE -0.02, 0.41 - - 

Virgo+ -0.25, 51 - - 

H 
LIGO I -0.008, 0.131 - - 

LIGO II -40.2, 310.91 - - 

 Virgo+ 0.003 -0.01, 0.021 -0.07, 0.081 

I 

Virgo II -3.0, 3.61 -12, 191 -35, 921 

LIGO S5 0.004 0.02 -0.08, 0.091 

LIGO S6 -0.008, 0.0091 -0.03, 0.041 -0.17, 0.211 
 

 

* indicates older theoretical models. 
 

TABLE 2.4. Experiment runtime  

Experiment Run Days Run-Time NS-NS Range 

LIGO I 

S1 4.8 

54.6[AD] 

0.08 Mpc 

S2 18.0 0.3 Mpc 

S3 13.2 5.0 Mpc 

S4 18.6 8.6 Mpc 

LIGO IE 
S5 365 

730[AD][AE] 12.0 Mpc 

S6 365 ~50 Mpc 

Virgo I VSR1 111 111[AF] 12.4 Mpc 

Virgo+ 
VSR2 98 

159.3[AG] 16.8 Mpc 

VSR3 61.3 ~50 Mpc 

GEO600 
S4 28.8 

370.8+[AH] ~LIGO I (S1) 

S5 342+ ~LIGO I (S2) 
 

Note: The more recent runs of GEO600 are included since the 
detection rates are similar to the earlier LIGO I runs. 

2.2. Gravitational Waves 
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     The probability of gravitational waves not 

existing is compared to flipping a loaded coin. 

When a normal coin is flipped, the probability of it 

landing tails is 50%. This is equivalent to 

measuring for gravitational waves over the period 

required for a single event, and having a 50% 

chance of detecting one. For a loaded coin, the 

result will always be tails regardless of }. As the 

coin is flipped N amount of times, the probability of 

the coin being loaded increases if the results are 

always tails. Therefore, the probability that the coin 

is loaded is equivalent to that of gravitational waves 

not existing. This probability is defined as (116), 

where } is the expected events per total period. 
 ©�ª«11� � 1 � 2
= 
 

Table 2.5 depicts the probability of gravitational 

waves not existing for each experiment and model.  
 

TABLE 2.5. Theoretical detection rates by experiment  

Experiment Model Max 
Events 

>(?@AA) 

Min Max 

LIGO I 

A* 0.07 - 4.76% 

B* 94 - ~100.00% 

B 3.4 - 90.8% 

C 0.12 0.0049% 7.96% 

DI 0.74 - 40.0% 

DII 0.009 - 0.64% 

F 0.13 - 8.63% 

LIGO IE A* 1700 - ~100.00% 

S5 
I 

0.114 6.96% 7.60% 

S6 0.259 13.43% 16.4% 

Virgo+ I 0.045 2.48% 3.07% 

GEO600 
(S4/S5) 

A† 0.48 - 28.2% 

B*† 640 - ~100.00% 

B† 23.4 - ~100.00% 

C† 0.81 0.033% 43.1% 

DI † 5.01 - 96.9% 

DII † 0.063 - 4.27% 

F† 0.88 - 45.8% 
 

* indicates old model 

† indicates LIGO I statistics were applied to the latest runs of 
GEO600. 

     There exist several orders of magnitude between 

individual models. The majority of this variation is 

due to the merger rate and density of BH-BH 

events. Excluding the older models, the remaining 

models are grouped together in table 2.6. With 

respect to old models, it is clear from the number of 

events expected that gravitational waves could not 

exist (~ � 6). The new models decrease expected 

rates by three to four orders of magnitude. 

However, two of the new models also indicate a ~ � 6 for the max event limit, with a third at ~ 
 3.7. The current data does not allow for a 

definitive answer for whether gravitational waves 

exist, although it does begin to raise doubts. The 

expected rates are also highly dependent upon the 

theoretical model. Assuming that these do not vary 

drastically in the future, the next generation of 

detectors should be capable of bringing all models 

to ~ � 6. For example, conservative estimates of 

Advanced LIGO (LIGO II) project hundreds of 

events per year. Advanced LIGO and Advanced 

Virgo are expected to begin operations in 2014, so 

direct proof will require three to four years as of 

2013. Beyond these, the Laser Interferometer Space 

Antenna (LISA) will provide a new range of 

frequencies. LISA is not expected to be in operation 

until after 2020; however, it will be capable of 

detecting massive BH-BH events if gravitational 

waves exist. Due to the net BH-BH mass, the waves 

generated would be several orders of magnitude 

larger than other sources. 
 

TABLE 2.6. Approximate combined probability  

Models Net Max 
Events 

Net ������� Sigma  

Min Max Max 

B,I,I,B † 27.2 - ~100.00% � 6 

C,I,I,C † 1.35 27.1% 60.8% 1.7 

D,I,I,D † 6.17 28.8% 98.6% 3.7 

E,DII,I,E †  41.3 37.0% ~100.00% � 6 

F,I,I, F † 1.43 - 62.9% 1.8 
 

Note: The order of listed models is LIGO I, LIGO IE, VIRGO+, 
GEO600; model E is also included. 

����� 
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2.8.  Single Particle Solution 

     For a massive non-composite particle, the field 

should be approximately (�� �⁄ ) in the co-moving 

frame. Since the metric must be isotropic, the 

solution in spherical coordinates is (117). 
 

¬B� �
TU
UUU
V8�


� 0 0 00 8�
� 0 00 0 X8��Y� 00 0 0 X8��Y� sin� 
Z[

[[[
\
     

 

The Lorentz scalar (118) is defined as usual, where 

the far-field approximation is applied. 
 

8� � 1 � 4 1 � >�?���
� 

 

For comparison, the Lorentz scalar relative to the 

Schwarzschild metric is written as (119). 
 8;� � 1

­1 � 2 >�?���
�

 

 

The geodesic equations are applied to determine the 

motion of a single particle inside the previous 

potential. Using space-like convention (� � � �), 

the space-time interval is defined as (120). 
 ��G�� � H���,��,� 
 

Expanding the geodesic equations results in the 

proper acceleration for each component (121), ����� 
must be replaced with – �������.  
 �®; � � 2� ��

� �';�' ; 
 �® ; � ��

�� ��
� �';� � � ��

� �' ;� � � ��
� 
' ;� � � ��

� �' ;� 
 
® ; � �2� ��

� 
' ;�' ; � � ��
� �' ;� 

 �® ; � �2� ��
� �' ;�' ; � 2� ��

� 
' ;�' ; 
 

The geodesic equations become relative to the 

metric after applying the following relations (122). 
 

D �,;/�¯ � 8 �,;/��
              D ��,;/�¯� � 8� ��,;/��;�         

     The Christoffel symbols are determined for an 

isotropic, spherical vacuum field in table 2.7. To 

compare the radial acceleration as derived from the 

geodesic equations to the algebraic results (29), the 

motion of a particle can be restricted to the radial 

direction (123); i.e. I�  and ��  are 0. 
 �®; � � 2
0����0�2


�

�';�' ;  
 �® ; � � 
0��2


�
5

�';� � 
0����0�2

�

�' ;� 

 

For a massive particle moving at escape velocity 

relative to the metric, �� 7 is replaced by (27); 9�7 is 

defined as (124), where K 
 1 and ( 
 (	. 
 

��� � � 8C
2 

 

The acceleration at escape velocity is (125) or (29). 
 � 
 5���59�� 
 " ��<��(	


 

 

TABLE 2.7. Christoffel symbols between theories 

	 ��
�  Single Particle Schwarzschild 

	 ��
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��
sin� � 


�
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�

�
sin� � 

	 ��
� , 	 ��

�  cot � cot � 

	 ��
�  
sin � cos � 
sin � cos � 

 

Note: Single particle refers to massive and non-composite.  

2.3. Single Particle Metric 
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3.1.  Gravitational Force and Potential 
     From sections (1.3, 2.3), it was observed that the 

gravitational potential is dependent upon a variation 

in the effective background vacuum energy density. 

For static fields, classical energy conservation does 

not depend upon the path taken between two points. 

The proper force (126) upon a particle is therefore 

similar to the relativistic Newtonian perspective. If 

a particle’s geodesic path follows the gradient of A , 

the problem is always reduced to the covariant 

derivative of the scalar field; i.e. the vector g��� will  

point in the direction of � A . 
 9�� � ��DEF�± � �  � �DEF�

A � �  � � A    
 

The gravitational potential energy (±) is derived by 

equating 8G � 8 as applied in section (1.3); the 

potential is therefore defined as (127). 
 

Φ � �c�
�

A
 

 

Vacuum field theory requires that the metric of 

space-time is isotropic, while EFEs are anisotropic. 

The choice of isotropy or anisotropy is crucial for 

motion as observed by a distant observer. This is 

not locally detectable since any observer (A��) 

deforms with respect to the space-time metric (A��). 

Under the assumption that vacuum energy density 

is conserved, the vacuum far-field energy of a non-

composite particle should at most remain constant 

or decrease when moving through an external field. 

     Conservation of classical energy does not always 

ensure conservation of vacuum energy density. The 

problem is complicated since actual particles will 

consist of an infinite amount of vacuum energy. 

However, it is possible to compare configurations 

of the vacuum field to determine if vacuum energy 

density is conserved. In this case, only the far-field 

is applied for simplicity. The conservation of 

vacuum energy density is discussed relative to the 

transformed vacuum fields of an anisotropic and 

isotropic metric. Since a realistic gravitational field 

will complicate the field dynamics, a Cartesian 

coordinate system will instead be applied so that ��, �, �� � ��, �, ��. The potential along the x-axis 

is anisotropic in the sense that it only increases in a 

single direction (�z), similar to the Schwarzschild 

metric (�̂). It is difficult to consider a test particle 

initially placed at an infinite distance from the field. 

The problem is simplified by introducing an 

artificial potential as depicted in figure 2.1. 

     A massive particle placed where the local field is 

zero (���) has a far-field approximated by (128); 

this is equivalent to � 0 ∞ for a spherical metric. 
 A ���� �  ���

 

 

As the test particle moves into the gravitational 

potential, it gains quantized energy. This variation 

in energy is due to an influx of vacuum energy 

density rather than a net increase (129). 
   A ��, 
� �  ��

1��8 cos 
�� � �sin 
��
 

 

This means that the particle has gained quantized 

energy relative to a stationary observer; however, 

relative to ��� vacuum energy must be conserved. 

Since the anisotropic transformation is similar to 

the special relativistic version, it can be directly 

substituted into (129).  

 

 

 

 

 

 
 

Figure 2.1. Sections of a localized field are illustrated relative 
to an initial and final state. The fields relative to the preferred 
reference frame (���) are described by the space-time metric 
and Lorentz transformation. 

2.4. Gravitational Force and Potential 
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    The resulting effective field (130) is once again 

relative to ��� or the preferred reference frame. 
   A ��, 
� �  ���

8
­X88� cos 
Y� � sin� 
 

 

Since the test particle will be traveling at escape 

velocity, ( 
 (	 can be applied. After reorienting 

the coordinate system, the Cartesian equivalent is 

defined as (131) with motion along the z-axis. 
 A �¥���� �  �

­�,8�� � �k8�� � �8l��

 

 

Equation (131) can further be put in spherical 

coordinates (132), allowing a shells net energy to be 

compared between configurations. 
 

A �  ���
³qsin���8 r� � �8 cos�����´
�

�H

 

 

Volumetric integration between two radii results in 

shell energy for the anisotropic case (133), 
 

���� 	
����

�

�
���	� 
 ���



������ 
 
� 
 ����� � 
��     

 

where � is defined as (134). 
 z � �8� � 1 
 

The original field configuration (129) reduces to 

(135) after solving for shell energy. 
 � �  ����� �� ! 2"�#� $ %�� 
 

For comparison, the variation in field energy for 

any shell can be defined with a factor between the 

two configurations. Therefore, the original field is 

multiplied by a function of the Lorentz scalar, 

defined as (136) for the anisotropic case.  
 � � 
2& J'(�
2 � &� $ '(�
2 $ &�P 

    For an isotropic metric with identical setup, the 

field relative to the reference frame (���) is defined 

by (137). 
 A ��, 
� �  ���8�

8��8 cos 
�� � �sin 
��
 

 

At escape velocity, the same ( 
 (	 relation can be 

applied resulting in (138). 
 A �¥���� �  ���,�� � �k�� � �8l��

 

 

After integration, the shell energy for the isotropic 

metric is (139). 
 

���� 	
����

�

�
��	� 
 ���

�
����� � �� 
 ���� 
 ���    

 

Where � is defined as (140). 
 µ � �8� � 1 
 

The factor between the initial configuration (135) 

and isotropic case is therefore (141). 
 � � 12* J'(�
 $ *� $ '(�
 � *�P 
 

Considering vacuum energy density conservation, 

the isotropic and anisotropic cases are compared. 

As the far-field is rearranging, the peak energy of 

the field must also increase proportional to the 

classical quantized energy. There must be an influx 

of field energy into the central region, which is 

assumed smooth and finite. For field energy to be 

conserved, the far-field energy must be equivalent 

to or less than the original configuration. Plotting 

both (136, 141) shows that only isotropic metrics 

are valid, i.e. the anisotropic case initially increases 

far-field energy for ( �  �1, 2.7�. When K 
  1 (or ( �  2.7015), the anisotropic metric begins to lose  

far-field vacuum energy density. This decrease 

must however occur at ( 
  1 as demonstrated by 

the isotropic metric. Anisotropic space-time metrics 

therefore cannot conserve vacuum energy density. 
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3.3.  Curvilinear Coordinates 

     In order to determine the space-time metric from 

quantized fields, vacuum field theory must be 

applied. A coordinate basis is chosen so that H�� is 

diagonal with each term proportional to the general 

Lorentz scalar ((	). From the gradient of �,/�, 

the fundamental coordinate line is defined at each 

point in space with the base vector �̂�. If the 

gradient is zero, then the space is locally flat (���). 

For example, if � �� �⁄  then each point would 

have the fundamental coordinate line parallel to the 

radial direction (�̂). The other base vectors would 

then be represented by any two orthogonal vectors 

perpendicular to V̂�. For other cases, the remaining 

orthogonal base vectors must be determined by the 

following methods. 

     Depending on choice of coordinates the field 

perpendicular to �̂� can vary, requiring that at least 

one other principle direction exists. Each aligns 

with the planes of maximum and minimum 

curvature relative to constant  surfaces. The 

additional bases are therefore eigenvectors of the 

shape operator (142), which is defined by the first 

and second fundamental forms.  
 

h � ¶
�¶¶ � 1 > � �� ·#> � ?� ?> � ª�? � #� ª � ?�¸   
 

The first and second fundamental forms relative to 

the tangent plane of each surface n� � n� is (143). 
 

: � � �� �
� ��            
 �� � � � �

� 
� 
 

If two unique principle directions exist beyond the 

initial gradient, vectors tangent to coordinate lines 

are (y:, y;). Since the first base vector’s (V̂�) 

direction is determined by the normalized gradient 

of , � is the normal to the surface (144)[AF]. 
 � � ��� � � �@ � �I��@ � �I� 

     From this notation, the two vectors ( y: , y;) are 

not necessarily of unit length. Vacuum field theory 

is however locally isotropic, i.e. the space-time 

metric is determined from a single scalar field or 

vacuum energy density. The previous vectors are 

therefore directly proportional to the curvilinear 

basis, i.e. y< 
 (	\<. The first fundamental form is 

also equivalent to the metric tensor, i.e. each 

component is the scalar product (A�� 
 2� · 2�). 

The variables become � 
 y: · y:, � 
 y: · y;, � 
 y; · y;. This can be extended to three 

dimensions, where the first fundamental form 

(145)[AF] is represented in quadratic form. 
 

¶��,, �k, �l� � ³�,�k�l´J ³��� ��� ������ ��� ������ ��� ���

´ ³�,�k�l´      
 

The components (��� 
 y� · y�) can be defined in 

terms of partial derivatives of  (146)[AF]; where  �+� �  +�1�, �+� �  +�2�, �+� �  +�3� and partial 

derivatives are written as = >? 
  =,>?. 
 : ��� �  �,�� �  �,��              D ��� �  �,�� �  �,�� 
 : ��� �  �,�� �  �,�� 
 : ��� � ��� � �1 2⁄ �� �,�� �  �,�� �  �,�� �  �,��� 
 : ��� � ��� � �1 2�⁄ � �,�� �  �,�� �  �,�� �  �,��� 
 : ��� � ��� � �1 2�⁄ � �,�� �  �,�� �  �,�� �  �,��� 
 

     The second fundamental form is now introduced, 

which when combined with the first allows the 

other principle directions to be determined. From 

the two dimensional �� (143), the variables can be 

defined as ̂ 
 y�� · �,   < 
 y�� · �,   } 
 y�� · �, 

or as a tensor ��@ 
 y�@ · �. Using the following 

method, the second fundamental form can be 

written in terms of partial derivatives of the vacuum 

energy density scalar field (147). 
 ¶¶��,, �k, �l� � K�, � L�k � M�l 

2.5. Arbitrary Space-Time Metric 
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     For an implicit surface where ��, �, U  
  0, 

both fundamental forms are equal to zero. If the 

partial derivative of the field with respect to a given 

component is non-zero, that component can be 

solved for within ���5�, 5�, 5U  and substituted into ��5�, 5�, 5U , arriving at the third fundamental form 

(���). The idea is to factor the new expression so 

that it is quadratic with respect to the two remaining 

components. If � p 0, then (148)[AF] becomes a 

function of �5�, 5� . 
 ����5�, 5� 
 ��5� � � w5�5� � ��5� � 
 0      
 

The discriminant of this equation is defined as ∆
 w� " 4��, which can be used to determine the 

remaining principle directions (149)[AF]. 
 

º � » ��) ` √∆� M 2± MX) b √∆Y K � 2± L

½ 

 

These vectors can be solved for in other cases 

where � 
 0 by cyclic permutation of the 

components[AF]. The components of ��@ remain 

constant, although �, w and � must each be 

recalculated and the components of � rearranged. 
For example, if A p 0 were true instead, the 

correct principle directions are defined as (150), i.e. �� 0 � , �� 0 U , �U 0 � . 
 

º � »X) b √∆Y L � 2± M��) ` √∆� K2± K

½ 

 

The complete curvilinear basis is therefore defined 

as (151). 
 : V̂� 
 �;� ;        : V̂� 
 ��;��;        : V̂� 
 ��;��; 

 

In general, the initial coordinate system used for the 

gradient and partial derivatives must be orthogonal. 

The resulting curvilinear coordinates will also 

consist of an orthogonal basis, which follows the 

coordinate lines of the metric tensor (2��). To 

transform from the curvilinear basis  �̂/ to H�/ 

requires a tensor so that (152) is true. Since each 

component is already aligned, � is diagonally 

symmetric and varies only in magnitude. 
 H�/ � ¾�/�̂� 
 

     Due to the parameterization of effective vacuum 

fields with metric distance, the transformation must 

be isotropic. In comparison to the relativistic case 

where the field is compressed in a single direction, 

the presence of background vacuum energy warps a 

particles manifold equivalently in all directions at 

each point. Without this feature, the perceived 

space-time metric cannot be attributed to a relative 

medium upon space, further induced by vacuum 

energy density or a scalar field. From the isotropic 

nature of general field transformations, the previous 

tensor ¾ can be written as (153). 
 

¾ � »8� 0 00 8� 00 0 8�

½ � 8���� 

 

The tensor (153) is extended to a Minkowski space 

via (154). 

¾ �
TUU
UV8�


� 0 0 00 8� 0 00 0 8� 00 0 0 8�Z[[
[\ 

 

Therefore, an arbitrary space-time metric (155) can 

be defined relative to the curvilinear basis. 
 

H�� �
TU
UU
V8�


� 0 0 00 8�
� 0 00 0 8�

� 00 0 0 8�
�Z[

[[
\
 

 

To determine the proper space-time metric for any 

object, the effective vacuum energy density must 

first be calculated; see section (2.6). The curvilinear 

basis is then determined for time dependence. 
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3.5.  First Order Macroscopic Equations 
 

     Since solutions are based upon each individual 

particles influence on local fields, realistic objects 

must be numerically determined. Each particle 

further consists of a localized field relative to a 

preferred reference frame (���). Therefore, the field 

of a single particle does not follow the metric 

induced by its own vacuum field. It instead follows 

the background vacuum field depicted by all other 

particles and free fields. This is applied to 

determine the effective space-time metric of any 

object using quantized variables. For first-order 

methods, the field of each particle will undergo 

isotropic deformations. The magnitude of these 

transformations will be proportional to the general 

Lorentz scalar at the classical position. Therefore, 

each particle has a unique general Lorentz scalar 

(156) due to the effective field of every other 

particle; note that ��� 
 0  is equivalent to �5� . 
 (	,� 
 1 � 1 F C


�

�


��

��� 
 0  

 

For two particles at rest relative to the space-time 

metric, the effective fields are defined as (157).  
 

D A
����� �  ���8�,�

          D A
����� �  ���8�,�

 

 

In Planck units, the Lorentz scalars (156) can be 

written as continuous fractions (158). 
 (	,� 
 1 � ��5�

11 � ��5�

1(	,� 

 

Setting � 
 �� 5�⁄  and � 
 �� 5�⁄  results in (159). 
 � 
 1 � �1 � �� 

 

The effective Lorentz scalar is therefore (160). 
 
�,
 ! 12 ,-.� � 2. $ 2./ � �1 � /�� � . $ / � 10      

    If both particles have equivalent rest mass 

(�� 
 ��), the effective field of each is (161); 

where 5 is the distance between particles. 
 A

����� � 2 ���

1
q1 � ­1 � 4  �� r 

 

Assuming the gradient of the local vacuum field is 

small, the first order approximation is useful for 

determining the field of large objects. However, 

systems with more than two particles are more 

difficult to deal with. The objective is to develop an 

iterative numerical method that is equivalent to the 

algebraic results.  

    The constant isotropic deformation is retained for 

dust solutions. Assuming each particle is stationary 

relative to the effective metric (A��), the algorithm 

for two particles is the following. 

1. Start with the constant, non-effective field 

of both particles; i.e. �� ��⁄  and �� ��⁄ . 

2. Determine (	,� and (	,� from (156), relative 

to the non-effective fields defined in 1. 

3. Iterate by updating effective fields defined 

as  �� ���⁄ (	,�  and �� ���⁄ (	,� . 
4. Determine (	,� and (	,� relative to the 

effective fields calculated in 3. 

5. Loop back to 3. 

This can also be calculated by hand, where the first 

few iterations are (162) in arbitrary units. 
 

D � �  ���
         �I1� D A

� �  ���

1
1 � �252

    
 �I2� D A

� �  ���

1
1 � �252

11 � �151

 

 

The previous iterative method is equivalent to 

solving the continuous fractions of equation (156) 

and can be extended to } particles. 

2.6. Numerical Methods 
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     Expanding equation (156) by hand matches the 

iterative method for three particles, although the 

equations become relatively large. The effective 

Lorentz scalars will always be linear combinations 

of nested, continuous fractions. This structure is 

preserved by applying the iterative method outlined 

in figure 2.2 for any amount of particles.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.2. C-code for calculating the effective vacuum field of 
composite objects with first order methods. 

    The exact vacuum field can be determined by 

applying the proper, active transformation (163) to 

each particle. 
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When the first-order approximation was defined, (	 

was held constant; i.e. the transformed radius (164) 

in all directions became isotropic. 
 

�

� � � ��,����������

��

�
��� � ����,��0� 

 

The exact vacuum field cannot be obtained without 

the unified field theory, which defines 
�. The 

far-field approximation is instead applied, which is 

in agreement with classical theory. The far-field 

approximation however naturally has singularities, 

so each particle’s field must have a cut-off (165) 

when C 
� surpasses the maximum quantized value 

or classical energy. 
 A

�� � À A
��       D A

�� Á A
��KA

��K     D A
�� Â A

��K
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Now that the fields are finite at all points, it is 

possible to integrate along the effective field of 

each. For an exact solution, memory requirements 

drastically increase since the effective field of each 

particle must be known at each point in space. This 

is because each particle’s field is relative to the 

background field of all other particles and free 

fields. This can be optimized by assuming many 

particles exist, so that the influence one has on the 

others is negligible. Therefore, only one effective 

field is defined based upon the contribution from all 

particles; i.e. a continuum approximation is made 

similar to EFEs. Identical numerical methods can be 

applied with respect to figure 2.2, where the initial 

configuration converges towards the effective field. 

// STEP 1 // 

DOUBLE RE[N];        // Rest Energy 

DOUBLE EF[N];        // Effective Energy 

DOUBLE P[N][3];      // Position 

DOUBLE G_C = ;     // Reference Energy 

DOUBLE lorentz_scalar[N]; 
 

// STEP 2 // 

FOR(INT A = 0, A < N, A++) { 

  y_temp = 0; 
      

  FOR(INT B = 0, B < N, B++) { 

    IF(A != B) { 

     dx = P[A][0] - P[B][0]; 

     dy = P[A][1] - P[B][1]; 

     dz = P[A][2] - P[B][2]; 

     D = sqrt(dx*dx + dy*dy + dz*dz); 
 

     y_temp += RE[B]/D; } 

  } 
 

  lorentz_scalar[A] = 1+y_temp/G_C; 
 

  // STEP 3 // 
  EF[A] = RE[A]/lorentz_scalar[A]; 

} 
 

// STEPS 4-5 // 

WHILE(KEEP_ITERATING == TRUE) { 

 FOR(INT A = 0, A < N, A++) {  

   y_temp = 0; 
      

   FOR(INT B = 0, B < N, B++) { 

     IF(A != B) { 

      dx = P[A][0] - P[B][0]; 

      dy = P[A][1] - P[B][1]; 

      dz = P[A][2] - P[B][2]; 

      D = sqrt(dx*dx + dy*dy + dz*dz); 
 

      y_temp += EF[B]/D; } 

   } 
 

  EF[A] = RE[A]/(1+y_temp/G_C); 
 

} 
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     Temperature is a scalar quantity that depicts a 

system’s internal kinematic energy. For a system at 

equilibrium, the energy distribution of individual 

particles is related to temperature via the Maxwell-

Juttner equation (166)[AG].  
 

u�8� � 8�8� � 1 �
N ,⁄
Ã��1 
⁄ � 

 ���U  is a modified Bessel function of the second 

kind (167) and  
 
 KB{ �0⁄ . 
 

D Ã��l� � l�3 ! �
MK�,� � 1��
�H

�

�
�, 

 

The average Lorentz scalar for the Maxwell-Juttner 

equation (166) is calculated via (168). 
 

���� � 3� � �
�
N ,⁄ ���� � 1����

�

� �
� ,⁄ ��� � 1�� �⁄ ���

�

 

 

For the classical limit, (168) can be approximated 

by Taylor expansion resulting in (169). 
 

8��� � 32 
 � 1 � 32 �O{ �
� 1 

 

This reduces to the classical relation between 

average kinematic energy and temperature (170). 
  � 4 32 �O{ 
 

     By applying the Maxwell-Juttner equation, the 

average kinematic energy of particles does not 

remain proportional to temperature. Therefore, the 

kinematic energy must be related to the proper force 

or pressure instead. When dealing with pressure at 

the atomic scale, a particle that collides with a 

perpendicular wall will experience a change in 

momentum via (171). 
 ∆-K � 2+���8� � 1 
 

The number density depicts the amount of particles 

per unit volume. Normalizing this so there is only 

one particle per finite volume (V) allows the metric 

to be determined. For objects at equilibrium, each 

particle will be confined to its own respective 

volume. The one-dimensional force on the plane of 

another particle’s volume is defined by (172).  
 

uK � +���

V� �⁄

�8� � 1�8 �  �V� �⁄ $8 � 18( 

 

Proper pressure assumes that the particle has an 

equal probability of hitting the other two walls; i.e. 

the proper pressure is (173). 
 

© �  �3V $   �
�  � ( � +�8��3V �  W�3) � ÆW�3    

 

Temperature is related to pressure by an averaged 

Lorentz scalar (267), determined from the beta 

factor (� 
 + ,�⁄ ) and proper energy density (�). 

Pressure itself is only dependent upon average 

particle energy and the volume attributed to each.  

     With the averaged Lorentz scalar, the effective 

field due to pressure can be determined. A massive 

particle moving with respect to a field will have a 

vacuum field defined by (174). 
   A ��, 
� �  �8� 1��8 cos 
�� � sin� 
 

 

Since each particle’s velocity has an arbitrary 

direction, the field must be averaged over 5Ω. As 

with section (2.4), the coordinates are reoriented so 

that the correct integral is (175). 
 A

��� �  �4g� ! 8 sin��� �
����8 cos φ�� � sin� φ��
 

 

Integrating over I: �0, 2�� and �: �0, �� provides the 

averaged field for each particle (176) with respect 

to the statistical distribution of velocities (168). 
 ���

��� � ����2� � 	
��� � 
�� � 1� � 	
��� � 
�� � 1�
�� � 1      

2.7. Relativistic Pressure and Bulk Flow 

����� 

 

����� 

 

����� 

 

����� 

 

����� 

 

����� 

 

����� 

 

����� 

 

����� 

 

����� 

 

����� 

 



35 | P a g e 

 

     Reducing an object to its individual particles 

allows the effective field to be approximated with 

the iterative methods discussed in section (2.6). 

Determining the effective field of a gas under bulk 

flow requires a vector field (����) relative to the space-

time metric. Considering a system of particles under 

bulk flow, the effective field of each particle must 

be relative to the effective field of all others. Bulk 

flow is therefore the transportation of kinematic 

energy density along the space-time metric. The 

averaged distribution of velocities from (166) must 

be properly added to the bulk flow (����). This is 

equivalent to applying a Lorentz boost in arbitrary 

directions of ����. Under the assumption that bulk 

flow moves freely in the forward direction, the 

problem can always be reduced to an addition of 

velocities. Proper velocity addition relative to the 

angle between a particle’s velocity (����) and bulk 

flow (����) is (177)[B]. 
 

1223 4 5223 ! 1223 61 � vu cos��� <1 $ 1
�=�>? � 5223
�=�1 � =@�AB���      
 

     The first step is determining the final velocity 

relative to the metric after applying (177) for all 

directions of |���. This can be accomplished with an 

active rotation derived from the Rodrigues’ rotation 

formula (178)[AH] . C2223 is the axis of rotation and D ! CC�; the trigonometric functions are written 

as sin��� � G� and cos��� � H� to shorten notation. 
 

� � S� � 0 ��� ���� 0 ��	��� �	 0 � 	 C��� 	 
� 	 �       
 

By restricting the axis of rotation to the x-y plane 

and applying a 2-dimensional rotation to �����, (177) 
can be mapped to the unit sphere (179).  
 

I ! J H�� � H�G�� G�H��H� $ 1� $G�G�G�H��H� $ 1� G�� � H�H�� $G�H�G�G� G�H� H�

K   

     Since the choice of �C is arbitrary, it will be set 

parallel to the bulk flow vector field (����). Therefore, 

the proper velocity of each particle under the (�, �) 

parameterization is (180). 
 

����� � � � � �� �1 � 1�����1 � ����

�����
����
��

� � � ������1 � ����

� 0 0 1   

 

From the composite velocities, the effective field 

for each is defined as (181). 
 

  � ���, ��, ��� ! L� MN x�γ�Q�R� � N y�γ�Q�R� � �z���U�	 �


 

 

However, the coordinates within (181) are with 

respect to the direction =����. These must be mapped 

back to the reference frame, where the bulk flow ���� 
is defined. This can be accomplished by finding the 

parameters of the mapping from the direction of =���� 
to the z-axis via (182). 
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After obtaining (<, Ç), the transformed coordinates 

are determined via (183). 
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H
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G
H
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Inserting the solutions from (183) into the primed 

coordinates of (181) provides C ��, I, �, �, � .  The 

last step involves integrating over the various 

configurations in order to arrive at the averaged 

vacuum field (184). 
 C

$�	��, I, � 
 14� � � C ��, I, �, �, �  5�D

�

5��D

�

    
 

The problem can also be viewed as a super-position 

of an infinite number of configurations relative to 

each (����). With spherical point picking, a finite 

amount of these can be rotated in a 3-dimensional 

space and averaged. 
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    The big bang theory is currently the most widely 

accepted cosmological model, with the 2011 Nobel 

Prize awarded for the discovery of accelerated 

expansion[BM] . The model however contains several 

anomalies, unexplained observations and various 

non-classical assumptions. These aspects can be 

resolved by abandoning an expanding model in 

favor of one that is simultaneously expanding and 

contracting, i.e. a steady state. Current observations 

are already sufficient for ruling out an expanding 

universe. Difficulty of arriving at such conclusion 

arises from the recent acceptance of non-classical 

assumptions and lack of theoretical constraints. 

Dark energy for example is not predicted by the 

standard model and cannot be directly detected. It is 

widely assumed dark energy exists solely because it 

allows an expanding model to fit redshift versus 

distance modulus. The inferred expansion however 

is an illusion from the local deflection of geodesics, 

which produces a nearly spherical projection. 

     With insight from recent observations, aspects 

that conclusively rule out an expanding universe 

can be focused upon. Two characteristics that stand 

out are incorrect predictions of large-scale curvature 

and the perspective of time versus redshift; these 

are discussed throughout sections (3.3, 3.5). It is 

proven that the observed abundance of faint blue 

galaxies is due to ∧CDM’s incorrect predictions for 

the curvature of the universe. Additional constraints 

allow all explanations for the 2 " 3� abundance of 

faint blue galaxies to be ruled out. These range from 

evolution of the local luminosity function to drastic 

mergers. ∧CDM further underestimates the size of 

the faint blue galaxies by 2 " 5� relative to their 

angular size versus luminosity. Number densities of 

weak MgII absorbing galaxies in section (3.6) are 

also in agreement with the prior conclusion. These 

incorrect predictions by ∧CDM result in systematic 

lensing errors as discussed in section (3.4). 

 

     Since all explanations can be ruled out relative 

to ∧CDM, the faint blue galaxy abundance is proof 

rather than evidence. Although proof exists against 

∧CDM, there also exists strong evidence against an 

expanding universe. The purposed theory predicts 

for distant galaxies to be older than local ones. An 

expanding model predicts the opposite, which is 

contrary to observations. For example, galaxies are 

observed to cool with increasing redshift. Distant 

quasars contain relatively higher FeII:MgII ratios, 

depicting increased metallicity with redshift. There 

are many other firmly grounded observations not 

compatible with an expanding universe such as the 

in-fall velocity of the Bullet cluster. For clarity, the 

first half of chapter 3 will focus on the foundations 

of the continuous model. The remaining sections 

discuss the various proofs against ∧CDM, including 

a statistical comparison between models. 

     The new cosmological theory only requires the 

standard model and corrections to general relativity 

herein. From this short introduction alone, the new 

model is superior with respect to Occam’s razor. In 

other words, the simplest theory that agrees with all 

observations is the correct theory. Similar to initial 

motivation behind an expanding model, the shape 

of the universe can be fit with a single constant. The 

inferred accelerated expansion is nothing more than 

local geodesics deflecting towards the center of an 

asymptotically flat, linear universe. Dark energy is 

therefore not required to explain redshift versus 

distance modulus. The trend is better fit by distant 

galaxies falling into an asymptotically flat universe, 

depicted by relativistic redshift and gravitational 

acceleration. The cosmic background radiation must 

therefore originate from the central region of an 

asymptotically flat universe. Classical assumptions 

insist that this black body radiation is emitted from 

a central core, which is not compatible with theories 

that predict event horizon such as EFEs. 

3.  The Universe 
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4.1. The Big Bang Theory 
    Georges Lemaitre, a Belgian priest, was the first 

to purpose the big bang theory, originally named 

“hypothesis of the primeval atom”[AK] . Although 

Lemaitre was the first to discover the “Hubble 

constant”, it was named after Edwin Hubble. 

Hubble’s observations in 1929 also showed a linear 

relationship between the distance and redshift of 

local galaxies[AL] . The Hubble constant and linear 

trend provided the initial motivation behind an 

expanding model, where redshift is attributed to the 

recession velocity of local galaxies. According to 

the Hubble model, the relation between redshift and 

metric distance is (185). 
 

�� � �p�

��l � 1�� � 1�l � 1�� � 1� � �p�

 

 

Due to the inverse square law, metric distance is 

related to distance modulus (c) by equation (186). 
 �� � 10� �⁄ �� 
 

Combining equations (185, 186) and subtracting the 

result from observations, the disagreement becomes 

apparent. Figure 3.1 provides the error relative to 

the initial big bang model.  

 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.1. Data is from the NED database[AJ] and linear trend 
from equation (185) with �� � 73.8 ��	 
⁄ � 
��⁄  [AI] . 

    The initial big bang model is only valid under 

Hubble’s and Lemaitre’s limited observations, i.e. 

for local galaxies with redshift below U X 0.15. It is 

clear that beyond this point, an expanding universe 

depicted by the big bang theory would need to be 

accelerating. Assuming the universe began as a 

point of infinite energy density that consequently 

erupted into an expanding sphere of energy, there 

are two plausible scenarios for recession velocity. 

For a homogenous universe, any initial acceleration 

from pressure or bulk flow should be constrained to 

relatively high redshift. Therefore, the first scenario 

requires that the mass of the universe is large 

enough to collapse back onto itself. The second 

assumes the kinematic energy imparted to matter 

from a big bang event is large enough to continue 

expansion at a constant or decreasing rate. Neither 

possibility fits observations, requiring the ad-hoc 

introduction of dark energy.  

    From the previous chapters, several constraints 

have been placed upon vacuum field theory. These 

include the conservation of vacuum energy density, 

its connection to the space-time metric and the 

localized nature of particles. With these additional 

aspects, it is clear dark energy has characteristics 

similar to vacuum energy density. For example, 

dark energy in ∧CDM does not force matter to 

become repulsive; it instead acts to expand the 

space-time metric. This only provides the illusion of 

acceleration since all observers view the universe 

relative to the space-time metric. With respect to 

only experimentally confirmed contributions to an 

object’s redshift, there exist two explanations for 

current observations. Either the universe consists 

almost entirely of undetectable energy and matter 

causing accelerated expansion, or this improperly 

inferred expansion is an illusion due to the universe 

being asymptotically flat. It is therefore important 

to distinguish between the angular scales and time-

dependence of each model. 

3.1. The Big Bang Theory 
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4.4. Redshift and Dark Energy  

    The redshift of distant objects can be described in 

terms of relativistic redshift due to a variation in 

gravitational potential. Vacuum field theory is not 

required for determining redshift versus distance; 

however, it is necessary for large-scale curvature. 

The relation ( 
 (� is applied to determine the 

average relative velocity (187) that is induced from 

a change in vacuum energy density between source 

and local observer.  
 

� � q ��� 1r 2 $ � 2( 

 

The Doppler effect requires for any relative velocity 

to result in a redshift (188). 
 

l� � 21 � W1 � W � 1 

 

Plugging equation (187) into (188) results in the 

relativistic redshift (189) from a change in . 
 

l� � 1 ­�� � � 2 � � � �� � 1   
 

There is also a general redshift due to variations in 

vacuum energy density, i.e. the second component 

is defined by (190). 
 

l� �  

 

Summing both components results in the effective 

redshift (191) for distant galaxies and clusters. 
 

l	
� � 1 �� � � 2 � � 2 � 

 

The above relation has a single free variable and 

depicts a nearly perfect linear trend for all non-local 

redshift. This not only provides strong evidence for 

an asymptotically flat universe, but also justifies the 

linearity of vacuum field theory. 

     From numerical methods, it is observed that an 

asymptotically flat universe will generate a field 

that appears nearly linear with respect to metric 

distance or local observers. When this is integrated 

to provide a plot of metric distance versus vacuum 

energy density, the field becomes approximately 

linear. Applying equation (191) to the spectral 

redshift of distant SNIa/GRB demonstrates a linear 

trend as depicted in figure 3.4. Prior to discussing 

actual data from SNIa and GRB observations, an 

ensemble of asymptotically flat universes (192) is 

provided in figure 3.2.  
 ��� �  �	

 

 

They demonstrate that any realistic, asymptotically 

flat universe will appear nearly linear relative to a 

local observer or space-time metric. 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
 

 
 
 

Figure 3.2. Each function (192) is indexed by the following 
colors � �  �, �, �, �, 	, 
. Total metric distance is held at 
approximately 300 Gpc. (Top) Ensemble of asymptotically flat 
universes relative to the preferred reference frame and (Bottom) 
relative to local observers or metric distance. 

3.2. Redshift and Distance Modulus 

����� 

 

����� 

 

����� 

 

����� 

 

����� 

 

����� 

 



39 | P a g e 

 

The derivative of figure 3.2 with respect to metric 

distance provides a more accurate representation of 

the linear variations in figure 3.3. This linear trend 

is crucial for explaining dark energy or the illusion 

of accelerated expansion. From the NED database, 

metric distance to each object is determined from 

distance modulus. The previous net redshift relation 

(191) is then applied to the data, resulting in figure 

3.4. The best fitting trend is with respect to data 

beyond 0.15U, which results in a constant slope of �� 
 3.248 � 0.047 · 10�� �KA ' ��� ��,⁄  and y-

intercept �� 
 0.375 � 0.161 ��,. Since the flow 

towards central core is directionally dependent, the 

y-intercept depicts the average distance to the start. 
 

 
  

 

 

 

 

 

 

             
Figure 3.3. The slope of each function has origin at the center 
of the universe. Note that the deviations are minimal when the 
observer is inside the localized universe, becoming less linear 
as the edge is approached. 

 

 

 

 

 
 
 

 
 

 

 
 

 

 

 

 

 
 

 

 

 

 
Figure 3.4. Logarithmic plot of metric distance versus vacuum 
energy density with respect to Earth. 

     From the linear slope relative to the space-time 

metric, an upper limit on metric or luminosity 

distance to the central core can be determined. The 

slope may slightly vary as the core is approached; 

however, this is not noticeable within currently 

observable distances (  100 ��,). From analyzing 

the redshift of the core’s black body spectrum, the 

vacuum energy density at the surface is determined 

with respect to the local space. In other words, the 

observed spectrum is shifted until it matches the 

spectral distribution at emission. The core is found 

to have a redshift of U X 1089 with a surface 

temperature around  3000�[AN] . Since this form of 

redshift is solely due to variations in vacuum energy 

density, the change in  can be determined from 

equation (193). 
 �  l 
 

Therefore, the variation in vacuum energy density 

from Earth to the core’s surface is approximately 1.315 · 10���_` · a · B���. With the best fitting linear 

slope (all data beyond U � 0.15), the maximum 

metric distance to the central core is determined 

from equation (194). 
 e��� � �  l 
 

Solving for 57 places the core’s surface at a metric 

distance of about 40.6 {�,. Modern telescopes are 

only capable of detecting light from the most 

luminous objects up to 0.1 {�,, i.e. a small portion 

of the universe is observable. For comparison, the 

far-field of a universe with perfect linear slope 

relative to metric distance can be written as an 

exponential function (195), where � is the vacuum 

energy density at the observer’s position. With 

respect to the ensemble plotted in figure 3.2, the 

function has a different form. However, they all 

produce nearly constant slopes relative to a local 

observer or metric distance.  
 ��� � �e��� � � � ���
��⁄  
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     Relative to an asymptotically flat universe and 

observed cosmic background radiation (CMBR), it 

is clear that something large has or had existed prior 

to the present. If distant galaxies and clusters are 

falling into an asymptotically flat universe, then 

there must be a mechanism that transports matter 

from the central region outwards. A situation 

similar to that of an explosion is not completely out 

of the question. However, a mechanism already 

exists that can replace spherical expansion. 

Relativistic jets emanating from black holes are not 

well understood, but have been observed from 

numerous sources with varying intensity and 

duration[AM] . The first step in producing the model 

that agrees with all observations is assuming the 

local space emerged from such jet. In this 

perspective, distant galaxies and clusters fall back 

into the equatorial regions of the central core at 

relativistic speeds. Due to the conservation of 

momentum, in falling matter is ejected at the polar 

regions in the form of dense quark matter. This 

quark matter further decays into hot, x-ray emitting 

gas commonly seen in young clusters and galaxies. 

The local jet is later discussed in section (3.8) with 

respect to the dark flow and cleaned CMBR image.  

     Black holes that emit polar jets are known to 

exist after such events. When considering finite 

black holes, the best approximations available are 

QCD and vacuum field theory. If the CMBR is to 

be taken as black body radiation from a massive but 

cooled object, then the surface must be finite. One 

could argue that Hawking radiation is already 

theorized to be emitted from the surface of non-

finite black holes. However, temperature in this 

perspective is inversely proportional to mass. For an 

Einstein black hole to emit a 3000K blackbody 

temperature, it would need to be several orders of 

magnitude less massive than the Moon. This is 

clearly impossible with respect to a central core, as 

countless black holes exist locally that are much 

more massive. Although the various proofs against 

an expanding universe have not yet been discussed, 

they would clearly nullify current interpretations of 

the CMBR. In other words, the CMBR cannot be 

due to a period of recombination. It is instead 

classical black body radiation emitted from the 

central core. In an asymptotically flat universe, 

geodesics will begin to deflect from the local space 

as distance increases. After sufficient distances, the 

majority of local geodesics will turn towards the 

center of the universe. Although the projection is 

not perfectly spherical, it creates the illusion of 

accelerated expansion. The CMBR is therefore 

projected onto all local directions of space, as it 

originates from the center of the universe.  

    Putting all of the pieces together, a self-consistent 

model of the universe emerges in figure 3.5. For 

any steady state model to be valid, the universe 

must conserve energy and act as a perpetual 

machine. Other models similar to the cyclic big 

bang inherently describe the universe as such. 

However, they suffer from incorrect large-scale 

curvature similar to ∧CDM. This is later discussed 

relative to the size and number densities of distant 

galaxies. Galactic merger times and properties of 

distant clusters also insist that the universe is in a 

steady state. In other words, there is a constant flow 

of matter from the central core to the outer regions, 

which further flows back to the central region. This 

requires for distant galaxies and clusters to be older 

than local populations when observed from Earth. 
 
 

 
 

 

 
 

 
 

 

 

Figure 3.5. A cross section of an asymptotically flat universe 
in a steady state. The structure takes the form of a Y �

�  spherical 
harmonic with two polar jets and annihilation boundary 
between hemispheres.  
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Revised Galaxy Evolution 

    As inferred from section (3.2), distant galaxies 

are older than local populations. This is contrary to 

an expanding model, where objects are predicted to 

be younger as redshift increases. Distant galaxies 

and clusters with respect to Earth should therefore 

contain higher fractions of cold baryonic matter, 

increased star formation rates and high metallicity. 

Relative to the local space, galaxies and clusters 

display characteristics that are evident of an origin 

from hot, x-ray emitting gas. The x-ray emitting gas 

is the product of decaying quark matter as inferred 

from its connection to the dark flow. Both ∧CDM 

and the purposed model are similar in the sense that 

the local space emerged from dense quark matter. 

Relative to an expanding model, it is expected that 

high redshift clusters and galaxies are hotter than 

similar local populations; observations however 

depict the exact opposite. For example, local x-ray 

emitting clusters transform into lyman-alpha blobs 

beyond 2U. To temporary resolve this problem, it is 

usually assumed that drastic major mergers take 

place and heat up the intergalactic medium. 

However, it is illogical to have two cool clusters 

with high metallicity merge into a single hot cluster 

with low metallicity.  

     As the local jet of quark matter begins to cool 

and expand, it decays into a dense non-metallic gas. 

The oldest stars known to date are metal poor, 

indicating that they formed some time after this 

phase. All elements heavier than helium are usually 

produced through nuclear fusion. The following 

population II stars are abundant in both globular 

clusters and elliptical galaxies[AP]. Most elliptic 

galaxies contain only population II stars and large 

amounts of x-ray emitting gas[AT] . The source of x-

rays (0.5 " 1.5 KVw) is thermal bremsstrahlung due 

to hot ionized gas (5 to � 15 KVw)[AZ] . Young stars 

often undergo supernova after billions of years, 

enriching the surrounding medium with metallic 

elements. Around this point, the x-ray emitting gas 

originating from the core’s relativistic jet begins to 

drastically cool. Metal-rich population I stars then 

form in the dense but cooler regions of galaxies and 

nebulas. Beyond Earth’s current position in the 

flow, baryonic matter is observed to become 

increasingly colder and more metallic. Due to the 

abundance of preferred fuel[AQ], galaxies between a 

redshift of 0.5U – 3U will demonstrate intense star 

formation[AR]. Late-type galaxies commonly have 

regions of active star formation, which is favored 

due to cold, dense baryonic matter[AQ][AU] . The cold 

interstellar gas required to ignite these galaxies was 

recently observed. A letter to Nature states that 

galaxies at redshift of 1.2U and 2.3U consist of 34% 

and 44% cold baryonic matter respectively, which 

is 3 " 10� more than local late-type galaxies[AQ]. 

Beyond the overly abundant blue field galaxies, red 

and ultra-red galaxies dominate[AV][AW][AX] . The red 

and ultra-red colors are an indication of abundant 

dust or mature star populations[AX] , both being 

characteristics of older galactic populations. Several 

of the distant red galaxies within the Hubble deep 

field image are also undergoing mergers, which is 

consistent with half of normal galaxies experiencing 

a major merger by 0.75U.  

    The previous overview of star formation does not 

drastically differ from current models. It is instead 

the evolution of galaxies that must be heavily 

revised. Although the purposed model and ∧CDM 

both insist the local universe originated from dense 

quark matter, their perspective of time versus 

redshift are opposite. This will vary the inferred 

evolution of galaxies with respect to observations. 

For example, predicted time-scales drastically differ 

between models. To explain galactic formation with 

respect to ∧CDM, large amounts of dark matter are 

required. These processes should instead occur over 50 – 100 ���, which is why excessive amounts of 

dark matter are required. Time-dependence is later 

reinforced by comparing simulated and observed 

merger times; discussed in section (3.5).  

3.3. Revised Galaxy Evolution 
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    Relative to the purposed model or ∧CDM, the 

initial environment will consist of decaying quark 

matter. Galactic formation will therefore take place 

in a hot, non-metallic gas. With any classical gas, 

the system will move towards equilibrium with 

respect to density and pressure. As thermal pressure 

is overcome by gravity, regions will begin to 

collapse. Due to the conservation of momentum, 

any radial collapse will be transferred into angular 

momentum. The properties of galaxies also depict 

an evolution from early to late-type; i.e. an older 

galaxy will be more metallic, contain vast amounts 

of cold baryonic matter and be less symmetric in 

shape. This transition from early-type galaxies into 

late-type is depicted in figure 3.6.      

    It is commonly debated whether disk galaxies 

merge to form ellipticals[AP]. However, mergers are 

insignificant with respect to galactic evolution prior 

to 1U. A large elliptical galaxy was also discovered 

to contain a rotating disk of x-ray emitting gas[AS]. 

In addition, elliptic galaxies at 0.5U are observed to 

be on average rotating faster than those in the local 

space[AY] . Distributions of star populations further 

agree with the purposed model of evolution[BA] . Due 

to flawed foundations however, various modern 

theories must be discarded. This includes drastic 

merger rates and dark matter, as the cooling of x-

ray emitting gas and unstable rotational curves are 

the mechanisms behind galactic evolution. 

 
 
 

 

 
 

 

 
 

 

 
  

Figure 3.6. (A) Galaxies initially form from hot x-ray emitting 
gas, which begins to collapse after sufficient cooling. (B) Early 
galaxies obtain a preferred axis of rotation due to local or 
global gravitational fields. Young metal poor stars form in the 
bulge due to preferred density. (C) Young metal rich stars later 
form in the remaining bulge (D, E) while older populations are 
transported outwards due to unstable rotational curves. 

    Approximately 60% of major galaxies are disk 

within the local supercluster, while the remaining 

are mostly elliptical. From a redshift of 0.5U " 2.0U 

intense blue galaxies dominate, which continuously 

transform into blue irregulars beyond 1U[AR]. It is 

important to notice however that galactic evolution 

is minimal for those involved in the faint blue 

galaxy problem, i.e. ones in the range of 0.3 " 0.7U. 

This includes luminosity, color and size variations. 

Application of modern literature must also proceed 

with caution, as old calculations do not take into 

account the proper curvature of the universe. For 

example, a constant number density of elliptic 

galaxies out to 1U with respect to ∧CDM[BH] would 

indicate a relative decrease after considering proper 

large-scale curvature. 

    Another aspect of galactic evolution arises from 

the statistically significant dark flow. With the bulk 

of galaxies and clusters falling towards the center of 

the universe, there must be another local flow that 

replenishes these populations. From WMAP, small 

variations in the cosmic background radiation were 

measured and analyzed[AZ] . These variations are due 

to scattering from clusters of galaxies containing 

large amounts of x-ray emitting gas. It is clear that 

hot, x-ray emitting galaxies and clusters should be 

younger and therefore closer to the local jet. The 

dark flow is therefore not only expected by the new 

model, but a necessity.  
 

 
 

 

 

 

 

 
 
Figure 3.7. (A) Central core with jet consisting of hot, dense 
quark matter. (B, C) After the quark matter decays into hot x-
ray emitting gas, low metallicity clusters, galaxies and stars 
begin to form. (C, D) Figure 3.6 overviews galactic evolution. 
(E) Increased merger fractions, metallicity and cold baryonic 
matter with respect to the local space. 
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     The last part of this section will focus on 

deriving the time dependence of distant galaxies 

and clusters. Since all objects not in the dark flow 

will be falling into an asymptotically flat universe, 

the redshift equation can be applied to determine 

kinematics. The goal is to approximate the total 

amount of proper time a galaxy experiences while 

following a geodesic originating from Earth’s 

present position, i.e. the reference frame is relative 

to Earth. Metric distance (196) is defined from the 

slope of the universe and y-intercept, although only 

the slope depicts the actual shape. 
 

�� � �3.0788 · 10���� � 0.3748 
 

Solving equation (196) in terms of vacuum energy 

density results in equation (197). 
 

� �3.248 · 10����� � 1.217 · 10�� 
 

Plugging equation (197) into the redshift equation 

(191) provides the relation between redshift and 

metric distance. Directional dependence for local 

redshift however must also be considered, where 

the y-intercept provides the average distance to the 

start of flow towards central core.  

     To determine the time dependence of non-local 

galaxies, the change in redshift with respect to 

proper time must be determined. Each distant 

galaxy or cluster relative to Earth took � amount of 

proper time to arrive at the position where currently 

observed light was emitted. Therefore, the time it 

took for a light ray to travel from source to observer 

is not necessary relative to a steady state model. 

Directional dependence for local redshift (<0.2z) 

can also be considered by varying �� from 0 to 0.54 ��,. For all directions relative to Earth, the 

average change in vacuum energy density between 

the start of flow (���) and finite amount of metric 

distance (g7) is defined as (198). 
 

∆ � �3.248 · 10����� 

     From the initial position, a change in vacuum 

energy density can be made relative to the averaged 

start of flow at 5� � 0.375 ��,. After normalizing 

units ( 
 1), the y-intercept can be negated by 

applying 
 0.02683 · g7. The normalized redshift 

equation (199) is then applied to relate an objects 

spectral redshift to a variation in metric distance g7 
with respect to Earth. 
 

���� � � � � 2� � 2  
 

Since galactic evolution is relative to proper time, 

proper velocity must be applied (200). 
 

� � ���
�� � �� � 1� � ��� � � 2� 

 

    With both (199, 200), the proper velocity and 

redshift are coupled to metric distance ( g7) as the 

only free variable. The proper velocity versus 

redshift provides all information necessary in order 

to determine the duration of proper time a distant 

object has experienced. Proper velocity is relative to 

the amount of metric distance traveled with respect 

to a moving objects perspective of time. The 

averaged proper velocity over metric distance g’ is 

(201). Carrying out the integral of equation (201) 

and applying the relation 4��� 
 ∆�7 ∆8⁄   provides 

the total proper time each galaxy has experienced 

without considering directional dependence.  
 

���	 � 1
�’ � ���’� ��’


�

�

 

 

It is also important to realize that younger galaxies 

and clusters exist with respect to the local jet, 

observed in the form of the dark flow. Neither 

Hubble’s law nor the new redshift equation are 

capable of modeling this since it has a separate 

origin. Therefore, the error with respect to the 

relative age of local objects becomes large due to 

this uncertainty. However, the majority of objects 

will follow the previously derived time dependence. 
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     Due to matter emerging from and falling back 

towards the central core at relativistic speeds, there 

must be a turning point where relative motion is 

minimal. The CMBR dipole moment provides a 

velocity of 627 � 22 K' ��� for the local group[AZ] . 

This is approximately 0.209% the speed of light, 

which is both insignificant and expected for regions 

that are distant from the central core. If the metric 

distance from Earth’s current position to the central 

core is about 40.6 {�,, the most distant 98% of 

metric space would account for only 7.8% of all 

proper time experienced. The most distant objects 

currently observable are approximately 140 billion 

years older than the local group (U X 8.0U). For 

comparison, the Sun would take about 100 billion 

years to consume all of its hydrogen fuel. Although 

this would not actually occur, it is clear that the 

depletion of interstellar hydrogen occurs over long 

time-scales. For example, UDFy-38135539 is a 

distant galaxy observed in the Hubble Deep Field 

and demonstrates strong lyman-alpha emission[BB]. 

The light being emitted by the object is passing 

through dust that has been reionized beyond what 

can be explained by an expanding model. The 

presence of neutral hydrogen gas would only be 

plausible if the universe is cooling as redshift 

increases. In addition, the galaxies redshift (8.55U) 

would correspond to a proper age of about 144 ��� 

with respect to the local group.  

     Since baryonic matter is already observed to be 

cooling from the local region up to 2.3U, evidence 

supports the aging of galaxies with increasing 

redshift. This abundance of cold baryonic matter 

further induces intense star formation, which is 

observed for distant late-type galaxies (0.5U to 3U). 

These redshift correspond to proper times between 28 and 92 ��� with respect to local populations. 

Therefore, the epoch of intense star formation is in 

agreement with the continuous model and expected 

conditions. Minimal evolution however occurs prior 

to 0.7U (35.7 ���), which is later discussed through-

out section (3.5). With respect to proper time, 

∧CDM predicts that the current age of the universe 

is 13.75 � 0.13 ���[AO]. Since Earth’s position is in 

proximity to the CMBR dipole turning point, the 

total proper time experienced from the core’s jet 

back to the surface is twice that of future proper 

time. From figure 3.8, the amount of proper time 

experienced up to the surface of the central core 

with respect to Earth is approximately 230 ���. 

The total time experienced by an observer in the 

bulk of flow is therefore 460 � 100 ��� relative to 

a complete cycle external to the core. 

 

 
 

 
 

 

 
 

 
 

 
 

 

 

Figure 3.8. Proper age (�) versus luminosity distance (��). 
Error is derived from uncertainty in slope, with the y-intercept 
ranging from 0 ��� to 0.54 ���. 

 

 
 

 
 

 

 

 
 

 

 
 
Figure 3.9. Proper age versus effective redshift with respect to 
Earth; constraints are identical to figure 3.8. 
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     Although many characteristics can differentiate 

between models, the curvature of the universe is the 

only one that offers conclusive proof with current 

observations. The angular scale versus redshift for 

∧CDM was obtained from recent constraints[BN]. 

The angular scale or scale-factor (K�,/”) of an 

asymptotically flat universe is derived from the 

following method. The distance to an object is 

determined from its luminosity or metric distance. 

Considering that local geodesics begin to curve 

towards the center of the universe at relatively short 

distances, the projection of distant space will appear 

almost spherical relative to Earth. The only missing 

factor is the variations in metric volume induced by 

the vacuum field of an asymptotically flat universe. 

From vacuum field theory, the space-time metric is 

locally isotropic and defined by a scalar field. The 

circumference of a sphere projected from distant 

space (202) can therefore be scaled by (� relative to 

Earth’s perspective.  
 � � 2����	 
 

Figure 3.10 provides a comparison between ∧CDM  

and the continuous model.  

 
 
 

 

 

 

 

 

 
Figure 3.10. The continuous model is depicted in red with 
∧CDM in black. Due to local directional dependence, Hubble 
expansion with �� � 68.7 is applied for redshift below 0.2�. 
The continuous model however is in agreement with local 
redshift when applying the full range of ��.  

     Plotting the scale-factor ratio between models in 

figure 3.11 provides several important constraints. 

This variation is key to ruling out an expanding 

universe. Although the models are opposite in 

several aspects, acceptance of poorly constrained 

hypothesis makes it difficult to rule out ∧CDM. For 

example, the amount of cold baryonic matter is 

observed to drastically increase from the local space 

to 1.2U and 2.3U. With only classical assumptions, 

galaxies should cool as they age. Although mergers 

can heat up ISM or ICM, such drastic increase in 

cold baryonic matter with redshift should be taken 

as strong evidence against ∧CDM. The processes 

that occur in the cooling or heating of normal 

galaxies however are poorly constrained. Ruling out 

an expanding universe therefore requires aspects 

that are fully constrained. This is why the angular 

scales are crucial, as ∧CDM cannot explain the 2 " 3� excess of faint blue field galaxies or the 

disagreement between their size and luminosity. 

Incorrect predictions of large-scale curvature also 

induce systematic lensing errors, which currently 

provide the only direct evidence for dark matter. 

The continuous model on the other hand does not 

require the non-classical assumptions of dark matter 

and dark energy.  

 

 
 

 
 

 
 

 
 

 
 

 
 
Figure 3.11. Scale-factor ratio between the continuous model 
and ∧CDM with respect to redshift. A 5� disagreement exists 
by 1� further increasing to 100� around 5�. 

3.4. Angular Scales and Weak Lensing 
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     The disagreement between each models scale-

factor allows distant gravitational lenses to appear 

stronger than expected from only visible matter. 

With respect to an expanding universe, there are 

three distance scales. These consist of angular 

diameter distance (g�), comoving distance (g�) and 

luminosity distance (g	). The angular diameter 

distance corresponds to the visual size of an object 

at a given redshift, written as (203)[BO]. 
 

��	
� � ��
�

1	1 � 
� � �
��Ω�	1 � 
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The remaining distances are related to bolometric 

luminosity and flux via (204)[BO]. 
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    The continuous model does not require comoving 

distances since the universe is in a steady state. 

With respect to distant galaxies and clusters falling 

into an asymptotically flat universe, the angular 

diameter distance will vary from that of ∧CDM. 

Distant objects in an expanding universe appear 

larger with respect to a flat, steady state projection. 

The continuous model predicts the exact opposite, 

where metric volume increases with distance or 

redshift. Distant objects will therefore appear much 

smaller in comparison to a flat space-time metric. 

Luminosity distance in this case is still equivalent to 

the classical flux definition; however, the angular 

diameter distance becomes (205). 
 g� 
 g	(� � g	 £1 � H
�
,
� �g	 " �
 ¤ 

 

The slope (H
) was discussed in section (3.2), with 

the y-intercept (�
) providing the average distance 

to the start of flow towards central core. Redshift 

becomes directionally dependent due to the local 

deflection of geodesics; on average, this distance is 

about 0.375 ��,. The right side of equation (205) 
should therefore have g� set equal to g	 prior to �
. 

     With respect to dark matter, the only evidence 

for its existence is gravitational lensing from distant 

clusters. Although proof that the universe is not 

expanding is not discussed until section (3.5), large 

variations between scale-factors will clearly induce 

systematic lensing errors. In general, an expanding 

universe will overestimate distant lens efficiency 

with respect to visible matter. Dark matter is also 

self-contradictory with observations. For example, 

the Train Wreck cluster has lumps of dark matter 

that coincide with both galaxies and ICM[BP]. This 

is strong evidence for systematic lensing errors, as 

dark matter should not interact beyond gravitation. 

Regardless, dark matter is always located around 

baryonic matter. This is expected when systematic 

lensing errors are involved, i.e. only the visible 

matter existed to begin with. 

     Properties of the Bullet cluster with respect to 

∧CDM are also contradictive, where it is claimed to 

be proof of dark matter[BQ]. At the same time, the 

existence of this cluster is not compatible with 

∧CDM[BR]. Observations that are incompatible with 

a theory cannot be seen as proof for a specific 

aspect of it. The remaining reason dark matter has 

been inferred are the unstable rotational curves of 

galaxies. Assuming the virial theorem is valid in 

this case originates from an ad-hoc attempt at 

forcing observations to agree with an expanding 

model. This assumption is flawed as inferred from 

observed galactic evolution. The formation of 

galaxies does not begin from reionized plumes of 

hydrogen gas anchored to dark matter, but instead 

hot x-ray emitting gas. Without large amounts of 

dark matter, galaxies could not have formed within 

the time-scales predicted by an expanding model. 

From section 3.3, the age of the local space is well 

over 100 ��� more than what an expanding model 

predicts. This disagreement increases with redshift, 

where time is viewed in the reverse of actuality. 

The inferred existence of dark matter therefore 

originates from improper foundations. 
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     A spherically symmetric lens can be applied to 

compare the continuous model and ∧CDM. The 

inferred magnification of a lens is dependent upon 

the angular diameter distances (g�). As previously 

stated, current observations support the conclusion 

of systematic lensing errors, which arises from the 

incorrect shape of the universe. Since vacuum field 

theory simplifies to EFE’s weak field limit, the 

formulation is equivalent. Therefore, the equation 

for a spherically symmetric lens is (206)[BS]. 
 � � � � ���������

4������� � � � � 4�������  

 

The free variables are g�	 , g	
 and �; these depict 

the distance from observer to lens, observer to 

source and the horizontal offset of the source 

respectively. The remaining variables represent the 

angular offset of the source (�) and image (I). The 

magnification due to a spherical lens is therefore 

determined by equation (207). 
 � � �� ���� 

 

From the initial conditions, g�
 
 g�	 � g	
 and � 

is determined from equation (208). 
 � � arctan # $���

% 

 

Solving the lens equation (206) results in (209). 
 

� � 12 &� ' (�� � � 16������ * 

 

Table 3.1 provides a comparison between the Train 
Wreck cluster (0.201z) and Bullet cluster (0.296z). 
 

Table 3.1. � factor between continuous model and ∧CDM 

Redshift 
Continuous Model ∧CDM 
� (0.201z) � (0.296z) � (0.201z) � (0.296z) 

0.500z 0.7424 0.3487 0.6749 0.3537 
1.000z 0.9574 0.5637 0.8673 0.4996 
2.000z 1.036 0.6423 0.8976 0.5299 

3.000z 1.055 0.6614 0.8506 0.4829 

4.000z 1.063 0.6691 0.7856 0.4179 

5.000z 1.067 0.6730 0.7140 0.3464 

     Although the disagreement between models is 

relatively small prior to 1U, the systematic error 

becomes apparent from moderate to high redshift. 

The ratio of distances provides a single variable (K) 

that directly scales the mass in equation (209). This 

indicates that ratios between each models K is equal 

to the inferred abundance of mass. Figure 3.12 

depicts this abundance relative to several spherical 

lenses. The majority of lensed sources range from 3 " 5U, where the disagreement becomes apparent. 

For example, the Train Wreck cluster would be 

inferred to have 49% more mass at 5U than actually 

exists with respect to ∧CDM. The Bullet cluster 

would instead be inferred to have 94% more mass 

at identical redshift.  

     As previously discussed, the initial motivation 
behind dark matter originates from applying the 
virial theorem to disk galaxies. Unstable rotational 
curves and cooling of x-ray emitting gas however 
are the mechanisms behind galactic evolution. This 
is reinforced by observations of entropy, angular 
size, number densities and stellar populations. To 
avoid circular reasoning, only lensing data should 
be compared to the visible baryonic matter within 
clusters. Section (3.5) further demonstrates that an 
expanding model or ∧CDM predicts incorrect large-
scale curvature. This invalidates current lensing 
data and claimed proof of dark matter. 
 
 

 
 

 

 

 

 

 

 

 

 
Figure 3.12. Spherical lenses are plotted from top to bottom at 
0.5�, 0.4�, 0.3�, 0.2� and 0.1� respectively. The abundance is 
relative to the continuous model versus ∧CDM. 
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    The abundance of faint blue galaxies (FBG) up to 
moderate redshift is known as a grand cosmological 
problem[BT]. With observed merger fractions and the 
angular size of these galaxies, the problem can be 
resolved with only classical assumptions. From the 
LDSS deep redshift survey, an 2� abundance exists 
up to <� 
 22.5 with respect to no evolution[BU]. 
The survey provides an average redshift of 0.32U at <� 
 21.8. More distant surveys indicate an 2 " 3� 
abundance within the limits of <� 
 �22.5, 24�[BV] . 
The majority of recent studies also focus on the B-
band, where most of the FBGs with <� ranging 
from  23 to 24 exist prior to 1.0U[BW]. With high-
resolution imaging, distant FBGs are found to be 
consistent with local disk and irregular galaxies[BX] . 
On average, this dataset provides a similar redshift 
versus <� of 21.9 at   0.34U �. The observed OII 
widths of distant FBGs also indicate intense star 
formation across the entire disk[BX] . Many of the 
local FBGs (+ 0.3U) however are dwarfs. To the 
contrary, distant FBGs are not dwarf galaxies but 
instead intermediate disks and irregulars. Applying 
the purposed model with FBG surveys produces the 
various plots in figure 3.13[BU][BZ] . 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 3.13. Applying a � � � filter to local surveys results in 
disk and irregular galaxies on average having �� ranging from 
�18.89 to �19.59; �� in comparison ranges from �21.19 to 
�22.01. After combining several faint blue galaxy surveys, it is 
observed that many of the FBGs between 0.3� and 0.7� are 
either normal disks or irregulars.  

     Due to the various attempts at explaining the 
abundance of field galaxies, each will be discussed 
in detail. The local FBG abundance is completely 
compatible with no evolution with respect to their 
redshift distribution[CA]. Many have purposed that 
either drastic mergers or evolution of the luminosity 
function must take place. However, number counts 
in the �, n and ¥ bands rule out evolution in the 
faint end of the luminosity function[CA]. Additional 
studies have also concluded that any evolution at 
the bright end of the luminosity function must be 
minimal below 0.5U[BY] . Therefore, the observed 2� 
abundance placed around 0.5U (22.5 <�) cannot be 
explained by evolution of the luminosity function. 
Furthermore, recent constraints on merger fractions 
limit the total amount of major mergers in these 
regions to   30% by 0.5U. This would in return 
only reduce the 2� abundance to 1.7�. The FBG 
anomaly is known as a grand cosmological problem 
because there is no self-consistent way to explain 
the abundance with respect to ∧CDM[BT]. The local 
abundance of FBGs is crucial for ruling out an 
expanding model since the various aspects are well 
constrained. When the observed evolution of local 
blue galaxies is applied to the continuous model 
however, the 2� abundance is in perfect agreement 
with predictions. 
     The FBG problem at moderate redshift becomes 
problematic as they display properties of normal 
sized disk and irregular galaxies. However, ∧CDM 
predicts that they are 2 " 5� smaller than similar 
local populations. This has lead to distant FBGs 
being improperly inferred to as dwarf galaxies. The 
luminosity function however does not drastically 
evolve, so this cannot be true. Taking the average of 
absolute magnitudes from 0.3U to 1.0U results in 
� �� � � �19.51 and � �� � � �20.96. This further 
supports distant FBGs being common late-type 
galaxies. From high-resolution imaging of FBGs, 
there is no evidence for an abundance of dwarfs 
undergoing intense star formation[BX] . Observations 
clearly rule out the purposed solutions to the ∧CDM 
faint blue galaxy problem. 

3.5. The Faint Blue Galaxy Problem 
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     Several surveys allow the size of FBGs to be 
compared to their absolute B-band magnitudes. The 
available data is limited, with the majority lacking 
reliable redshift. Edge detection with difference of 
gaussians was instead applied to high resolution 
FBGs[BX] . This provides major-axis diameters with 
respect to absolute B-band magnitude as depicted in 
figure 3.14. Absolute magnitude is related to metric 
distance derived from spectroscopically confirmed 
redshift. As previously stated, the distant FBGs are 
not dwarfs. Bolometric limitations force galaxies 
with faint absolute magnitudes to be closer, while 
the remaining are more distant. This is observed in 
figure 3.14, where disagreement between models 
increases as '� decreases. Half of the FBGs are 
observed to have mild to moderate star formation, 
usually across the entire disk. The rest range from 
common young to late-type disk, some of which are 
very blue or bulge dominated[BX] . ∧CDM is below 
even the most extreme cases from the local space. 
Combined with the lack of luminosity evolution, an 
expanding universe is ruled out due to incorrect 
predictions of large-scale curvature. Observations 
instead insist that the universe is asymptotically flat.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.14. Black stars depict several local starburst galaxies, 
with the remaining circles being normal spiral, dwarf and 
irregulars. Red are the high resolution FBGs with respect to the 
continuous model, while blue is with respect to ∧CDM. The 
dashed trend line is relative to local galaxies with the standard 
logarithmic fit[CB]:  �� � �5.5 · LOG !" � 11.9 

     Further insight can be obtained from the most 
massive objects visible at various redshift (  7U). 
Locally these are hot x-ray emitting clusters, while 
the more distant populations consist of reionized 
hydrogen known as lyman-alpha blobs[CC][CD]. As 
predicted by the continuous model, distant clusters 
are older with respect to local clusters. The angular 
diameter of 148 clusters was further measured to 
demonstrate that the curvature of an asymptotically 
flat universe agrees with observations. The diameter 
of each is measured with respect to x-ray emissions 
up to 3� above background rates. For more distant 
clusters, the extent of lyman-alpha emission was 
instead applied. Figure 3.15 provides a plot of these 
clusters and expected size assuming no evolution. 
The majority of objects were observed by Chandra 
ACIS-I[CE] and the XMM cluster survey[CF]. Since 
the angular scale was previously verified with FBG 
luminosity out to 0.7U in figure 3.14, there must be 
minimal change in cluster size up to this redshift. 
Mergers in figure 3.15 are depicted by large errors, 
where uncertainty provides the minor to major axis 
diameters. A major merger will peak at 30% above 
initial angular diameter, with an error around 25%.  
 
 
 
 
 
 
 
 
 

 

 
 
 
 
Figure 3.15. 148 massive clusters with diameters determined 
by averaging the minor and major axis of each. Red is relative 
to the continuous model with a cluster size of 3.25��.��

�	.�� #�� 
and blue is with respect to ∧CDM. Circles depict x-ray emitting 
clusters, while triangles have lyman-alpha emission. Stars at 
the bottom represent the FBGs from figure 3.14. 
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     The FBG problem becomes more apparent when 

observed merger fractions are examined. Several 

recent studies focus on calculating merger fractions 

by surveying distant galaxies. For moderate redshift 

(  1.2U), galaxies with low to intermediate mass are 

inferred to have merger fractions of 5 –  10%[CG]. 

From a survey of massive galaxies, the merger 

fraction ranges from 0.03 to 0.14[CH]. Another finds 

a morphological merger fraction less than 6% for 

massive disk galaxies prior to 1U[CI]. An in-depth 

survey focusing on both active and prior mergers 

allows uncertainty in merger duration to be ignored. 

It is observed that major mergers such as those 

between two medium-sized disks occur once on 

average by 1.4U[CJ]. Minor mergers between satellite 

galaxies and their host are about three times as 

abundant. However, these do not explain the excess 

of intermediate sized FBGs. In other words, the 

FBGs are not satellite galaxies. Distant FBGs are 

fully consistent with common late-type galaxies, 

with local populations being dwarfs similar to NGC 

4214 or NGC 1310. Without drastic merger rates, 

there are no remaining explanations with respect to 

an expanding model. The purposed model however 

predicts for the excess to exist due to the curvature 

of the universe. 

     Merger fractions beyond 1U increase in response 

to the time-scales involved, i.e. these objects are at 

least 45 ��� older than the local group. Red and 

ultra-red galaxies are found at moderate redshift.  

The Hubble Ultra Deep Field (HUDF) shows many 

of these galaxies undergoing mergers, resulting in 

deformed galaxies with tails or multiple cores[AW] . 

Products of major mergers are not consistent with 

local ellipticals, explaining why these red galaxies 

are fitted with extended star formation histories and 

abundant dust[CK]. From the HUDF, a peak merger 

fraction of 30% occurs around 2U with massive 

galaxies[CL]. High merger fractions of 40% to 50% 

are observed beyond 2.5U, where the objects are 

consistent with Lyman-break galaxies[CM].  

    Comparing proper time between 0U and 1U, the 

continuous model has an additional 38.3 � 6.6 ���. 

Current studies based upon ∧CDM should therefore 

have observed merger times 4.1 " 5.8� quicker than 

expected from simulations. These simulations rely 

on fundamental physics, making it difficult to 

explain how the process would be occurring at five 

times the expected rate. Many also underestimate 

merger times due to the inclusion of dark matter. 

There is however no proof or direct evidence for 

dark matter, at least not in any exotic forms. Direct 

attempts at locally detecting dark matter have also 

failed[CN][CO]. Instead, dark matter is the result of 

systematic lensing errors and improper foundations. 

Without dark matter, the expected mass of galaxies 

and clusters will decrease. Therefore, merger times 

from prior simulations are likely underestimated.  

     From one study, the first pass on average occurs 

at 0.72 ��� for Sbc galaxies. Max separation occurs 

on average by 1.20 ���, while galaxies merge at   1.88 ��� �. After   2.88 ��� � have passed the 

galaxy is considered to be a merger remnant[CP]. 

With the merger fractions applied on the next page, 

the one merger per galaxy by 1.4U fits with an 

average merger time of 4.0 ���. Both values can be 

compared to inferred merger times with respect to 

∧CDM. Several estimates for   8��� � range from 0.2 ��� to 1.0 ���[CQ], which is in disagreement by 2.9� to 17.5� with simulations. A more precise 

ratio can be obtained from table 3.2. Taking the 

average of several surveys results in an average 

merger time of 0.65 ���, which results in a 4.4� to 5.4� disagreement with numerical models. 
 

Table 3.2. Merger times of close galaxy pairs 

Reference[CQ] � � � � ���� ���� � ���� �	�
 

Patton & Atfield 0.05 0.36 0.37 

Lin et al. 0.79 0.63 0.63 

de Ravel et al. 0.72 1.61 1.50 

Kartaltepe et al. 0.70 0.33 0.35 

Bundy et al. 0.83 0.32 0.35 

Average 0.62 0.65 0.64 
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     Several sets of merger fractions are available 
from recent literature. Some of these could however  
be overestimated for several reasons. For example, 
mature disk or irregular galaxies can demonstrate 
several areas of intense star formation, which may 
be improperly interpreted as remnant cores from a 
previous merger[CR]. The application of maximum 
likelihood techniques also tends to overestimate 
merger fractions[CI]. A rough estimate is obtained by 
assuming one major merger per galaxy at 1.4U. 
Since merger times relative to ∧CDM are under-
estimated, the averaged value from simulations is 
applied (2.88 ���). Time dependence is with respect 
to the purposed model as discussed in section (3.3). 
The fractional merger rate is defined by equation 
(210), depicting the fraction of galaxies completing 
a major merger per proper merger time. 
 ,� � -�+ .� / 

 

For a given redshift, the change in total galaxies is 
related to the fractional merger rate and number 
density by equation (211). 
 �0�. � �,�0 
 

Solving equation (211) for number density results 

in exponential decay (212). 
 0	.� � 0�1���� 
 

Assuming the merger rate is constant relative to 
proper time, n� is determined with respect to one 
major merger per galaxy by 1.4U; this results in n�  
  0.012 � 0.002  �����. The 2.88  ��� merger 
time translates to a constant merger fraction of 0.035 relative to the continuous model. If the 4.00 ��� value is applied, the constant merger rate 
varies to 0.048. However, redshift and time are not 
directly proportional. For example, about 64% of 
proper time prior to 1.4U occurs before 0.7U. The 
merger fraction with respect to redshift would 
therefore be approximately   0.035 prior to 0.7U 
and greater than beyond. 

     With proper time as derived from the continuous 
model, local merger fractions are easily constrained 
below 0.04. For example, the fractional merger rate 
(n�) derived from a constant merger rate provides 
merger fractions (¦�) ranging from 0.030 to 0.040. 
Distant close pair merger fractions however range 
from 0.066 to beyond 0.10 throughout the various 
surveys. Local close pair surveys provide merger 
fractions between 0.005 and 0.02. Therefore, the 
approximation of n� 
 0.0120 is overestimated for 
redshift below 0.7U. Even after applying this value 
with respect to ∧CDM, the 2x abundance of FBGs 
at 0.5U only decreases by 28.6%. If the number 
density at 0.5U is 200 galaxies per metric volume, 
the final amount of galaxies would decrease to 143 
by 0.0U. ∧CDM or an expanding model is therefore 
off by 43% when overestimating major mergers 
prior to 0.5U.  
     Merger fractions above 0.04 for the local space 
are clearly too high. The survey that is found to be 
the most consistent focuses on galaxy pairs with <�   "19.8[CQ]; this limit coincides with common H�/H, disk galaxies. The projected radius for these 
close pairs ranges from 5 to 20 K�, (Kartaltepe et 
al. 2007). With respect to the average merger time 
obtained from simulations[CP], the ensemble of Sbc 
mergers has the majority of runs starting at 11 K�,. 
A few runs have much greater initial radius ranging 
from 44 to 50 K�,. Some of the merger times in 
table 3.2 also apply such large distances (de Ravel 
et al. 2009), indicating that the ratio of expected 
versus observed merger time is consistent with prior 
parameters. Extrapolating data from Kartaltepe et 
al. (2007) provides table 3.3. These fractions are 
applied with proper time to determine the redshift 
dependence of major mergers.  
 

Table 3.3. Merger fractions with respect to redshift 

Redshift �� Redshift �� 

0.15z 0.012 0.75z 0.045 
0.25z 0.018 0.85z 0.054 
0.35z 0.025 1.00z 0.073 
0.45z 0.030 1.15z 0.102 
0.55z 0.034 1.30z 0.129 
0.65z 0.039 - - 

����� 

 

����� 

 

����� 
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     Relative to the local space, merger fractions as 

determined from morphology require that 3% of 

local galaxies are merger remnants[CS]. Averaging 

several local pair studies places the merger fraction 

at 0.018, while Kartaltepe et al. (2007) provide 0.007. Relative to the purposed model, one merger 

on average at 1.4U should also include mergers that 

have already occurred prior to the local space. This 

requires that 3% � 1.8% of the local population has 

already undergone mergers, which is insignificant. 

To include merger fractions beyond 1U, the data 

was extrapolated with an average between several 

surveys. These vary between 0.19 and 0.22 at 2.5U, 

with a maximum fraction for any reference being 0.30 at 2.0U. Applying these additional constraints 

with respect to the continuous model provides the 

relative amount of galaxies for a particular redshift 

in figure 3.16. The one major merger per galaxy 

occurs at a redshift of 1.2U instead of the previously 

referenced 1.4U. The 4.4 " 5.4� disagreement with 

expected merger times makes it difficult to plot the 

amount of galaxies with respect to ∧CDM. The 

normalized distribution of proper time between 

models however is nearly proportional at low U. The 3� abundance around 0.8 " 1.0U would therefore 

decrease by 32%, i.e. ∧CDM is off by 104% � 25% 

in effective number density. The 2� abundance at 0.5U indicates an error of 70% � 15%.  

     The ratio of scale-factors can be applied to the 

normalized number density in order to determine 

the expected abundance of FBG, depicted in figure 

3.17. The 2� abundance at 0.5U is in agreement 

with prior constraints including lack of drastic 

merger fractions and minimal luminosity evolution. 

The abundance peaks beyond the observed 2 –  3� 

disagreement relative to <� 
 � 22.5, 24 �. Apparent 

magnitudes of FBGs versus redshift were further 

predicted from the absolute B-band distribution of 

local blue galaxies. With the continuous model and 

observed mergers, 22.5 <� and 24.0 <� correspond 

on average to 0.54U and 1.01U respectively.  

     Although observations such as baryonic matter 

cooling with increasing redshift can be blamed on 

various hypothesis, there is no answer for the 2� to 3� abundance of FBGs. Combined with luminosity 

characteristics, they should be nearly the same size 

as local late-types. However, the sizes inferred from 

∧CDM are 2 " 5� smaller than would be expected. 

The nearly equal disagreement between both of 

these aspects must be due to improper curvature of 

the universe. Occam’s razor alone would support 

this conclusion; however, all viable explanations 

have also been ruled out. 

 
 

 
 
 
 
 
 
 
 
 
 

 

 
Figure 3.16. Number density of galaxies with mergers only. 
 
 

 

 

 

 

 

 

 

Figure 3.17. The expected abundance of galaxies with respect 
to no evolution ∧CDM is represented with a dashed line. Red 
corresponds to the continuous model with the merger fractions 
provided in table 3.3 and $ � % � 2.88 ��&. Black is maximum 
merger fractions extrapolated beyond 1.3z[CM]. 
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     Nuclear entropy is also useful for differentiating 
between the purposed model and ∧CDM. There are 
several properties of galaxies that can determine the 
redshift dependent evolution of metallicity. The 
focus therefore changes from that of large-scale 
curvature back to time dependence versus redshift. 
∧CDM or an expanding model requires galactic age 
to decrease with distance, while the continuous 
model predicts the opposite. Time-scales involved 
were also found to agree with the purposed model 
after comparing simulations to observed merger 
times. FeII:MgII ratios and variations in magnesium 
within galaxies further provide strong evidence for 
the continuous model. Since the models provide 
opposite predictions for time dependence, evidence 
for the purposed model is evidence against ∧CDM. 
     The evolution of metallicity can be inferred from 
galactic morphology, which trends from early-type 
in the local space to late-type for the more distant 
galaxies. Early-type galaxies consist of ellipticals 
and lenticulars, usually in clusters containing large 
amounts of hot, x-ray emitting intercluster medium 
(ICM). Clusters such as Abell 1367 demonstrate 
how galaxies contained within regions of hot ICM 
lack active star formation, i.e. they are considered 
to be passive[CT]. The majority of galaxies on the 
perimeter of the ICM region are either active or 
starburst. Similar clusters such as Abell 1656 are 
common in the local space, containing primarily 
early-type galaxies and a few late-type populations. 
The observed epoch of intense star formation is 
from 0.5U to 3U, in agreement with x-ray emitting 
gas inhibiting stellar formation. The ISM is also 
about 3.8� cooler by 1.2U relative to local galaxies.  
It was previously discussed how lyman-alpha blobs 
have dimensions similar to local x-ray emitting 
clusters. An expanding model however provides the 
wrong dimensions of these objects by several orders 
of magnitude. The lyman-alpha blobs are instead 
massive clusters that have cooled over 2 50 ���. 
All of these observations agree with the continuous 
model and purposed revisions to galactic evolution. 

     Local merger fractions are too insignificant to 
play a role in the thermal or nuclear entropy of 
galaxies prior to 1.0U. Even with a major merger, 
the nuclear entropy of a galaxy cannot drastically 
vary. Early-type galaxies for example contain an 
abundance of population II stars, which are metal 
poor. Middle-aged spiral galaxies on the other hand 
contain a mixture of population II and I stars. These 
galaxies are not metal poor, containing dust and 
much less x-ray emitting gas. A collision between 
two disk galaxies may increase the temperature of 
ISM; however, it will not reverse nuclear entropy or 
eliminate prior population I stars. There is also no 
clear transition from disk to elliptical galaxies in 
surveys. NGC 6240 is a good example of a major 
merger between two disks. It is similar to the major 
mergers occurring with red and ultra-red galaxies in 
the HUDF. These red populations have abundant 
dust, which is not similar to the x-ray emitting gas 
in local elliptical galaxies. They instead have very 
luminous cores with tails or peculiar shapes. Time-
dependence of galactic entropy clearly disagrees 
with ∧CDM when considering observations. 

     From moderate to distant redshift (2 – 4U), the 

purposed model predicts 60 – 110 ��� of evolution 
from the local space. Therefore, dense regions of 
intense star formation should begin to deplete 
primordial hydrogen and helium. This however 
does not imply that regions without star formation 
will become metal rich, i.e. distant galaxies or 
clusters are usually embedded within regions of 
reionized hydrogen. Galactic star formation will 
also depict the evolution of ISM. Type II supernova 
events are associated with metal poor stars, where 
the final Fe:Mg ratio is about 1.65�. Type Ia events 
are more metallic, producing Fe:Mg ratios far above 
type II events (393�). The size and degeneracy of 
stars also play roles in the type of supernova. For 
example, type Ia events are inferred to occur from 
massive stars and are much more energetic than 
other types. The location of SNIa are also consistent 
with the continuous model, which uses them to 
track the flow towards central core.  

3.6. Metallicity 
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    The iron and magnesium concentrations in ISM 
play a crucial role in determining the relative age of 
distant galaxies. Nuclear entropy naturally favors 
the production of iron over long time-scales, with 
magnesium slightly lower with respect to nuclear 
potential. Both are created from nuclear fusion and 
should be subjected to similar environments. For 
example, any mechanism besides nuclear fusion 
that varies FeII will proportionally vary MgII. Since 
rotational curves are observed to be unstable, it is 
unlikely that supermassive black holes at the center 
of galaxies will substantially vary the surrounding 
metallicity. Therefore, distant galaxies are expected 
to have increased metallicity and higher FeII:MgII 
ratios relative to similar local populations. 
     Prior to discussing FeII:MgII ratios, evidence of 
increasing metallicity can be inferred through other 
methods. The absorption of distant sources by local 
galaxies demonstrates an abundance of MgII. These 
galaxies are observed from the local space up to 
about 0.9U[CU]. Weak MgII absorbers are further 
observed in abundance from 0.7 to 2.2U, while 
vanishing beyond 2.7U[CV]. With observed merger 
fractions and continuous model, the relative amount 
of weak MgII absorbers is depicted in figure 3.18.   
 
 
 

 

 
 
 
 
 
 
 
 
 
Figure 3.18. The dashed line represents the inferred abundance 
with mergers from section (3.5). Black indicates the averaged 
'(/'� from ∧CDM surveys and the continuous model with 
evolution is in red. '(/'� in this case refers to the number 
density multiplied by the proper geometric cross section[CV]. 

     The spectrum of quasars also provides valuable 
information relevant to metallicity. Quasars are 
some of the most luminous and distant objects in 
the observable universe. Similar to SNIa, quasars 
display characteristics of highly degenerate matter. 
These however are related to active galactic nuclei, 
which harbor supermassive black holes. Relative to 
the continuous model, highly degenerate objects are 
older and therefore in the flow towards central core. 
Several studies were combined in figure 3.19 to 
determine the evolution of FeII:MgII with respect 
to redshift[CW][CX][CY][CZ] . The high ratios observed at 6U are indicative of galaxies that have already 
undergone intense star formation[CZ]. For the ISM to 
be enriched with an abundance of these elements, 
several generations of stars must have undergone 
supernovas. Relative to ∧CDM, the proper age of 
the universe is less than 1 ��� at 6U. Considering 
that the region of intense star formation is observed 
from 0.5U to 3U, ∧CDM does not fit observations. 
Other observations such as increasing cold baryonic 
matter with redshift, number densities, galactic 
evolution and the dark flow agree with galactic age 
increasing with redshift. An expanding universe on 
the other hand would violate several fundamental 
laws of physics including the second law of thermo-
dynamics and nuclear entropy. 
 

 

 

 

 

 

 

 

Figure 3.19. High FeII:MgII ratios at extreme redshift are 
indicative of older galaxies. A statistically significant trend is 
also observed with a slope of 0.108 * 0.03.  
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     Although an expanding universe is conclusively  
ruled out from incorrect predictions of large-scale  
curvature, it is possible to compare redshift versus 
distance modulus between ∧CDM and the purposed 
model. Distinction between models at low redshift 
arises in the form of dispersion due to directional 
dependence. This is predicted by the continuous 
model from varying �
 over its complete range 
(0 ��, to � 0.54 ��,). Relative to section (3.2), the 
slope of the universe and average y-intercept are 
determined from type Ia supernova (SNIa) and 
gamma ray burst (GRB). SNIa are superior for 
determining cosmological distances due to their 
nearly uniform properties. GRB are less reliable, 
but can still be used to constrain redshift versus 
luminosity distance. SNIa and GRBs both display 
characteristics of highly degenerate matter, which is 
an indication of relatively older galaxies. These 
events will therefore be statistically more abundant 
along the flow towards central core, where the 
continuous model predicts for objects to be older 
than the local group.  
     With respect to Occam’s razor, the purposed 
model fits the shape of the universe with a single 
constant (H
). ∧CDM usually needs two constants in 
the form of dark energy and matter. Dark energy 
however cannot be directly detected and has no 
connection to the standard model. It is inferred to 
exist solely because it allows an expanding model 
to match observations. Although these non-classical 
modifications fit redshift versus distance modulus, 
they fail to agree with the observed shape of the 
universe. Occam’s razor is therefore a necessity for 
arriving at the proper theory, as anyone can force a 
model to agree with observations by introducing 
purely mathematical constructs. Failure to reach 
parsimony and over-reliance on confirmation rather 
than refutation are dangerous practices for this 
reason. From these aspects alone, the models cannot 
be put on equal footing. The continuous model 
contains the least amount of free variables and non-
classical assumptions. 

     ∧CDM and the continuous model have similar 
redshift versus distance modulus predictions from 0.5U to about 10U. Disagreement between models in 
this region peaks at 0.25c around 2.5U, making it 
difficult to differentiate between the two. ∧CDM is 
constrained by an interpretation of the CMBR and 
baryon acoustic oscillation data[BN]. These provide 
�� � 70.4��.�

��.�, Ω� � 0.0456 � 0.0035, Ω	 � 0.222 �

0.026 and Ω
 � 0.728��.���
��.��
. Figure 3.20 depicts an 

ensemble within these limits for Ω� � Ω� � Ω� and 
Ω
 � 1 � Ω�. The purposed model applies the best 
fitting slope and y-intercept, including uncertainties 
previously provided in section (3.2). Since SNIa are 
considered standard candles, observations from 0.1U to 0.5U can easily rule out an expanding 
universe. The disagreement for local redshift once 
again arises from directional dependence due to an 
asymptotically flat universe. The majority of events 
beyond 1.0U consist of GRB, which suffer from 
circularity problems. In other words, most methods 
require that a prior cosmological model be selected 
in order to determine the luminosity distance to 
GRB sources. Attempts to avoid this problem apply 
various relations between GRB parameters and 
extrapolating SNIa data. However, some of these 
methods are also found to be model dependent and 
should not be used to independently determine 
cosmological distances. 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 3.20. Red is the continuous model within limits of error, 
while black is ∧CDM within limits of error. 

3.7. Statistical Analysis 
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     A more detailed comparison between models 
can be achieved from the distance modulus residual 
with respect to the continuous model. However, it is 
determined that the dataset obtained from NED 
redshift independent calculations was contaminated 
with respect to a few GRBs. The problem arises due 
to the lack of standardization for GRB sources and 
inclusion of fiducial data; this is apparent in figure 
3.21 from 2.0U to 5.0U. Prior to 1.0U, uncertainty is 
too small to be fit with homogeneous expansion. 
For example, a portion of data is outside of either 
models best fit by more than '0.50c. However, the 
trends for the continuous model in figure 3.21 only 
include uncertainty in slope and average distance to 
the start of flow towards central core. Considering 
the shortest path instead begins at 0.0 ��, and 
others at distances greater than �
, the continuous 
model explains this dispersion relatively well. The 
purposed model is also centered on the bulk of 
available SNIa data prior to 1U indicating a superior 
fit. To the contrary, homogeneous expansion does 
not fit observations from 0.1U to 0.5U. Extrapolating 
SNIa data under the assumption of ∧CDM will 
therefore produce incorrect predictions for GRBs 
beyond available SNIa data. 
 

Table 3.4. Average SNIa/GRB error versus redshift 

Redshift Avg. Error Redshift Avg. Error 

0.1 –  0.5� �0.21
 1.0 –  2.0� �0.69
 

0.5 –  1.0� �0.27
 � 2.0� �1.11
 

 

 
 

 

 

 

 

 
 
 
Figure 3.21. A plot of the combined SNIa/GRB dataset used to 
determine the slope of the universe and average y-intercept. 

     Although the dataset applied from the NED 
database is claimed to be redshift independent, 
some of the data is fiducial; i.e. metric distance is 
determined assuming the big bang model is correct. 
For example, there are several data points in figure 
3.21 that are anomalously clustered around the 

∧CDM trend from 2.0 –  5.0U. To demonstrate this, 
the residual is plotted in figure 3.22 with respect to 
several studies. As would be expected from an 
average error of �1.11c beyond 2.0U, the anomaly 
no longer exists. After applying solely SNIa events 
for all available redshift, the slope (3.216 · 10��) 

and average y-intercept (0.313 ��,) are still within 
previous limits. Several contaminated data points 
are related to improper methods. GRB 051109A for 
example contains 3 of 8 values from 2009MNRAS. 
Removing these from the average increases distance 
modulus to 46.426c, with the continuous model 
predicting 46.429c. Issues with these references 
also include the circularity problem and use of the 
Amati relation. The Amati relation is found to 
suffer from selection effects and should not be used 
to probe distance[DD]. This is applied in 2010JCAP, 
although the data is in better agreement with SNIa. 
2009MNRAS extrapolates only 55% of SNIa data 
with fiducial methods. This systematically offsets 
the 2009MNRAS GRBs with respect to the more 
accurate SNIa dataset between redshift of 0.015U 

and 1.55U. 

 

 

 

 

 

 

 

Figure 3.22. Several sets of gamma ray burst are plotted from 
 2010JCAP[DA] ,  2009MNRAS[DB] and   2009EPJC[DC].  
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     The big bang theory claims that the CMBR is 

due to a period of recombination after the initial 

creation of space-time. At this point, the universe 

cooled until space became transparent to free 

photons. The big bang theory also claims that the 

observed blackbody radiation in all directions of 

space is not a free electromagnetic field, but instead 

localized packets of electromagnetic energy. To 

understand why this is not true, the source of 

blackbodies must be understood. All finite objects 

with a temperature will emit a spectrum of radiation 

that peaks at a given wavelength. When an object 

emits this blackbody spectrum, it is due to the 

internal kinematic energy or temperature. The free 

field emitted from massive objects therefore obeys 

a statistical distribution of internal energy, which is 

released at the surface boundary. Converting the 

observed CMBR temperature as depicted by figure 

3.23 into the relative value at emission, the core’s 

surface temperature is 3000 �. In comparison, the 

Sun’s surface has a temperature of about 5778 �, 

indicating that the core likely consists of dense 

quark matter. Relative to an Einstein black hole 

with event horizon, the surface will theoretically 

emit black body radiation in the form of Hawking 

radiation. The temperature is inversely proportional 

to mass with a coefficient of 6.1686 · 10�� <� · �. 

A 3000 � central core with respect to an Einstein 

black hole would have a mass of 2.056 · 10��� <�, 

compared to 3.694 · 10�� <� for the Moon. 

 
 

 

 

 

 

 

 
Figure 3.23. The locally observed cosmic background radiation 
with a temperature of approximately 2.725+ after redshift. 

     The CMBR shows peculiarities such as a dipole 

moment, large-scale bulk flows and additional 

fluctuations from interaction with external matter. 

The CMBR temperature prior to subtracting the 

average value is 2.72548 � 0.00057 �
[BC]. Figure 

3.24 depicts the dipole moment observed after 

subtracting the average temperature; figure 3.25 is 

the CMBR with the dipole subtracted. The dipole 

moment is due to Earth’s motion relative to the 

CMBR source or the core’s surface. Since a 

spherical body will emit blackbody radiation at a 

nearly constant 
 or radius, only the Doppler Effect 

applies. Relative to the source of the CMBR, the 

solar system is moving at 369.0 � 2.5 �� · ��� 

towards ��, �� � �264.26° 
  0.33°, 48.22° 
  0.13°�
[AZ] . 

Taking into account the local group’s motion, this 

velocity becomes   627 
  22 �� · ��� towards the 

direction ��, �� � �276° 
 3°, 30° 
 3°�[AZ] . 
 

 

 

 

 

 
 

 

 

 
 

Figure 3.24. After subtracting the average temperature from 
the sample measured by COBE, the dipole dominates. Image 
credited to NASA/WMAP Science Team[BD] 
  

 
 
 

 

 

 

 
Figure 3.25. After subtracting the dipole moment from figure 
3.24, the remaining fluctuations in the CMBR occur externally 
from the core. Image is provided from WMAP (2003). Image 
credited to NASA/WMAP Science Team[BD] 

3.8. The Cosmic Background Radiation 



58 | P a g e 

 

    Remaining fluctuations in the CMBR are from 

the Milky Way and scattering of electromagnetic by 

matter external to the core’s surface. Figure 3.26 is 

the CMBR after removing local foreground sources; 

it depicts two hot stripes and a central cold patch. 

The source of the CMBR itself should be at a nearly 

constant temperature of 3000K. Variations within 

the cleaned CMBR image instead occur between 

the foreground and background due to scattering 

from the x-ray emitting gas of massive clusters. The 

relativistic charged particles boost the black body 

spectrum to higher energy levels. This increases the 

observed black body temperature from deep blue to 

green and red. Analysis of x-ray emitting clusters 

has also shown a statistically significant bulk flow 

extending from the local group to ~0.77 ��,[AZ] . 

The velocity is estimated to be �600, 1000� K' ��� 

from the thermal S-Z effect[AZ] ; however, free field 

radiation undergoes Thomson scattering. Although 

many of the directions in local space lead back to 

the central core, there must logically be a flow of 

younger galaxies and clusters into Earth’s present 

region. This is necessary to remain consistent with 

the foundations used in deriving non-local redshift, 

i.e. the universe is in a stead state. With the medium 

of galaxies and clusters progressing from hot x-ray 

emitting gas into cold metallic dust, the dark flow 

should consist of relatively younger clusters.  

 
 

 
 

 

 
 

 
Figure 3.26. The cleaned CMBR is observed to contain a large 
hot strip originating from a central cold patch. An annihilation 
boundary or hot ring is surrounding the central cold patch. The 
base of the local jet should be visible, with the hot strip to the 
right being a continuation of the dark flow at extreme redshift. 
Image credited to NASA/WMAP Science Team[BD] 

     Conventional theory attributes the CMBR to an 

epoch of recombination, where photon decoupling 

takes place. This explanation is only valid for an 

expanding universe, which has a specific shape and 

angular scale. Section (3.5) however proved that 

both galaxy number densities and angular scales are 

incompatible with an expanding universe. This is 

easily observed from 0.3U to 0.7U, becoming more 

drastic beyond. Since an expanding model can be 

conclusively ruled out, current foundations for the 

CMBR are invalid. It was further demonstrated in 

sections (3.5, 3.6) that the purposed model fits the 

correct shape of the universe with respect to number 

densities, angular size and several other aspects.  

     The purposed or continuous model requires two 

polar jets originating from a central core in order to 

explain current observations of entropy. If the core 

acts as a mechanism for baryon asymmetry, an 

annihilation boundary should also be observed 

between hemispheres. The inferred local jet is 

depicted in figure 3.27. Anomalies may distort the 

cleaned image, possibly beyond use in some 

regions. The elliptic plane for example runs through 

the far right side of the local jet, which on average 

becomes cooler than the surrounding areas. It also 

correlates with zodiacal dust and several features 

such as quadrupole/octupole alignment and the cold 

strips or “fingers” in the southern hemisphere[BI] .  

 

 

 

 

 

 

 
 

Figure 3.27. The dark flow is depicted in shades of gray, where 
lighter shades are more distant[BK] . Since SNIa are used to 
measure the flow towards central core, an observed SNIa bulk 
flow is in red[BL] . Hemispherical power asymmetry[BJ] could be 
due to the local jet, where temperature and resolution variations 
are more extreme closer to the central region.  
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4 
     Section (3.5) demonstrated that an expanding 

universe is incompatible with observations. The 

previous sections also provide sufficient evidence 

for an asymptotically flat universe with central core.  

It is therefore important to discuss the consequences 

of having an always existent, steady state universe 

in terms of entropy and stability. The concept of an 

absolute beginning of reference time is flawed. 

Reference time in this perspective is relative to a 

space-time with no vacuum energy. For example, it 

is known that metric distance becomes infinite as an 

event horizon is approached with respect to the 

preferred reference frame. Therefore, nothing can 

reach the surface boundary within a finite amount 

of reference time. Relative to proper time, an 

observer falling into an event horizon would do so 

in a finite amount. This is an illusion since the 

observer will cease to evolve as the surface is 

approached. In comparison to a photon, the problem 

can still be defined in terms of metric distance. 

Since the photon will be travelling along a null 

geodesic, it must travel an infinite amount of metric 

distance prior to reaching the surface. 

     It is possible to take the limit of the inferred state 

of an expanding universe as 9 0 "∞ . With either 

Einstein’s field equations or vacuum field theory, 

matter will converge at a single region in space 

until it is infinitesimally close to forming an event 

horizon. With respect to the preferred reference 

frame, a discontinuity forms. For any event horizon, 

time is undefined due to infinite vacuum energy 

density. From the other direction, the collapsing 

system cannot form into a conical singularity within 

a finite amount of reference time. This discontinuity 

between time prior to a big bang scenario and 

formation of event horizon indicates that an initial 

singularity could have never existed with respect to 

the reference frame. On the other hand, one could 

argue that the universe began at some infinite time 

ago as an object infinitesimally close to a conical 

singularity; i.e. the interpretation of accelerated 

expansion is still viable. If this were true, Hubble’s 

law would remain valid for all redshift rather than 

just the local. In addition, this perspective requires 

galaxies to become older as redshift increases, 

which is contrary to several recent observations. 

The most important of these is the increase in cold 

baryonic matter with redshift. Even beyond this, an 

expanding theory requires several non-classical 

assumptions such as dark matter and dark energy. It 

fails to explain observations of galactic evolution, 

number densities or the size of distant galaxies and 

clusters. Therefore, ∧CDM or an expanding model 

should be abandoned. 

     An always-existent universe has other properties 

based upon boundary conditions. If at some time 

prior to the present the universe was unstable and 

energy could escape, the instability would have 

existed at some prior point in time. With respect to 

a quantum system, there will be a distribution of 

possible events occurring over a finite period. If the 

system has a finite probability distribution, then it is 

impossible for any instability to have not occurred 

prior to a finite time before present. In other words, 

any instability must have existed for an infinite 

period and according to probability, any finite 

distribution requires that the universe is stable at 9 0 "∞. This also relates to the null existence of 

event horizon. For example, all observations agree 

with a central core existing in the present universe. 

If black holes had event horizon as predicted by 

EFEs, the universe would clearly not exist in the 

current state. As matter approaches a central event 

horizon, some would be captured while the rest is 

ejected. Over an infinite amount of reference time 

prior to the present, the central event horizon would 

capture all matter within the universe. The CMBR 

temperature further provides direct proof against the 

existence of event horizon and Hawking radiation. 

3.9. Baryon Asymmetry 
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    In order for an always existent universe to be in 

its present form, the laws of thermodynamics must 

be missing something. The last piece of the puzzle 

was previously beyond comprehension due to the 

belief in an expanding universe and event horizon. 

Since all massive objects must have finite vacuum 

fields, the gravitational force aids in completing the 

thermodynamic cycle. The entire process can be 

viewed as beginning from the surface of the central 

core in the form of a dense relativistic jet. From this 

point to Earth’s present position in the universe, the 

usual thermodynamic principles apply. Dense quark 

matter for example will decay into x-ray emitting 

gas. Radiation emitted over this transition follows 

geodesics back to the central core, ensuring the 

universe is stable. However, an asymptotically flat 

universe by definition will have finite vacuum 

energy density at all points in space. The only 

requirement is that the universe remains localized 

for an infinite period, i.e. it exists in a steady state. 

Beyond Earth’s present position, population I stars 

are abundant due to increased metallicity and cold 

baryonic matter. The bulk flow continues to move 

towards entropy as galaxies gain momentum falling 

into the center of the universe. The missing piece is 

where matter falls back into the central core and 

momentum is conserved via two polar jets. The 

universe therefore exists in an anisotropic state of 

entropy as depicted by figures 3.5 and 3.7.  

     The laws of thermodynamics demand that the 

entropy of a closed system can never be reversed 

without external energy. From figure 3.5, it is clear 

that entropy is constant for all time relative to the 

preferred reference frame. Therefore, the laws of 

thermodynamics are not violated since the universe 

acts as a perpetual machine. The actual mechanism 

that creates relativistic jets is speculated upon with 

QCD and modern MHD simulations. Compared to 

the local region of space that Earth currently resides 

in, the jets emanating from the central core should 

be extremely large. With respect to the amount of 

galaxies and clusters falling into the central core, it 

likely contains the mass of millions or billions of 

galaxies and clusters. The center of the core should 

therefore exist in a dense, color superconducting 

state. The central region of the core is assumed to 

consist of top, bottom and charm quarks due to 

sheer size. With respect to modern theory, compact 

stars are already predicted to exist in a non-CFL 

color superconducting state[BF]. The layer directly 

adjacent to the core’s central region will also likely 

exist in a superfluid state (CSL, Planar, A/Polar). 

The center could possibly rotate, further inducing a 

magnetic field from the London moment. 

     Comparing the bare mass of quarks, the core 

should have layers depicted by chemical potentials. 

For example, the up and down quarks exist within 

the 2 " 15 <V+ range. The strange quark has a bare 

mass between 100 " 300 <V+, while the remaining 

quarks exist from 1000 <V+ and beyond. Baryon 

asymmetry is speculated to originate from the 

strange quark/anti-quark layer. Considering that the 

core acts as a perpetual machine, the energy needed 

to produce the jets must be provided by the inflow 

alone. Due to the asymmetric shape of the universe, 

matter enters the equatorial regions and is funneled 

inwards. As density increases, the quarks at each 

radius become more massive until a strange diquark 

layer is reached. This type of condensate should be 

favored due to the gap between quark masses and 

single quark flavor. The CSL, planar or A/polar 

single flavor states also demonstrate superfluidity 

and the Meissner effect[BE]. As matter approaches 

the center, the magnetic field energy density begins 

to surpass kinematic energy density[AM] . At this 

point, it is expected that the inflow stops moving 

with the bulk of material, effectively producing a 

toroidal magnetic field[AM] . Due to lorentz forces, 

the   �� � condensates are accelerated in one 

direction with    �3�3 �  in the opposite.  
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     Putting things into perspective, the structure of 

the core should be similar to figure 3.28. After 

applying the methods discussed in section (3.3) to 

derive proper time, matter approaching the surface 

of the core will be traveling at 99.999988% the 

speed of light. In consideration of momentum 

conservation and the internal magnetic field, the 

rate of inflow alone is capable of explaining the 

energy behind each jet. The bulk of material ejected 

should originate from the strange diquark layer due 

to its insulating property. As the quark matter 

begins to cool into mesons and baryons, the jet 

pointing in the direction of ̈ } will consist of �
, ��, ��, �
, ��, B
, ©
, Σ�, Σ
, Ξ� and Ξ
; although 

not exclusively. These pairings occur naturally 

since baryons containing a mixture of quarks and 

anti-quarks have not been observed experimentally. 

However, the anti-quarks must still be paired with 

something external to the surface. The resulting 

mesons decay into photons, electrons and neutrinos; 

table 3.5 provides the most common decay modes. 

The amount of material ejected from each shell of 

the core depicts the ratio of electrons and neutrinos 

to baryonic matter, although the composition of 

each layer must also be known. 

 

 

 

 

 

 

 

 
 

 
Figure 3.28. A simplified section of a central core that would 
induce baryon asymmetry. The focus is placed upon the strange 
diquark layer, which is theorized to exist due to the gap in mass 
between quarks. In a steady state model, the core must have a 
constant inflow and outflow. This process creates an abundance 
of (��, -�) in one hemisphere and (��, -�) in the other. 

     The decay of unstable baryons in the northern 

hemisphere of the universe also results in products 

that are observed in abundance locally. Table 3.6 

provides the common decay modes for the main 

constituents. This process creates an abundance of 

protons and electrons (��, V�) in the northern 

hemisphere, with an abundance of anti-matter ���, V�  in the other. It is concluded that Earth 

currently resides in the northern hemisphere beyond 

the point where the relativistic proton, electron and 

neutrino gas has cooled. For any steady state model 

in the current universe, a perpetual machine and 

explanation for the CMBR are required. With the 

corrections to general relativity, event horizon are 

no longer possible. Therefore, an asymptotically flat 

universe containing a central core would emit a 3000 � black body spectrum as observed. The 

purposed configuration further explains the hot ring 

surrounding the central cold spot in the cleaned 

CMBR image, the mechanics behind a steady state 

and origin of the dark flow. 
 

Table 3.5. Common decay modes of mesons and fermions[BG]. 

Particle(s) Decay Mode(s) Particle(s) Decay Mode(s) 

.�   /'" 
01� 2 3�4,           
           -� 2 3�" 

.�   0/'4 
01� 2 3�4,           
           -� 2 3�" 

.� 5// � ''
√2 7 28 +�  0'94 :�2 8 

+�   /9" 
01� 2 3�4,  .� 2 .�",  -� 2 3� 2 3�" 

1� -� 2 3� 2 3� 

-� 2 -� 28 
 

 

Table 3.6. Common decay modes of baryons[BG]. 

Baryon Decay Mode(s) Baryon Decay Mode(s) 

��  //'" Stable Σ�  /'9" :�2 8 

<�  /''" �� 2 -� 2 3� Σ�  ''9" <� 2 .� 

:�  /'9" 
(�� 2 .�",                <� 2 .�) 

Σ�  //9" 
(�� 2 .�",                     <� 2 .�) 

Ξ�  /99" :�2 .� Ξ�  '99" :�2 .� 
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