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Abstract: A Smarandache system (Σ;R) is such a mathematical system that has at least

one Smarandachely denied rule in R, i.e., there is a rule in (Σ;R) that behaves in at least

two different ways within the same set Σ, i.e., validated and invalided, or only invalided but

in multiple distinct ways. For such systems, the linear equation systems without solutions,

i.e., non-solvable linear equation systems are the most simple one. We characterize such non-

solvable linear equation systems with their homeomorphisms, particularly, the non-solvable

linear equation systems with 2 or 3 variables by combinatorics. It is very interesting that

every planar graph with each edge a straight segment is homologous to such a non-solvable

linear equation with 2 variables.
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§1. Introduction

Finding the exact solution of equation system is a main but a difficult objective unless the

case of linear equations in classical mathematics. Contrary to this fact, what is about the

non-solvable case? In fact, such an equation system is nothing but a contradictory system,

and characterized only by non-solvable equations for conclusion. But our world is overlap and

hybrid. The number of non-solvable equations is more than that of the solvable. The main

purpose of this paper is to characterize the behavior of such linear equation systems.

Let Rm, Rm be Euclidean spaces with dimensional m, n ≥ 1 and T : Rn × Rm → Rm be

a Ck, 1 ≤ k ≤ ∞ function such that T (x0, y0) = 0 for x0 ∈ Rn, y0 ∈ Rm and the m×m matrix

∂T j/∂yi(x0, y0) is non-singular, i.e.,

det(
∂T j

∂yi
)
∣∣
(x0,y0) 6= 0, where1 ≤ i, j ≤ m.

Then the implicit function theorem ([1]) implies that there exist opened neighborhoods V ⊂ Rn

of x0, W ⊂ Rm of y0 and a Ck function φ : V → W such that

T (x, φ(x)) = 0.

Thus there always exists solutions for the equation T (x, (y)) = 0 if T is Ck, 1 ≤ k ≤ ∞. Now

let T1, T2, · · · , Tm, m ≥ 1 be different Ck functions Rn × Rm → Rm for an integer k ≥ 1. An
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equation system discussed in this paper is with the form following

Ti(x, y) = 0, 1 ≤ i ≤ m. (Eq)

A point (x0, y0) is a ∨-solution of the equation system (Eq) if

Ti(x0, y0) = 0

for some integers i, 1 ≤ i ≤ m, and a ∧-solution of (Eq) if

Ti(x0, y0) = 0

for all integers 1 ≤ i0 ≤ m. Denoted by S0
i the solutions of equation Ti(x, y) = 0 for integers

1 ≤ i ≤ m. Then
m⋃

i=1

S0
i and

m⋂
i=1

S0
i are respectively the ∨-solutions and ∧-solutions of equations

(Eq). By definition, we are easily knowing that the ∧-solution is nothing but the same as the

classical solution.

Definition 1.1 The ∨-solvable, ∧-solvable and non-solvable spaces of equations (Eq) are re-

spectively defined by
m⋃

i=1

S0
i ,

m⋂

i=1

S0
i and

m⋃

i=1

S0
i −

m⋂

i=1

S0
i .

Now we construct a finite graph G[Eq] of equations (Eq) following:

V (G[Eq]) = {vi|1 ≤ i ≤ m},

E(G[Eq]) = {(vi, vj)|∃(x0, y0) ⇒ Ti(x0, y0) = 0 ∧ Tj(x0, y0) = 0, 1 ≤ i, j ≤ m}.

Such a graph G[Eq] can be also represented by a vertex-edge labeled graph GL[Eq] following:

V (GL[Eq]) = {S0
i |1 ≤ i ≤ m},

E(G[Eq]) = {(S0
i , S0

j ) labeled with S0
i

⋂
S0

j |S0
i

⋂
S0

j 6= ∅, 1 ≤ i, j ≤ m}.

For example, let S0
1 = {a, b, c}, S0

2 = {c, d, e}, S0
3 = {a, c, e} and S0

4 = {d, e, f}. Then its

edge-labeled graph G[Eq] is shown in Fig.1 following.

S0
1 S0

2

S0
3 S0

4

{c}

{d, e}

{e}

{c, e}{a, c}

Fig.1
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Notice that
m⋃

i=1

S0
i =

m⋃
i=1

S0
i , i.e., the non-solvable space is empty only if m = 1 in (Eq).

Generally, let (Σ1;R1) (Σ2;R2), · · · , (Σm;Rm) be mathematical systems, where Ri is a rule

on Σi for integers 1 ≤ i ≤ m. If for two integers i, j, 1 ≤ i, j ≤ m, Σi 6= Σj or Σi = Σj but

Ri 6= Rj , then they are said to be different, otherwise, identical.

Definition 1.2([12]-[13]) A rule in R a mathematical system (Σ;R) is said to be Smarandachely

denied if it behaves in at least two different ways within the same set Σ, i.e., validated and

invalided, or only invalided but in multiple distinct ways.

A Smarandache system (Σ;R) is a mathematical system which has at least one Smaran-

dachely denied rule in R.

Thus, such a Smarandache system is a contradictory system. Generally, we know the

conception of Smarandache multi-space with its underlying combinatorial structure defined

following.

Definition 1.3([8]-[10]) Let (Σ1;R1), (Σ2;R2), · · · , (Σm;Rm) be m ≥ 2 mathematical spaces,

different two by two. A Smarandache multi-space Σ̃ is a union
m⋃

i=1

Σi with rules R̃ =
m⋃

i=1

Ri on

Σ̃, i.e., the rule Ri on Σi for integers 1 ≤ i ≤ m, denoted by
(
Σ̃; R̃

)
.

Similarly, the underlying graph of a Smarandache multi-space
(
Σ̃; R̃

)
is an edge-labeled

graph defined following.

Definition 1.4([8]-[10]) Let
(
Σ̃; R̃

)
be a Smarandache multi-space with Σ̃ =

m⋃
i=1

Σi and R̃ =

m⋃
i=1

Ri. Its underlying graph G
[
Σ̃, R̃

]
is defined by

V
(
G
[
Σ̃, R̃

])
= {Σ1, Σ2, · · · , Σm},

E
(
G
[
Σ̃, R̃

])
= { (Σi, Σj) | Σi

⋂
Σj 6= ∅, 1 ≤ i, j ≤ m}

with an edge labeling

lE : (Σi, Σj) ∈ E
(
G
[
S̃, R̃

])
→ lE(Σi, Σj) = ̟

(
Σi

⋂
Σj

)
,

where ̟ is a characteristic on Σi

⋂
Σj such that Σi

⋂
Σj is isomorphic to Σk

⋂
Σl if and only

if ̟(Σi

⋂
Σj) = ̟ (Σk

⋂
Σl) for integers 1 ≤ i, j, k, l ≤ m.

We consider the simplest case, i.e., all equations in (Eq) are linear with integers m ≥ n

and m, n ≥ 1 in this paper because we are easily know the necessary and sufficient condition of

a linear equation system is solvable or not in linear algebra. For terminologies and notations

not mentioned here, we follow [2]-[3] for linear algebra, [8] and [10] for graphs and topology.

Let

AX = (b1, b2, · · · , bm)T (LEq)

be a linear equation system with
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A =




a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
am1 am2 · · · amn




and X =




x1

x2

· · ·
xn




for integers m, n ≥ 1. Define an augmented matrix A+ of A by (b1, b2, · · · , bm)T following:

A+ =




a11 a12 · · · a1n b1

a21 a22 · · · a2n b2

· · · · · · · · · · · ·
am1 am2 · · · amn bm




We assume that all equations in (LEq) are non-trivial, i.e., there are no numbers λ such that

(ai1, ai2, · · · , ain, bi) = λ(aj1, aj2, · · · , ajn, bj)

for any integers 1 ≤ i, j ≤ m. Such a linear equation system (LEq) is non-solvable if there are

no solutions xi, 1 ≤ i ≤ n satisfying (LEq).

§2. A Necessary and Sufficient Condition for Non-Solvable Linear Equations

The following result on non-solvable linear equations is well-known in linear algebra([2]-[3]).

Theorem 2.1 The linear equation system (LEq) is solvable if and only if rank(A) = rank(A+).

Thus, the equation system (LEq) is non-solvable if and only if rank(A) 6= rank(A+).

We introduce the conception of parallel linear equations following.

Definition 2.2 For any integers 1 ≤ i, j ≤ m, i 6= j, the linear equations

ai1x1 + ai2x2 + · · ·ainxn = bi,

aj1x1 + aj2x2 + · · · ajnxn = bj

are called parallel if there exists a constant c such that

c = aj1/ai1 = aj2/ai2 = · · · = ajn/ain 6= bj/bi.

Then we know the following conclusion by Theorem 2.1.

Corollary 2.3 For any integers i, j, i 6= j, the linear equation system




ai1x1 + ai2x2 + · · ·ainxn = bi,

aj1x1 + aj2x2 + · · · ajnxn = bj

is non-solvable if and only if they are parallel.
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Proof By Theorem 2.1, we know that the linear equations

ai1x1 + ai2x2 + · · · ainxn = bi,

aj1x1 + aj2x2 + · · ·ajnxn = bj

is non-solvable if and only if rankA′ 6= rankB′, where

A′ =



 ai1 ai2 · · · ain

aj1 aj2 · · · ajn



 , B′ =



 ai1 ai2 · · · ain b1

aj1 aj2 · · · ajn b2



 .

It is clear that 1 ≤ rankA′ ≤ rankB′ ≤ 2 by the definition of matrixes A′ and B′. Consequently,

rankA′ = 1 and rankB′ = 2. Thus the matrix A′, B′ are respectively elementary equivalent to

matrixes


 1 0 · · · 0

0 0 · · · 0


 ,


 1 0 · · · 0 0

0 1 · · · 0 0


 .

i.e., there exists a constant c such that c = aj1/ai1 = aj2/ai2 = · · · = ajn/ain but c 6= bj/bi.

Whence, the linear equations

ai1x1 + ai2x2 + · · · ainxn = bi,

aj1x1 + aj2x2 + · · ·ajnxn = bj

is parallel by definition. �

We are easily getting another necessary and sufficient condition for non-solvable linear

equations (LEq) by three elementary transformations on a m × (n + 1) matrix A+ defined

following:

(1) Multiplying one row of A+ by a non-zero scalar c;

(2) Replacing the ith row of A+ by row i plus a non-zero scalar c times row j;

(3) Interchange of two row of A+.

Such a transformation naturally induces a transformation of linear equation system (LEq),

denoted by T (LEq). By applying Theorem 2.1, we get a generalization of Corollary 2.3 for non-

solvable linear equation system (LEq) following.

Theorem 2.4 A linear equation system (LEq) is non-solvable if and only if there exists a

composition T of series elementary transformations on A+ with T (A+) the forms following

T (A+) =




a′
11 a′

12 · · · a′
1n b′1

a′
21 a′

22 · · · a′
2n b′2

· · · · · · · · · · · ·
a′

m1 a′
m2 · · · a′

mn b′m






14 Linfan Mao

and integers i, j with 1 ≤ i, j ≤ m such that the equations

a′
i1x1 + a′

i2x2 + · · · a′
inxn = b′i,

a′
j1x1 + a′

j2x2 + · · ·a′
jnxn = b′j

are parallel.

Proof Notice that the solution of linear equation system following

T (A)X = (b′1, b
′
2, · · · , b′m)T (LEq∗)

has exactly the same solution with (LEq). If there are indeed integers k and i, j with 1 ≤
k, i, j ≤ m such that the equations

a′
i1x1 + a′

i2x2 + · · · a′
inxn = b′i,

a′
j1x1 + a′

j2x2 + · · ·a′
jnxn = b′j

are parallel, then the linear equation system (LEq∗) is non-solvable. Consequently, the linear

equation system (LEq) is also non-solvable.

Conversely, if for any integers k and i, j with 1 ≤ k, i, j ≤ m the equations

a′
i1x1 + a′

i2x2 + · · · a′
inxn = b′i,

a′
j1x1 + a′

j2x2 + · · ·a′
jnxn = b′j

are not parallel for any composition T of elementary transformations, then we can finally get a

linear equation system





xl1 + c1,s+1xls+1 + · · · + c1,nxln = d1

xl2 + c2,s+1xls+1 + · · · + c2,nxln = d2

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
xls + cs,s+1xls+1 + · · · + cs,nxln = ds

(LEq∗∗)

by applying elementary transformations on (LEq) from the knowledge of linear algebra, which

has exactly the same solution with (LEq). But it is clear that (LEq∗∗) is solvable, i.e., the

linear equation system (LEq) is solvable. Contradicts to the assumption. �

This result naturally determines the combinatorial structure underlying a linear equation

system following.

Theorem 2.5 A linear equation system (LEq) is non-solvable if and only if there exists a

composition T of series elementary transformations such that

G[T (LEq)] 6≃ Km,

where Km is a complete graph of order m.



Non-Solvable Spaces of Linear Equation Systems 15

Proof Let T (A+) be

T (A+) =




a′
11 a′

12 · · · a′
1n b′1

a′
21 a′

22 · · · a′
2n b′2

· · · · · · · · · · · ·
a′

m1 a′
m2 · · · a′

mn b′m




.

If there are integers 1 ≤ i, j ≤ m such that the linear equations

a′
i1x1 + a′

i2x2 + · · · a′
inxn = b′i,

a′
j1x1 + a′

j2x2 + · · ·a′
jnxn = b′j

are parallel, then there must be S0
i

⋂
S0

j = ∅, where S0
i , S0

j are respectively the solutions of

linear equations a′
i1x1 + a′

i2x2 + · · · a′
inxn = b′i and a′

j1x1 + a′
j2x2 + · · · a′

jnxn = b′j . Whence,

there are no edges (S0
i , S0

j ) in G[LEq] by definition. Thus G[LEq] 6≃ Km. �

We wish to find conditions for non-solvable linear equation systems (LEq) without elemen-

tary transformations. In fact, we are easily determining G[LEq] of a linear equation system

(LEq) by Corollary 2.3. Let Li be the ith linear equation. By Corollary 2.3, we divide these

equations Li, 1 ≤ i ≤ m into parallel families

C1, C2, · · · , Cs

by the property that all equations in a family Ci are parallel and there are no other equations

parallel to lines in Ci for integers 1 ≤ i ≤ s. Denoted by |Ci| = ni, 1 ≤ i ≤ s. Then the

following conclusion is clear by definition.

Theorem 2.6 Let (LEq) be a linear equation system for integers m, n ≥ 1. Then

G[LEq] ≃ Kn1,n2,··· ,ns

with n1 + n + 2 + · · · + ns = m, where Ci is the parallel family with ni = |Ci| for integers

1 ≤ i ≤ s in (LEq) and (LEq) is non-solvable if s ≥ 2.

Proof Notice that equations in a family Ci is parallel for an integer 1 ≤ i ≤ m and each of

them is not parallel with all equations in
⋃

1≤l≤m,l 6=i

Cl. Let ni = |Ci| for integers 1 ≤ i ≤ s in

(LEq). By definition, we know

G[LEq] ≃ Kn1,n2,··· ,ns

with n1 + n + 2 + · · · + ns = m.

Notice that the linear equation system (LEq) is solvable only if G[LEq] ≃ Km by definition.

Thus the linear equation system (LEq) is non-solvable if s ≥ 2. �

Notice that the conditions in Theorem 2.6 is not sufficient, i.e., if G[LEq] ≃ Kn1,n2,··· ,ns
,

we can not claim that (LEq) is non-solvable or not. For example, let (LEq∗) and (LEq∗∗) be
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two linear equations systems with

A+
1 =




1 0 0

0 1 0

1 1 0

1 −1 0




A+
2 =




1 0 0

0 1 0

1 2 2

−1 2 2




.

Then G[LEq∗] ≃ G[LEq∗∗] ≃ K4. Clearly, the linear equation system (LEq∗) is solvable with

x1 = 0, x2 = 0 but (LEq∗∗) is non-solvable. We will find necessary and sufficient conditions

for linear equation systems with two or three variables just by their combinatorial structures

in the following sections.

§3. Linear Equation System with 2 Variables

Let

AX = (b1, b2, · · · , bm)T (LEq2)

be a linear equation system in 2 variables with

A =




a11 a12

a21 a22

· · · · · ·
am1 am2




and X =


 x1

x2




for an integer m ≥ 2. Then Theorem 2.4 is refined in the following.

Theorem 3.1 A linear equation system (LEq2) is non-solvable if and only if one of the following

conditions hold:

(1) there are integers 1 ≤ i, j ≤ m such that ai1/aj1 = ai2/aj2 6= bi/bj;

(2) there are integers 1 ≤ i, j, k ≤ m such that

∣∣∣∣∣∣
ai1 ai2

aj1 aj2

∣∣∣∣∣∣
∣∣∣∣∣∣

ai1 ai2

ak1 ak2

∣∣∣∣∣∣

6=

∣∣∣∣∣∣
ai1 bi

aj1 bj

∣∣∣∣∣∣
∣∣∣∣∣∣

ai1 bi

ak1 bk

∣∣∣∣∣∣

.

Proof The condition (1) is nothing but the conclusion in Corollary 2.3, i.e., the ith equation

is parallel to the jth equation. Now if there no such parallel equations in (LEq2), let T be the

elementary transformation replacing all other jth equations by the jth equation plus (−aj1/ai1)
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times the ith equation for integers 1 ≤ j ≤ m. We get a transformation T (A+) of A+ following

T (A+) =




0

∣∣∣∣∣∣
ai1 ai2

a11 a12

∣∣∣∣∣∣

∣∣∣∣∣∣
ai1 bi

a11 b1

∣∣∣∣∣∣

· · · · · · · · ·

0

∣∣∣∣∣∣
ai1 ai2

as1 as2

∣∣∣∣∣∣

∣∣∣∣∣∣
ai1 bi

as1 bs

∣∣∣∣∣∣

ai1 ai2 bi

0

∣∣∣∣∣∣
ai1 ai2

at1 at2

∣∣∣∣∣∣

∣∣∣∣∣∣
ai1 bi

at1 bt

∣∣∣∣∣∣

· · · · · · · · ·

0

∣∣∣∣∣∣
ai1 ai2

am1 am2

∣∣∣∣∣∣

∣∣∣∣∣∣
ai1 bi

am1 bm

∣∣∣∣∣∣




,

where s = i − 1, t = i + 1. Applying Corollary 2.3 again, we know that there are integers

1 ≤ i, j, k ≤ m such that ∣∣∣∣∣∣
ai1 ai2

aj1 aj2

∣∣∣∣∣∣
∣∣∣∣∣∣

ai1 ai2

ak1 ak2

∣∣∣∣∣∣

6=

∣∣∣∣∣∣
ai1 bi

aj1 bj

∣∣∣∣∣∣
∣∣∣∣∣∣

ai1 bi

ak1 bk

∣∣∣∣∣∣

.

if the linear equation system (LEQ2) is non-solvable. �

Notice that a linear equation ax1 + bx2 = c with a 6= 0 or b 6= 0 is a straight line on R2.

We get the following result.

Theorem 3.2 A liner equation system (LEq2) is non-solvable if and only if one of conditions

following hold:

(1) there are integers 1 ≤ i, j ≤ m such that ai1/aj1 = ai2/aj2 6= bi/bj;

(2) let

∣∣∣∣∣∣
a11 a12

a21 a22

∣∣∣∣∣∣
6= 0 and

x0
1 =

∣∣∣∣∣∣
b1 a21

b2 a22

∣∣∣∣∣∣
∣∣∣∣∣∣

a11 a12

a21 a22

∣∣∣∣∣∣

, x0
2 =

∣∣∣∣∣∣
a11 b1

a21 b2

∣∣∣∣∣∣
∣∣∣∣∣∣

a11 a12

a21 a22

∣∣∣∣∣∣

.

Then there is an integer i, 1 ≤ i ≤ m such that

ai1(x1 − x0
1) + ai2(x2 − x0

2) 6= 0.
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Proof If the linear equation system (LEq2) has a solution (x0
1, x

0
2), then

x0
1 =

∣∣∣∣∣∣
b1 a21

b2 a22

∣∣∣∣∣∣
∣∣∣∣∣∣

a11 a12

a21 a22

∣∣∣∣∣∣

, x0
2 =

∣∣∣∣∣∣
a11 b1

a21 b2

∣∣∣∣∣∣
∣∣∣∣∣∣

a11 a12

a21 a22

∣∣∣∣∣∣

and ai1x
0
1 + ai2x

0
2 = bi, i.e., ai1(x1 − x0

1) + ai2(x2 − x0
2) = 0 for any integers 1 ≤ i ≤ m. Thus,

if the linear equation system (LEq2) is non-solvable, there must be integers 1 ≤ i, j ≤ m such

that ai1/aj1 = ai2/aj2 6= bi/bj, or there is an integer 1 ≤ i ≤ m such that

ai1(x1 − x0
1) + ai2(x2 − x0

2) 6= 0.

This completes the proof. �

For a non-solvable linear equation system (LEq2), there is a naturally induced intersection-

free graph I[LEq2] by (LEq2) on the plane R2 defined following:

V (I[LEq2]) = {(xij
1 , xij

2 )|ai1x
ij
1 + ai2x

ij
2 = bi, aj1x

ij
1 + aj2x

ij
2 = bj , 1 ≤ i, j ≤ m}.

E(I[LEq2]) = {(vij , vil)|the segament between points (xij
1 , xij

2 ) and (xil
1 , xil

2 ) in R2}. (where

vij = (xij
1 , xij

2 ) for 1 ≤ i, j ≤ m).

Such an intersection-free graph is clearly a planar graph with each edge a straight segment

since all intersection of edges appear at vertices. For example, let the linear equation system

be (LEq2) with

A+ =




1 1 2

1 1 3

1 2 3

1 2 4




.

Then its intersection-free graph I[LEq2] is shown in Fig.2.

-
6

1

2

3

1 2 3

x1 + x2 = 2
x1 + x2 = 3

x1

x2

x1 + 2x2 = 3

4

x1 + 2x2 = 4

v13 = v15 = v35

v14

v23

v24

O

v14

v24

v13 = v15 = v35

v24

I[LEq2]

x1 = 1

v45
v45

Fig.2
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Let H be a planar graph with each edge a straight segment on R2. Its c-line graph LC(H)

is defined by

V (LC(H)) = {straight lines L = e1e2 · · · el, s ≥ 1 in H};
E(LC(H)) = {(L1, L2)| if e1

i and e2
j are adjacent in H for L1 = e1

1e
1
2 · · · e1

l , L2 =

e2
1e

2
2 · · · e2

s, l, s ≥ 1}.

The following result characterizes the combinatorial structure of non-solvable linear equa-

tion systems with two variables by intersection-free graphs I[LEq2].

Theorem 3.3 A linear equation system (LEq2) is non-solvable if and only if

G[LEq2] ≃ LC(H)),

where H is a planar graph of order |H | ≥ 2 on R2 with each edge a straight segment

Proof Notice that there is naturally a one to one mapping φ : V (G[LEq2]) → V (LC(I[LEq2]))

determined by φ(S0
i ) = S1

i for integers 1 ≤ i ≤ m, where S0
i and S1

i denote respectively the

solutions of equation ai1x1 +ai2x2 = bi on the plane R2 or the union of points between (xij
1 , xij

2 )

and (xil
1 , xil

2 ) with 



ai1x
ij
1 + ai2x

ij
2 = bi

aj1x
ij
1 + aj2x

ij
2 = bj

and 



ai1x
il
1 + ai2x

il
2 = bi

al1x
il
1 + al2x

il
2 = bl

for integers 1 ≤ i, j, l ≤ m. Now if (S0
i , S0

j ) ∈ E(G[LEq2]), then S0
i

⋂
S0

j 6= ∅. Whence,

S1
i

⋂
S1

j = φ(S0
i )
⋂

φ(S0
j ) = φ(S0

i

⋂
S0

j ) 6= ∅

by definition. Thus (S1
i , S1

j ) ∈ LC(I(LEq2)). By definition, φ is an isomorphism between

G[LEq2] and LC(I[LEq2]), a line graph of planar graph I[LEq2] with each edge a straight

segment.

Conversely, let H be a planar graph with each edge a straight segment on the plane R2. Not

loss of generality, we assume that edges e1,2 , · · · , el ∈ E(H) is on a straight line L with equation

aL1x1 +aL2x2 = bL. Denote all straight lines in H by C . Then H is the intersection-free graph

of linear equation system

aL1x1 + aL2x2 = bL, L ∈ C . (LEq2∗)

Thus,

G[LEq2∗] ≃ H.

This completes the proof. �

Similarly, we can also consider the liner equation system (LEq2) with condition on x1 or

x2 such as

AX = (b1, b2, · · · , bm)T (L−Eq2)
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with

A =




a11 a12

a21 a22

· · · · · ·
am1 am2




, X =



 x1

x2





and x1 ≥ x0 for a real number x0 and an integer m ≥ 2. In geometry, each of there equation

is a ray on the plane R2, seeing also references [5]-[6]. Then the following conclusion can be

obtained like with Theorems 3.2 and 3.3.

Theorem 3.4 A linear equation system (L−Eq2) is non-solvable if and only if

G[LEq2] ≃ LC(H)),

where H is a planar graph of order |H | ≥ 2 on R2 with each edge a straight segment.

§4. Linear Equation Systems with 3 Variables

Let

AX = (b1, b2, · · · , bm)T (LEq3)

be a linear equation system in 3 variables with

A =




a11 a12 a13

a21 a22 a23

· · · · · · · · ·
am1 am2 am3




and X =




x1

x2

x3




for an integer m ≥ 3. Then Theorem 2.4 is refined in the following.

Theorem 4.1 A linear equation system (LEq3) is non-solvable if and only if one of the following

conditions hold:

(1) there are integers 1 ≤ i, j ≤ m such that ai1/aj1 = ai2/aj2 = ai3/aj3 6= bi/bj;

(2) if (ai1, ai2, ai3) and (aj1, aj2, aj3) are independent, then there are numbers λ, µ and an

integer l, 1 ≤ l ≤ m such that

(al1, al2, al3) = λ(ai1, ai2, ai3) + µ(aj1, aj2, aj3)

but bl 6= λbi + µbj;

(3) if (ai1, ai2, ai3), (aj1, aj2, aj3) and (ak1, ak2, ak3) are independent, then there are num-

bers λ, µ, ν and an integer l, 1 ≤ l ≤ m such that

(al1, al2, al3) = λ(ai1, ai2, ai3) + µ(aj1, aj2, aj3) + ν(ak1, ak2, ak3)

but bl 6= λbi + µbj + νbk.
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Proof By Theorem 2.1, the linear equation system (LEq3) is non-solvable if and only

if 1 ≤ rankA 6= rankA+ ≤ 4. Thus the non-solvable possibilities of (LEq3) are respectively

rankA = 1, 2 ≤ rankA+ ≤ 4, rankA = 2, 3 ≤ rankA+ ≤ 4 and rankA = 3, rankA+ = 4. We

discuss each of these cases following.

Case 1 rankA = 1 but 2 ≤ rankA+ ≤ 4

In this case, all row vectors in A are dependent. Thus there exists a number λ such that

λ = ai1/aj1 = ai2/aj2 = ai3/aj3 but λ 6= bi/bj.

Case 2 rankA = 2, 3 ≤ rankA+ ≤ 4

In this case, there are two independent row vectors. Without loss of generality, let

(ai1, ai2, ai3) and (aj1, aj2, aj3) be such row vectors. Then there must be an integer l, 1 ≤ l ≤ m

such that the lth row can not be the linear combination of the ith row and jth row. Whence,

there are numbers λ, µ such that

(al1, al2, al3) = λ(ai1, ai2, ai3) + µ(aj1, aj2, aj3)

but bl 6= λbi + µbj .

Case 3 rankA = 3, rankA+ = 4

In this case, there are three independent row vectors. Without loss of generality, let

(ai1, ai2, ai3), (aj1, aj2, aj3) and (ak1, ak2, ak3) be such row vectors. Then there must be an

integer l, 1 ≤ l ≤ m such that the lth row can not be the linear combination of the ith row,

jth row and kth row. Thus there are numbers λ, µ, ν such that

(al1, al2, al3) = λ(ai1, ai2, ai3) + µ(aj1, aj2, aj3) + ν(ak1, ak2, ak3)

but bl 6= λbi + µbj + νbk. Combining the discussion of Case 1-Case 3, the proof is complete. �

Notice that the linear equation system (LEq3) can be transformed to the following (LEq3∗)

by elementary transformation, i.e., each jth row plus −aj3/ai3 times the ith row in (LEq3) for

an integer i, 1 ≤ i ≤ m with ai3 6= 0,

A′X = (b′1, b
′
2, · · · , b′m)T (LEq3∗)

with

A′+ =




a′
11 a′

12 0 b′1

· · · · · · · · · · · ·
a′
(i−1)1 a′

(i−1)2 0 b′i−1

ai1 ai2 ai3 bi

a′
(i+1)1 a′

(i+1)2 0 b′i+1

a′
m1 a′

m2 0 b′m




,

where a′
j1 = aj1 − aj3ai1/a13, a′

j2 = aj2 − aj2ai2/ai3 and b′j = bj − aj3bi/ai3 fro integers

1 ≤ j ≤ m. Applying Theorem 3.3, we get the a combinatorial characterizing on non-solvable

linear systems (LEq3) following.
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Theorem 4.2 A linear equation system (LEq3) is non-solvable if and only if G[LEq3] 6≃ Km

or G[LEq3∗] ≃ u + LC(H), where H denotes a planar graph with order |H | ≥ 2, size m − 1

and each edge a straight segment, u + G the join of vertex u with G.

Proof By Theorem 2.4, the linear equation system (LEq3) is non-solvable if and only if

G[LEq3] 6≃ Km or the linear equation system (LEq3∗) is non-solvable, which implies that the

linear equation subsystem following

BX ′ = (b′1, · · · , b′i−1, b
′
i+1 · · · , b′m)T (LEq2∗)

with

B =




a′
11 a′

12

· · · · · ·
a′
(i−1)1 a′

(i−1)2

a′
(i+1)1 a′

(i+1)2

a′
m1 a′

m2




and X ′ = (x1, x2)
T

is non-solvable. Applying Theorem 3.3, we know that the linear equation subsystem (LEq2∗)

is non-solvable if and only if G[LEq2∗] ≃ LC(H)), where H is a planar graph H of size m − 1

with each edge a straight segment. Thus the linear equation system (LEq3∗) is non-solvable if

and only if G[LEq3∗] ≃ u + LC(H). �

§5. Linear Homeomorphisms Equations

A homeomorphism on Rn is a continuous 1− 1 mapping h : Rn → Rn such that its inverse h−1

is also continuous for an integer n ≥ 1. There are indeed many such homeomorphisms on Rn.

For example, the linear transformations T on Rn. A linear homeomorphisms equation system

is such an equation system

AX = (b1, b2, · · · , bm)T (LhEq)

with X = (h(x1), h(x2), · · · , h(xn))T , where h is a homeomorphism and

A =




a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
am1 am2 · · · amn




for integers m, n ≥ 1. Notice that the linear homeomorphism equation system




ai1h(x1) + ai2h(x2) + · · · ainh(xn) = bi,

aj1h(x1) + aj2(x2) + · · · ajnh(xn) = bj

is solvable if and only if the linear equation system




ai1x1 + ai2x2 + · · ·ainxn = bi,

aj1x1 + aj2x2 + · · · ajnxn = bj
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is solvable. Similarly, two linear homeomorphism equations are said parallel if they are non-

solvable. Applying Theorems 2.6, 3.3, 4.2, we know the following result for linear homeomor-

phism equation systems (LhEq).

Theorem 5.1 Let (LhEq) be a linear homeomorphism equation system for integers m, n ≥ 1.

Then

(1) G[LEq] ≃ Kn1,n2,··· ,ns
with n1 + n + 2 + · · ·+ ns = m, where C h

i is the parallel family

with ni = |C h
i | for integers 1 ≤ i ≤ s in (LhEq) and (LhEq) is non-solvable if s ≥ 2;

(2) If n = 2, (LhEq) is non-solvable if and only if G[LhEq] ≃ LC(H)), where H is a

planar graph of order |H | ≥ 2 on R2 with each edge a homeomorphism of straight segment, and

if n = 3, (LhEq) is non-solvable if and only if G[LhEq] 6≃ Km or G[LEq3∗] ≃ u + LC(H),

where H denotes a planar graph with order |H | ≥ 2, size m−1 and each edge a homeomorphism

of straight segment.
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