Non-Solvable Spaces of Linear Equation Systems

Linfan Mao

(Chinese Academy of Mathematics and System Science, Beijing 100190, P.R.China)

E-mail: maolinfan@163.com

Abstract: A Smarandache system $(\Sigma; \mathcal{R})$ is such a mathematical system that has at least one Smarandachely denied rule in \mathcal{R} , i.e., there is a rule in $(\Sigma; \mathcal{R})$ that behaves in at least two different ways within the same set Σ , i.e., validated and invalided, or only invalided but in multiple distinct ways. For such systems, the linear equation systems without solutions, i.e., non-solvable linear equation systems are the most simple one. We characterize such non-solvable linear equation systems with their homeomorphisms, particularly, the non-solvable linear equation systems with 2 or 3 variables by combinatorics. It is very interesting that every planar graph with each edge a straight segment is homologous to such a non-solvable linear equation with 2 variables.

Key Words: Smarandachely denied axiom, Smarandache system, non-solvable linear equations, ∨-solution, ∧-solution.

AMS(2010): 15A06, 68R10

§1. Introduction

Finding the exact solution of equation system is a main but a difficult objective unless the case of linear equations in classical mathematics. Contrary to this fact, what is about the non-solvable case? In fact, such an equation system is nothing but a contradictory system, and characterized only by non-solvable equations for conclusion. But our world is overlap and hybrid. The number of non-solvable equations is more than that of the solvable. The main purpose of this paper is to characterize the behavior of such linear equation systems.

Let \mathbb{R}^m , \mathbb{R}^m be Euclidean spaces with dimensional $m, n \geq 1$ and $T: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$ be a \mathbb{C}^k , $1 \leq k \leq \infty$ function such that $T(\overline{x}_0, \overline{y}_0) = \overline{0}$ for $\overline{x}_0 \in \mathbb{R}^n$, $\overline{y}_0 \in \mathbb{R}^m$ and the $m \times m$ matrix $\partial T^j/\partial y^i(\overline{x}_0, \overline{y}_0)$ is non-singular, i.e.,

$$\det(\frac{\partial T^j}{\partial u^i}) |_{(\overline{x}_0, \overline{y}_0)} \neq 0$$
, where $1 \leq i, j \leq m$.

Then the implicit function theorem ([1]) implies that there exist opened neighborhoods $V \subset \mathbb{R}^n$ of \overline{x}_0 , $W \subset \mathbb{R}^m$ of \overline{y}_0 and a \mathbb{C}^k function $\phi: V \to W$ such that

$$T(\overline{x}, \phi(\overline{x})) = \overline{0}.$$

Thus there always exists solutions for the equation $T(\overline{x}, \overline{(y)}) = \overline{0}$ if T is \mathbb{C}^k , $1 \leq k \leq \infty$. Now let $T_1, T_2, \dots, T_m, m \geq 1$ be different \mathbb{C}^k functions $\mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$ for an integer $k \geq 1$. An

¹Received March 6, 2012. Accepted June 5, 2012.

equation system discussed in this paper is with the form following

$$T_i(\overline{x}, \overline{y}) = \overline{0}, \quad 1 \le i \le m.$$
 (Eq)

A point $(\overline{x}_0, \overline{y}_0)$ is a \vee -solution of the equation system (Eq) if

$$T_i(\overline{x}_0, \overline{y}_0) = \overline{0}$$

for some integers $i, 1 \le i \le m$, and a \land -solution of (Eq) if

$$T_i(\overline{x}_0, \overline{y}_0) = \overline{0}$$

for all integers $1 \leq i_0 \leq m$. Denoted by S_i^0 the solutions of equation $T_i(\overline{x}, \overline{y}) = \overline{0}$ for integers $1 \leq i \leq m$. Then $\bigcup_{i=1}^m S_i^0$ and $\bigcap_{i=1}^m S_i^0$ are respectively the \vee -solutions and \wedge -solutions of equations (Eq). By definition, we are easily knowing that the \wedge -solution is nothing but the same as the classical solution.

Definition 1.1 The \vee -solvable, \wedge -solvable and non-solvable spaces of equations (Eq) are respectively defined by

$$\bigcup_{i=1}^{m} S_{i}^{0}, \quad \bigcap_{i=1}^{m} S_{i}^{0} \quad and \quad \bigcup_{i=1}^{m} S_{i}^{0} - \bigcap_{i=1}^{m} S_{i}^{0}.$$

Now we construct a finite graph G[Eq] of equations (Eq) following:

$$V(G[Eq]) = \{v_i | 1 < i < m\},\$$

$$E(G[Eq]) = \{(v_i, v_j) | \exists (\overline{x}_0, \overline{y}_0) \Rightarrow T_i(\overline{x}_0, \overline{y}_0) = \overline{0} \land T_j(\overline{x}_0, \overline{y}_0) = \overline{0}, \ 1 \le i, j \le m\}.$$

Such a graph G[Eq] can be also represented by a vertex-edge labeled graph $G^{L}[Eq]$ following:

$$V(G^{L}[Eq]) = \{S_{i}^{0} | 1 \le i \le m\},\$$

$$E(G[Eq]) = \{(S_i^0, S_i^0) \text{ labeled with } S_i^0 \cap S_i^0 | S_i^0 \cap S_i^0 \neq \emptyset, 1 \leq i, j \leq m\}.$$

For example, let $S_1^0 = \{a, b, c\}$, $S_2^0 = \{c, d, e\}$, $S_3^0 = \{a, c, e\}$ and $S_4^0 = \{d, e, f\}$. Then its edge-labeled graph G[Eq] is shown in Fig.1 following.

Fig.1

Notice that $\bigcup_{i=1}^{m} S_i^0 = \bigcup_{i=1}^{m} S_i^0$, i.e., the non-solvable space is empty only if m=1 in (Eq). Generally, let $(\Sigma_1; \mathcal{R}_1)$ $(\Sigma_2; \mathcal{R}_2)$, \cdots , $(\Sigma_m; \mathcal{R}_m)$ be mathematical systems, where \mathcal{R}_i is a rule on Σ_i for integers $1 \leq i \leq m$. If for two integers $i, j, 1 \leq i, j \leq m, \Sigma_i \neq \Sigma_j$ or $\Sigma_i = \Sigma_j$ but $\mathcal{R}_i \neq \mathcal{R}_j$, then they are said to be different, otherwise, identical.

Definition 1.2([12]-[13]) A rule in \mathcal{R} a mathematical system $(\Sigma; \mathcal{R})$ is said to be Smarandachely denied if it behaves in at least two different ways within the same set Σ , i.e., validated and invalided, or only invalided but in multiple distinct ways.

A Smarandache system $(\Sigma; \mathcal{R})$ is a mathematical system which has at least one Smarandachely denied rule in \mathcal{R} .

Thus, such a Smarandache system is a contradictory system. Generally, we know the conception of Smarandache multi-space with its underlying combinatorial structure defined following.

Definition 1.3([8]-[10]) Let $(\Sigma_1; \mathcal{R}_1)$, $(\Sigma_2; \mathcal{R}_2)$, \cdots , $(\Sigma_m; \mathcal{R}_m)$ be $m \geq 2$ mathematical spaces, different two by two. A Smarandache multi-space $\widetilde{\Sigma}$ is a union $\bigcup_{i=1}^{m} \Sigma_i$ with rules $\widetilde{\mathcal{R}} = \bigcup_{i=1}^{m} \mathcal{R}_i$ on $\widetilde{\Sigma}$, i.e., the rule \mathcal{R}_i on Σ_i for integers $1 \leq i \leq m$, denoted by $(\widetilde{\Sigma}; \widetilde{\mathcal{R}})$.

Similarly, the underlying graph of a Smarandache multi-space $(\widetilde{\Sigma}; \widetilde{\mathcal{R}})$ is an edge-labeled graph defined following.

Definition 1.4([8]-[10]) Let $(\widetilde{\Sigma}; \widetilde{\mathcal{R}})$ be a Smarandache multi-space with $\widetilde{\Sigma} = \bigcup_{i=1}^{m} \Sigma_i$ and $\widetilde{\mathcal{R}} = \bigcup_{i=1}^{m} \mathcal{R}_i$. Its underlying graph $G[\widetilde{\Sigma}, \widetilde{R}]$ is defined by

$$V\left(G\left[\widetilde{\Sigma},\widetilde{R}\right]\right) = \{\Sigma_1, \Sigma_2, \cdots, \Sigma_m\},$$

$$E\left(G\left[\widetilde{\Sigma},\widetilde{R}\right]\right) = \{\left(\Sigma_i, \Sigma_j\right) \mid \Sigma_i \cap \Sigma_j \neq \emptyset, 1 \leq i, j \leq m\}$$

with an edge labeling

$$l^{E}: (\Sigma_{i}, \Sigma_{j}) \in E\left(G\left[\widetilde{S}, \widetilde{R}\right]\right) \to l^{E}(\Sigma_{i}, \Sigma_{j}) = \varpi\left(\Sigma_{i} \bigcap \Sigma_{j}\right),$$

where ϖ is a characteristic on $\Sigma_i \cap \Sigma_j$ such that $\Sigma_i \cap \Sigma_j$ is isomorphic to $\Sigma_k \cap \Sigma_l$ if and only if $\varpi(\Sigma_i \cap \Sigma_j) = \varpi(\Sigma_k \cap \Sigma_l)$ for integers $1 \leq i, j, k, l \leq m$.

We consider the simplest case, i.e., all equations in (Eq) are linear with integers $m \geq n$ and $m, n \geq 1$ in this paper because we are easily know the necessary and sufficient condition of a linear equation system is solvable or not in linear algebra. For terminologies and notations not mentioned here, we follow [2]-[3] for linear algebra, [8] and [10] for graphs and topology.

Let

$$AX = (b_1, b_2, \cdots, b_m)^T \tag{LEq}$$

be a linear equation system with

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \quad \text{and} \quad X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

for integers $m, n \ge 1$. Define an augmented matrix A^+ of A by $(b_1, b_2, \dots, b_m)^T$ following:

$$A^{+} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_{1} \\ a_{21} & a_{22} & \cdots & a_{2n} & b_{2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_{m} \end{bmatrix}$$

We assume that all equations in (LEq) are non-trivial, i.e., there are no numbers λ such that

$$(a_{i1}, a_{i2}, \cdots, a_{in}, b_i) = \lambda(a_{j1}, a_{j2}, \cdots, a_{jn}, b_j)$$

for any integers $1 \le i, j \le m$. Such a linear equation system (LEq) is non-solvable if there are no solutions x_i , $1 \le i \le n$ satisfying (LEq).

§2. A Necessary and Sufficient Condition for Non-Solvable Linear Equations

The following result on non-solvable linear equations is well-known in linear algebra([2]-[3]).

Theorem 2.1 The linear equation system (LEq) is solvable if and only if $\operatorname{rank}(A) = \operatorname{rank}(A^+)$. Thus, the equation system (LEq) is non-solvable if and only if $\operatorname{rank}(A) \neq \operatorname{rank}(A^+)$.

We introduce the conception of parallel linear equations following.

Definition 2.2 For any integers $1 \le i, j \le m, i \ne j$, the linear equations

$$a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n = b_i,$$

 $a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n = b_i$

are called parallel if there exists a constant c such that

$$c = a_{j1}/a_{i1} = a_{j2}/a_{i2} = \dots = a_{jn}/a_{in} \neq b_{j}/b_{i}.$$

Then we know the following conclusion by Theorem 2.1.

Corollary 2.3 For any integers $i, j, i \neq j$, the linear equation system

$$\begin{cases} a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n = b_i, \\ a_{j1}x_1 + a_{j2}x_2 + \dots + a_{jn}x_n = b_j \end{cases}$$

is non-solvable if and only if they are parallel.

Proof By Theorem 2.1, we know that the linear equations

$$a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n = b_i,$$

 $a_{j1}x_1 + a_{j2}x_2 + \cdots + a_{jn}x_n = b_j$

is non-solvable if and only if $\operatorname{rank} A' \neq \operatorname{rank} B'$, where

$$A' = \begin{bmatrix} a_{i1} & a_{i2} & \cdots & a_{in} \\ a_{j1} & a_{j2} & \cdots & a_{jn} \end{bmatrix}, \quad B' = \begin{bmatrix} a_{i1} & a_{i2} & \cdots & a_{in} & b_1 \\ a_{j1} & a_{j2} & \cdots & a_{jn} & b_2 \end{bmatrix}.$$

It is clear that $1 \le \operatorname{rank} A' \le \operatorname{rank} B' \le 2$ by the definition of matrixes A' and B'. Consequently, $\operatorname{rank} A' = 1$ and $\operatorname{rank} B' = 2$. Thus the matrix A', B' are respectively elementary equivalent to matrixes

$$\left[\begin{array}{cccc} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \end{array}\right], \quad \left[\begin{array}{ccccc} 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \end{array}\right].$$

i.e., there exists a constant c such that $c = a_{j1}/a_{i1} = a_{j2}/a_{i2} = \cdots = a_{jn}/a_{in}$ but $c \neq b_j/b_i$. Whence, the linear equations

$$a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n = b_i,$$

 $a_{j1}x_1 + a_{j2}x_2 + \cdots + a_{jn}x_n = b_j$

is parallel by definition.

We are easily getting another necessary and sufficient condition for non-solvable linear equations (LEq) by three elementary transformations on a $m \times (n+1)$ matrix A^+ defined following:

- (1) Multiplying one row of A^+ by a non-zero scalar c;
- (2) Replacing the ith row of A^+ by row i plus a non-zero scalar c times row j;
- (3) Interchange of two row of A^+ .

Such a transformation naturally induces a transformation of linear equation system (LEq), denoted by T(LEq). By applying Theorem 2.1, we get a generalization of Corollary 2.3 for non-solvable linear equation system (LEq) following.

Theorem 2.4 A linear equation system (LEq) is non-solvable if and only if there exists a composition T of series elementary transformations on A^+ with $T(A^+)$ the forms following

$$T(A^{+}) = \begin{bmatrix} a'_{11} & a'_{12} & \cdots & a'_{1n} & b'_{1} \\ a'_{21} & a'_{22} & \cdots & a'_{2n} & b'_{2} \\ \vdots & \vdots & \ddots & \vdots \\ a'_{m1} & a'_{m2} & \cdots & a'_{mn} & b'_{m} \end{bmatrix}$$

and integers i, j with $1 \le i, j \le m$ such that the equations

$$a'_{i1}x_1 + a'_{i2}x_2 + \cdots + a'_{in}x_n = b'_i,$$

 $a'_{i1}x_1 + a'_{i2}x_2 + \cdots + a'_{in}x_n = b'_i$

are parallel.

Proof Notice that the solution of linear equation system following

$$T(A)X = (b'_1, b'_2, \cdots, b'_m)^T$$
 (LEq*)

has exactly the same solution with (LEq). If there are indeed integers k and i, j with $1 \le k, i, j \le m$ such that the equations

$$a'_{i1}x_1 + a'_{i2}x_2 + \cdots + a'_{in}x_n = b'_i,$$

 $a'_{i1}x_1 + a'_{i2}x_2 + \cdots + a'_{in}x_n = b'_i$

are parallel, then the linear equation system (LEq^*) is non-solvable. Consequently, the linear equation system (LEq) is also non-solvable.

Conversely, if for any integers k and i, j with $1 \le k, i, j \le m$ the equations

$$a'_{i1}x_1 + a'_{i2}x_2 + \cdots + a'_{in}x_n = b'_i,$$

 $a'_{j1}x_1 + a'_{j2}x_2 + \cdots + a'_{jn}x_n = b'_j$

are not parallel for any composition T of elementary transformations, then we can finally get a linear equation system

$$\begin{cases} x_{l_1} + c_{1,s+1}x_{l_{s+1}} + \dots + c_{1,n}x_{l_n} = d_1 \\ x_{l_2} + c_{2,s+1}x_{l_{s+1}} + \dots + c_{2,n}x_{l_n} = d_2 \\ \dots \\ x_{l_s} + c_{s,s+1}x_{l_{s+1}} + \dots + c_{s,n}x_{l_n} = d_s \end{cases}$$

$$(LEq^{**})$$

by applying elementary transformations on (LEq) from the knowledge of linear algebra, which has exactly the same solution with (LEq). But it is clear that (LEq^{**}) is solvable, i.e., the linear equation system (LEq) is solvable. Contradicts to the assumption.

This result naturally determines the combinatorial structure underlying a linear equation system following.

Theorem 2.5 A linear equation system (LEq) is non-solvable if and only if there exists a composition T of series elementary transformations such that

$$G[T(LEq)] \not\simeq K_m$$

where K_m is a complete graph of order m.

Proof Let $T(A^+)$ be

$$T(A^{+}) = \begin{bmatrix} a'_{11} & a'_{12} & \cdots & a'_{1n} & b'_{1} \\ a'_{21} & a'_{22} & \cdots & a'_{2n} & b'_{2} \\ \cdots & \cdots & \cdots & \cdots \\ a'_{m1} & a'_{m2} & \cdots & a'_{mn} & b'_{m} \end{bmatrix}.$$

If there are integers $1 \leq i, j \leq m$ such that the linear equations

$$a'_{i1}x_1 + a'_{i2}x_2 + \cdots + a'_{in}x_n = b'_i,$$

 $a'_{i1}x_1 + a'_{i2}x_2 + \cdots + a'_{in}x_n = b'_i$

are parallel, then there must be $S_i^0 \cap S_j^0 = \emptyset$, where S_i^0 , S_j^0 are respectively the solutions of linear equations $a'_{i1}x_1 + a'_{i2}x_2 + \cdots + a'_{in}x_n = b'_i$ and $a'_{j1}x_1 + a'_{j2}x_2 + \cdots + a'_{jn}x_n = b'_j$. Whence, there are no edges (S_i^0, S_j^0) in G[LEq] by definition. Thus $G[LEq] \not\simeq K_m$.

We wish to find conditions for non-solvable linear equation systems (LEq) without elementary transformations. In fact, we are easily determining G[LEq] of a linear equation system (LEq) by Corollary 2.3. Let L_i be the *i*th linear equation. By Corollary 2.3, we divide these equations L_i , $1 \le i \le m$ into parallel families

$$\mathscr{C}_1,\mathscr{C}_2,\cdots,\mathscr{C}_s$$

by the property that all equations in a family \mathscr{C}_i are parallel and there are no other equations parallel to lines in \mathscr{C}_i for integers $1 \leq i \leq s$. Denoted by $|\mathscr{C}_i| = n_i$, $1 \leq i \leq s$. Then the following conclusion is clear by definition.

Theorem 2.6 Let (LEq) be a linear equation system for integers $m, n \ge 1$. Then

$$G[LEq] \simeq K_{n_1,n_2,\cdots,n_s}$$

with $n_1 + n + 2 + \cdots + n_s = m$, where \mathscr{C}_i is the parallel family with $n_i = |\mathscr{C}_i|$ for integers $1 \le i \le s$ in (LEq) and (LEq) is non-solvable if $s \ge 2$.

Proof Notice that equations in a family \mathscr{C}_i is parallel for an integer $1 \leq i \leq m$ and each of them is not parallel with all equations in $\bigcup_{1 \leq l \leq m, l \neq i} \mathscr{C}_l$. Let $n_i = |\mathscr{C}_i|$ for integers $1 \leq i \leq s$ in (LEq). By definition, we know

$$G[LEq] \simeq K_{n_1, n_2, \cdots, n_s}$$

with $n_1 + n + 2 + \cdots + n_s = m$.

Notice that the linear equation system (LEq) is solvable only if $G[LEq] \simeq K_m$ by definition. Thus the linear equation system (LEq) is non-solvable if $s \geq 2$.

Notice that the conditions in Theorem 2.6 is not sufficient, i.e., if $G[LEq] \simeq K_{n_1,n_2,\cdots,n_s}$, we can not claim that (LEq) is non-solvable or not. For example, let (LEq^*) and (LEq^{**}) be

two linear equations systems with

$$A_1^+ = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & -1 & 0 \end{bmatrix} \qquad A_2^+ = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 2 & 2 \\ -1 & 2 & 2 \end{bmatrix} .$$

Then $G[LEq^*] \simeq G[LEq^{**}] \simeq K_4$. Clearly, the linear equation system (LEq^*) is solvable with $x_1 = 0$, $x_2 = 0$ but (LEq^{**}) is non-solvable. We will find necessary and sufficient conditions for linear equation systems with two or three variables just by their combinatorial structures in the following sections.

§3. Linear Equation System with 2 Variables

Let

$$AX = (b_1, b_2, \cdots, b_m)^T \tag{LEq2}$$

be a linear equation system in 2 variables with

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ \dots & \dots \\ a_{m1} & a_{m2} \end{bmatrix} \quad \text{and} \quad X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

for an integer $m \geq 2$. Then Theorem 2.4 is refined in the following.

Theorem 3.1 A linear equation system (LEq2) is non-solvable if and only if one of the following conditions hold:

- (1) there are integers $1 \le i, j \le m$ such that $a_{i1}/a_{j1} = a_{i2}/a_{j2} \ne b_i/b_j$;
- (2) there are integers $1 \le i, j, k \le m$ such that

$$\begin{vmatrix} a_{i1} & a_{i2} \\ a_{j1} & a_{j2} \\ a_{i1} & a_{i2} \\ a_{k1} & a_{k2} \end{vmatrix} \neq \begin{vmatrix} a_{i1} & b_i \\ a_{j1} & b_j \\ a_{i1} & b_i \\ a_{k1} & b_k \end{vmatrix}.$$

Proof The condition (1) is nothing but the conclusion in Corollary 2.3, i.e., the *i*th equation is parallel to the *j*th equation. Now if there no such parallel equations in (LEq2), let T be the elementary transformation replacing all other *j*th equations by the *j*th equation plus $(-a_{j1}/a_{i1})$

times the ith equation for integers $1 \leq j \leq m$. We get a transformation $T(A^+)$ of A^+ following

$$T(A^{+}) = \begin{bmatrix} 0 & \begin{vmatrix} a_{i1} & a_{i2} \\ a_{11} & a_{12} \end{vmatrix} & \begin{vmatrix} a_{i1} & b_{i} \\ a_{11} & b_{1} \end{vmatrix} \\ \cdots & \cdots & \cdots \\ 0 & \begin{vmatrix} a_{i1} & a_{i2} \\ a_{s1} & a_{s2} \end{vmatrix} & \begin{vmatrix} a_{i1} & b_{i} \\ a_{s1} & b_{s} \end{vmatrix} \\ a_{i1} & a_{i2} & b_{i} \\ 0 & \begin{vmatrix} a_{i1} & a_{i2} \\ a_{t1} & a_{t2} \end{vmatrix} & \begin{vmatrix} a_{i1} & b_{i} \\ a_{t1} & b_{t} \end{vmatrix} \\ \cdots & \cdots & \cdots \\ 0 & \begin{vmatrix} a_{i1} & a_{i2} \\ a_{m1} & a_{m2} \end{vmatrix} & \begin{vmatrix} a_{i1} & b_{i} \\ a_{m1} & b_{m} \end{vmatrix} \end{bmatrix}$$

where s = i - 1, t = i + 1. Applying Corollary 2.3 again, we know that there are integers $1 \le i, j, k \le m$ such that

$$\begin{vmatrix}
a_{i1} & a_{i2} \\
a_{j1} & a_{j2} \\
a_{i1} & a_{i2} \\
a_{k1} & a_{k2}
\end{vmatrix}
\neq
\begin{vmatrix}
a_{i1} & b_{i} \\
a_{j1} & b_{j} \\
a_{i1} & b_{i} \\
a_{k1} & b_{k}
\end{vmatrix}.$$

if the linear equation system (LEQ2) is non-solvable.

Notice that a linear equation $ax_1 + bx_2 = c$ with $a \neq 0$ or $b \neq 0$ is a straight line on \mathbb{R}^2 . We get the following result.

Theorem 3.2 A liner equation system (LEq2) is non-solvable if and only if one of conditions following hold:

(1) there are integers $1 \le i, j \le m$ such that $a_{i1}/a_{j1} = a_{i2}/a_{j2} \ne b_i/b_j$;

(2)
$$let \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} \neq 0 \ and$$

$$x_1^0 = \frac{\begin{vmatrix} b_1 & a_{21} \\ b_2 & a_{22} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}, \qquad x_2^0 = \frac{\begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}.$$

Then there is an integer $i, 1 \le i \le m$ such that

$$a_{i1}(x_1 - x_1^0) + a_{i2}(x_2 - x_2^0) \neq 0.$$

Proof If the linear equation system (LEq2) has a solution (x_1^0, x_2^0) , then

and $a_{i1}x_1^0 + a_{i2}x_2^0 = b_i$, i.e., $a_{i1}(x_1 - x_1^0) + a_{i2}(x_2 - x_2^0) = 0$ for any integers $1 \le i \le m$. Thus, if the linear equation system (LEq2) is non-solvable, there must be integers $1 \le i, j \le m$ such that $a_{i1}/a_{j1} = a_{i2}/a_{j2} \ne b_i/b_j$, or there is an integer $1 \le i \le m$ such that

$$a_{i1}(x_1 - x_1^0) + a_{i2}(x_2 - x_2^0) \neq 0.$$

This completes the proof.

For a non-solvable linear equation system (LEq2), there is a naturally induced intersectionfree graph I[LEq2] by (LEq2) on the plane \mathbb{R}^2 defined following:

$$V(I[LEq2]) = \{(x_1^{ij}, x_2^{ij}) | a_{i1}x_1^{ij} + a_{i2}x_2^{ij} = b_i, \ a_{j1}x_1^{ij} + a_{j2}x_2^{ij} = b_j, 1 \le i, j \le m\}.$$

 $E(I[LEq2]) = \{(v_{ij}, v_{il}) | \text{the segament between points } (x_1^{ij}, x_2^{ij}) \text{ and } (x_1^{il}, x_2^{il}) \text{ in } \mathbb{R}^2 \}.$ (where $v_{ij} = (x_1^{ij}, x_2^{ij})$ for $1 \le i, j \le m$).

Such an intersection-free graph is clearly a planar graph with each edge a straight segment since all intersection of edges appear at vertices. For example, let the linear equation system be (LEq2) with

$$A^{+} = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 1 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 4 \end{bmatrix}.$$

Then its intersection-free graph I[LEq2] is shown in Fig.2.

Fig.2

Let H be a planar graph with each edge a straight segment on \mathbb{R}^2 . Its *c-line graph* $L_C(H)$ is defined by

$$V(L_C(H)) = \{\text{straight lines } L = e_1 e_2 \cdots e_l, s \geq 1 \text{ in } H\};$$

$$E(L_C(H)) = \{(L_1, L_2) | \text{ if } e_i^1 \text{ and } e_j^2 \text{ are adjacent in } H \text{ for } L_1 = e_1^1 e_2^1 \cdots e_l^1, \ L_2 = e_1^2 e_2^2 \cdots e_s^2, \ l, s \geq 1\}.$$

The following result characterizes the combinatorial structure of non-solvable linear equation systems with two variables by intersection-free graphs I[LEq2].

Theorem 3.3 A linear equation system (LEq2) is non-solvable if and only if

$$G[LEq2] \simeq L_C(H),$$

where H is a planar graph of order $|H| \geq 2$ on \mathbb{R}^2 with each edge a straight segment

Proof Notice that there is naturally a one to one mapping $\phi: V(G[LEq2]) \to V(L_C(I[LEq2]))$ determined by $\phi(S_i^0) = S_i^1$ for integers $1 \le i \le m$, where S_i^0 and S_i^1 denote respectively the solutions of equation $a_{i1}x_1 + a_{i2}x_2 = b_i$ on the plane \mathbb{R}^2 or the union of points between (x_1^{ij}, x_2^{ij}) and (x_1^{il}, x_2^{il}) with

$$\begin{cases} a_{i1}x_1^{ij} + a_{i2}x_2^{ij} = b_i \\ a_{j1}x_1^{ij} + a_{j2}x_2^{ij} = b_j \end{cases}$$

and

$$\begin{cases} a_{i1}x_1^{il} + a_{i2}x_2^{il} = b_i \\ a_{l1}x_1^{il} + a_{l2}x_2^{il} = b_l \end{cases}$$

for integers $1 \leq i, j, l \leq m$. Now if $(S_i^0, S_i^0) \in E(G[LEq2])$, then $S_i^0 \cap S_i^0 \neq \emptyset$. Whence,

$$S_i^1 \bigcap S_j^1 = \phi(S_i^0) \bigcap \phi(S_j^0) = \phi(S_i^0 \bigcap S_j^0) \neq \emptyset$$

by definition. Thus $(S_i^1, S_j^1) \in L_C(I(LEq2))$. By definition, ϕ is an isomorphism between G[LEq2] and $L_C(I[LEq2])$, a line graph of planar graph I[LEq2] with each edge a straight segment.

Conversely, let H be a planar graph with each edge a straight segment on the plane \mathbb{R}^2 . Not loss of generality, we assume that edges $e_1, 2, \dots, e_l \in E(H)$ is on a straight line L with equation $a_{L1}x_1 + a_{L2}x_2 = b_L$. Denote all straight lines in H by \mathscr{C} . Then H is the intersection-free graph of linear equation system

$$a_{L1}x_1 + a_{L2}x_2 = b_L, \quad L \in \mathscr{C}. \tag{LEq2*}$$

Thus,

$$G[LEq2^*] \simeq H.$$

This completes the proof.

Similarly, we can also consider the liner equation system (LEq2) with condition on x_1 or x_2 such as

$$AX = (b_1, b_2, \cdots, b_m)^T \tag{L-Eq2}$$

with

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ \dots & \dots \\ a_{m1} & a_{m2} \end{bmatrix}, \qquad X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

and $x_1 \ge x^0$ for a real number x^0 and an integer $m \ge 2$. In geometry, each of there equation is a ray on the plane \mathbb{R}^2 , seeing also references [5]-[6]. Then the following conclusion can be obtained like with Theorems 3.2 and 3.3.

Theorem 3.4 A linear equation system (L^-Eq2) is non-solvable if and only if

$$G[LEq2] \simeq L_C(H),$$

where H is a planar graph of order $|H| \geq 2$ on \mathbb{R}^2 with each edge a straight segment.

§4. Linear Equation Systems with 3 Variables

Let

$$AX = (b_1, b_2, \cdots, b_m)^T \tag{LEq3}$$

be a linear equation system in 3 variables with

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} \end{bmatrix} \quad \text{and} \quad X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

for an integer $m \geq 3$. Then Theorem 2.4 is refined in the following.

Theorem 4.1 A linear equation system (LEq3) is non-solvable if and only if one of the following conditions hold:

- (1) there are integers $1 \le i, j \le m$ such that $a_{i1}/a_{j1} = a_{i2}/a_{j2} = a_{i3}/a_{j3} \ne b_i/b_j$;
- (2) if (a_{i1}, a_{i2}, a_{i3}) and (a_{j1}, a_{j2}, a_{j3}) are independent, then there are numbers λ, μ and an integer $l, 1 \leq l \leq m$ such that

$$(a_{l1}, a_{l2}, a_{l3}) = \lambda(a_{i1}, a_{i2}, a_{i3}) + \mu(a_{j1}, a_{j2}, a_{j3})$$

but $b_l \neq \lambda b_i + \mu b_i$;

(3) if (a_{i1}, a_{i2}, a_{i3}) , (a_{j1}, a_{j2}, a_{j3}) and (a_{k1}, a_{k2}, a_{k3}) are independent, then there are numbers λ, μ, ν and an integer l, $1 \le l \le m$ such that

$$(a_{l1}, a_{l2}, a_{l3}) = \lambda(a_{i1}, a_{i2}, a_{i3}) + \mu(a_{j1}, a_{j2}, a_{j3}) + \nu(a_{k1}, a_{k2}, a_{k3})$$

but $b_l \neq \lambda b_i + \mu b_j + \nu b_k$.

Proof By Theorem 2.1, the linear equation system (LEq3) is non-solvable if and only if $1 \le \operatorname{rank} A \ne \operatorname{rank} A^+ \le 4$. Thus the non-solvable possibilities of (LEq3) are respectively $\operatorname{rank} A = 1$, $2 \le \operatorname{rank} A^+ \le 4$, $\operatorname{rank} A = 2$, $3 \le \operatorname{rank} A^+ \le 4$ and $\operatorname{rank} A = 3$, $\operatorname{rank} A^+ = 4$. We discuss each of these cases following.

Case 1 rankA = 1 but $2 \le \operatorname{rank} A^+ \le 4$

In this case, all row vectors in A are dependent. Thus there exists a number λ such that $\lambda = a_{i1}/a_{j1} = a_{i2}/a_{j2} = a_{i3}/a_{j3}$ but $\lambda \neq b_i/b_j$.

Case 2 rankA = 2, $3 \le \text{rank}A^+ \le 4$

In this case, there are two independent row vectors. Without loss of generality, let (a_{i1}, a_{i2}, a_{i3}) and (a_{j1}, a_{j2}, a_{j3}) be such row vectors. Then there must be an integer l, $1 \le l \le m$ such that the lth row can not be the linear combination of the ith row and jth row. Whence, there are numbers λ, μ such that

$$(a_{l1}, a_{l2}, a_{l3}) = \lambda(a_{i1}, a_{i2}, a_{i3}) + \mu(a_{i1}, a_{i2}, a_{i3})$$

but $b_l \neq \lambda b_i + \mu b_j$.

Case 3 rankA = 3, rank $A^+ = 4$

In this case, there are three independent row vectors. Without loss of generality, let (a_{i1}, a_{i2}, a_{i3}) , (a_{j1}, a_{j2}, a_{j3}) and (a_{k1}, a_{k2}, a_{k3}) be such row vectors. Then there must be an integer l, $1 \le l \le m$ such that the lth row can not be the linear combination of the ith row, jth row and kth row. Thus there are numbers λ, μ, ν such that

$$(a_{l1}, a_{l2}, a_{l3}) = \lambda(a_{i1}, a_{i2}, a_{i3}) + \mu(a_{j1}, a_{j2}, a_{j3}) + \nu(a_{k1}, a_{k2}, a_{k3})$$

but $b_l \neq \lambda b_i + \mu b_i + \nu b_k$. Combining the discussion of Case 1-Case 3, the proof is complete. \square

Notice that the linear equation system (LEq3) can be transformed to the following $(LEq3^*)$ by elementary transformation, i.e., each jth row plus $-a_{j3}/a_{i3}$ times the ith row in (LEq3) for an integer i, $1 \le i \le m$ with $a_{i3} \ne 0$,

$$A'X = (b'_1, b'_2, \cdots, b'_m)^T$$
 (LEq3*)

with

$$A'^{+} = \begin{bmatrix} a'_{11} & a'_{12} & 0 & b'_{1} \\ \dots & \dots & \dots \\ a'_{(i-1)1} & a'_{(i-1)2} & 0 & b'_{i-1} \\ a_{i1} & a_{i2} & a_{i3} & b_{i} \\ a'_{(i+1)1} & a'_{(i+1)2} & 0 & b'_{i+1} \\ a'_{m1} & a'_{m2} & 0 & b'_{m} \end{bmatrix},$$

where $a'_{j1} = a_{j1} - a_{j3}a_{i1}/a_{13}$, $a'_{j2} = a_{j2} - a_{j2}a_{i2}/a_{i3}$ and $b'_{j} = b_{j} - a_{j3}b_{i}/a_{i3}$ fro integers $1 \le j \le m$. Applying Theorem 3.3, we get the a combinatorial characterizing on non-solvable linear systems (LEq3) following.

22 Linfan Mac

Theorem 4.2 A linear equation system (LEq3) is non-solvable if and only if $G[LEq3] \not\simeq K_m$ or $G[LEq3^*] \simeq u + L_C(H)$, where H denotes a planar graph with order $|H| \geq 2$, size m-1 and each edge a straight segment, u + G the join of vertex u with G.

Proof By Theorem 2.4, the linear equation system (LEq3) is non-solvable if and only if $G[LEq3] \not\simeq K_m$ or the linear equation system $(LEq3^*)$ is non-solvable, which implies that the linear equation subsystem following

$$BX' = (b'_1, \dots, b'_{i-1}, b'_{i+1}, \dots, b'_m)^T$$
 (LEq2*)

with

$$B = \begin{bmatrix} a'_{11} & a'_{12} \\ \dots & \dots \\ a'_{(i-1)1} & a'_{(i-1)2} \\ a'_{(i+1)1} & a'_{(i+1)2} \\ a'_{m1} & a'_{m2} \end{bmatrix} \quad \text{and} \quad X' = (x_1, x_2)^T$$

is non-solvable. Applying Theorem 3.3, we know that the linear equation subsystem $(LEq2^*)$ is non-solvable if and only if $G[LEq2^*] \simeq L_C(H)$, where H is a planar graph H of size m-1 with each edge a straight segment. Thus the linear equation system $(LEq3^*)$ is non-solvable if and only if $G[LEq3^*] \simeq u + L_C(H)$.

§5. Linear Homeomorphisms Equations

A homeomorphism on \mathbb{R}^n is a continuous 1-1 mapping $h:\mathbb{R}^n\to\mathbb{R}^n$ such that its inverse h^{-1} is also continuous for an integer $n\geq 1$. There are indeed many such homeomorphisms on \mathbb{R}^n . For example, the linear transformations T on \mathbb{R}^n . A linear homeomorphisms equation system is such an equation system

$$AX = (b_1, b_2, \cdots, b_m)^T \tag{L^h Eq}$$

with $X = (h(x_1), h(x_2), \dots, h(x_n))^T$, where h is a homeomorphism and

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

for integers $m, n \ge 1$. Notice that the linear homeomorphism equation system

$$\begin{cases} a_{i1}h(x_1) + a_{i2}h(x_2) + \cdots + a_{in}h(x_n) = b_i, \\ a_{j1}h(x_1) + a_{j2}(x_2) + \cdots + a_{jn}h(x_n) = b_j \end{cases}$$

is solvable if and only if the linear equation system

$$\begin{cases} a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n = b_i, \\ a_{j1}x_1 + a_{j2}x_2 + \dots + a_{jn}x_n = b_j \end{cases}$$

is solvable. Similarly, two linear homeomorphism equations are said *parallel* if they are non-solvable. Applying Theorems 2.6, 3.3, 4.2, we know the following result for linear homeomorphism equation systems $(L^h Eq)$.

Theorem 5.1 Let $(L^h Eq)$ be a linear homeomorphism equation system for integers $m, n \ge 1$. Then

- (1) $G[LEq] \simeq K_{n_1,n_2,\dots,n_s}$ with $n_1 + n + 2 + \dots + n_s = m$, where \mathscr{C}_i^h is the parallel family with $n_i = |\mathscr{C}_i^h|$ for integers $1 \le i \le s$ in $(L^h Eq)$ and $(L^h Eq)$ is non-solvable if $s \ge 2$;
- (2) If n=2, (L^hEq) is non-solvable if and only if $G[L^hEq] \simeq L_C(H)$, where H is a planar graph of order $|H| \geq 2$ on \mathbb{R}^2 with each edge a homeomorphism of straight segment, and if n=3, (L^hEq) is non-solvable if and only if $G[L^hEq] \not\simeq K_m$ or $G[LEq3^*] \simeq u + L_C(H)$, where H denotes a planar graph with order $|H| \geq 2$, size m-1 and each edge a homeomorphism of straight segment.

References

- [1] R.Abraham, J.E.Marsden and T.Ratiu, *Manifolds, Tensors Analysis and Applications*, Addison-Wesley Publishing Company, Inc., 1983.
- [2] G.Birkhoff and S.MacLane, A Survey of Modern Algebra (4th edition), Macmillan Publishing Co., Inc, 1977.
- [3] K.Hoffman and R.Kunze, *Linear Algebra* (2th edition), Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1971.
- [4] L.Kuciuk and M.Antholy, An Introduction to Smarandache Geometries, JP Journal of Geometry and Topology, 5(1), 2005,77-81.
- [5] Linfan Mao, Parallel bundles in planar map geometries, Scientia Magna, Vol.1(2005), No.2, 120-133.
- [6] Linfan Mao, On multi-metric spaces, Scientia Magna, Vol.2, No.1 (2006), 87-94.
- [7] Linfan Mao, Euclidean pseudo-geometry on \mathbb{R}^n , International J.Math. Combin., Vol.1 (2009), 90-95.
- [8] Linfan Mao, Automorphism Groups of Maps, Surfaces and Smarandache Geometries (Second edition), Graduate Textbook in Mathematics, The Education Publisher Inc. 2011.
- [9] Linfan Mao, Smarandache Multi-Space Theory (Second edition), Graduate Textbook in Mathematics, The Education Publisher Inc. 2011.
- [10] Linfan Mao, Combinatorial Geometry with Applications to Field Theory (Second edition), Graduate Textbook in Mathematics, The Education Publisher Inc. 2011.
- [11] W.S.Massey, Algebraic Topology: An Introduction, Springer-Verlag, New York, etc., 1977.
- [12] F.Smarandache, Mixed noneuclidean geometries, Eprint arXiv: math/0010119, 10/2000.
- [13] F.Smarandache, A Unifying Field in Logics-Neutrosopy: Neturosophic Probability, Set, and Logic, American research Press, Rehoboth, 1999.