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81. Introduction

A Smarandache space is such a space that a straight line passing through a point p may turn
an angle ¢, > 0. If 6, > 0, then p is called a non-Euclidean. Otherwise, we call it an
Euclidean point. In this paper, normed spaces are considered to be Euclidean, i.e., every point
is Euclidean. In [7], S. G&hler introduced n-norms on a linear space. A detailed theory of n-
normed linear space can be found in [8], [10], [12]-[13]. In [8], H. Gunawan and M. Mashadi gave
a simple way to derive an (n—1)- norm from the n-norm in such a way that the convergence and
completeness in the n-norm is related to those in the derived (n — 1)-norm. A detailed theory
of fuzzy normed linear space can be found in [1], [3]-6], [9], [11] and [15]. In [14], A. Narayanan
and S. Vijayabalaji have extend m-normed linear space to fuzzy n-normed linear space. In
section 2, we quote some basic definitions, and we show that a fuzzy n-norm is closely related
to an ascending system of n-seminorms. In Section 3, we introduce a locally convex topology in
a fuzzy n-normed space, and in Section 4 we consider finite dimensional fuzzy n-normed linear
spaces.

82. Fuzzy n-norms and ascending families of n-seminorms

Let n be a positive integer, and let X be a real vector space of dimension at least n. We recall
the definitions of an n-seminorm and a fuzzy n-norm [14].

Definition 2.1 A function (z1,22,...,2n) — ||T1,...,2p] from X™ to [0,00) is called an

n-seminorm on X if it has the following four properties:
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(S|x1, 22, ..., xn|| =0 if 1,29, ...,2, are linearly dependent;
(S2) |x1, 22, ..., 2] is invariant under any permutation of T1,Za, ..., Tn;
(S3) |x1,y .- s Tn—1,cxn| = lcl|z1, - -« s Tno1, Zn| for any real ¢;

(54) ||$17-~-7$n—17y+2’|| < ||x17"'7wn—17y|| + ||$1,...,$n_1,2||.

An m-seminorm is called a n-norm if |x1,xa,...,z,|| > 0 whenever x1,xa,...,2, are

linearly independent.

Definition 2.2 A fuzzy subset N of X™ x R is called a fuzzy n-norm on X if and only if:

(F1) For allt <0, N(z1,22,...,2,,t) =0;
(F2) For allt >0, N(x1,22,...,2Zn,t) =1 if and only if x1,x9,...,x, are linearly depen-
dent;

(F3) N(x1,xa,...,x,,t) is invariant under any permutation of 1,22, ..., Tn;

(F4) For allt >0 and c € R, ¢ #0,
N(:z:l,xg,...,cxn,t):N(xl,xg,...,xn,m);
(F5) For all s,t € R,
N(z1,...,Zpn-1,y+ 2,8 +1t) >min{N(z1,...,2n-1,9,8), N(T1,...,Tpn_12,)}.
(F6) N(x1,22,...,2Tn,t) is a non-decreasing function of t € R and
lim N(x1,xza,...,2,,t) = 1.

t—o0

The following two theorems clarify the relationship between definitions 2.1 and 2.2.

Theorem 2.1 Let N be a fuzzy n-norm on X. As in [14] define for x1,xa,...,2, € X and
a€(0,1)

(2.1) |21, 22, s Znlla :=Inf {t : N(x1,29,...,20,t) > a}.
Then the following statements hold.

(A1) For every a € (0,1), ||e,e0,... 0|, is an n-seminorm on X;

(A2) If0<a< p<1andxy,...,x, €X then
||$17x27"'7wn”a < ||$1,$2,...,$n||ﬁ;
(A3) If x1, 29, ..., 2, € X are linearly independent then

lim |lz1,22,...,2Znlla = c0.
a—l—
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Proof (Al) and (A2) are shown in Theorem 3.4 in [14]. Let z1,22,...,2, € X be linearly
independent, and ¢ > 0 be given. We set 8 := N(z1,22,...,Zp,t). It follows from (F2) that
B €10,1). Then (F6) shows that, for « € (5,1),

|21, 22, ..y @n|le = t.

This proves (A3). O

We now prove a converse of Theorem 2.2.

Theorem 2.2 Suppose we are given a family ||e,e, ... o], @ € (0,1), of n-seminorms on X

with properties (A2) and (A8). We define

(2.2) N(z1,29,...,2n,t) :=inf{a € (0,1) : [|z1,22,...,Tnlla = t}.
where the infimum of the empty set is understood as 1. Then N is a fuzzy n-norm on X.

Proof (F1) holds because the values of an n-seminorm are nonnegative.

(F2): Lett > 0. If 21, . .., x, are linearly dependent then N(x1,...,x,,t) = 1 follows from
property (S1) of an n-seminorm. If 21, ..., z, are linearly independent then N (z1,...,2,,t) <1
follows from (A3).

(F3) is a consequence of property (S2) of an n-seminorm.

(F4) is a consequence of property (S3) of an n-seminorm.

(F5): Let a € (0, 1) satisfy

(2.3) a<min{N(z1,...,2n-1,y,8), N(x1,...,Zn_1,2,5)}.
It follows that ||z1,...,Zn—1,ylla < s and ||z1,...,2Zn—1, 2||a < t. Then (S4) gives
|21, s 1,y + 2]|a < s+t

Using (A2) we find N(x1,...,2p-1,y + 2,8 + 1) = « and, since « is arbitrary in (2.3), (F5)
follows.
(F6): Definition 2.2 shows that N is non-decreasing in t. Moreover, limy_,oo N(21,...,Zpn,t)
= 1 because seminorms have finite values. 0
It is easy to see that Theorems 2.1 and 2.2 establish a one-to-one correspondence between
fuzzy n-norms with the additional property that the function ¢t — N(z1,...,2,,t) is left-
continuous for all z1,xa,...,2, and families of n-seminorms with properties (A2), (A3) and

the additional property that « — ||z1,. .., 2|« is left-continuous for all 21, za, ..., 2.

Example 2.3(Example 3.3 in [14]). Let ||e,e,..., o] be a n-norm on X. Then define N(z1, x2,
vy Xp,t) = 01if ¢ <0 and, for ¢t > 0,

t

a t+ |z, @2, Tl

N(x1,22,...,%n,1)
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Then the seminorms (2.1) are given by

lz1, 22, ..., xnlla = |21, 22, ..., 2.

11—«

83. Locally convex topology generated by a fuzzy n-norm

In this section (X, N) is a fuzzy n-normed space, that is, X is real vector space and N is
fuzzy n-norm on X. We form the family of n-seminorms |je,e, ... e|,, a € (0,1), according to

Theorem 2.1. This family generates a family F of seminorms
lz1, ..., Zn-1,®||a, wherex1,...,2,-1 € X and a € (0,1).

The family F generates a locally convex topology on X; see [2, Def.(37.9)], that is, a basis of
neighborhoods at the origin is given by

{zeX pi(x)<e fori=1,2,...,n},

where p; € F and ¢; > 0 for i = 1,2...,n. We call this the locally convex topology generated
by the fuzzy n-norm N.

Theorem 3.1 The locally convex topology generated by a fuzzy n-norm is Hausdorff.

Proof Given z € X, x # 0, choose x1,...,x,-1 € X such that x1,...,x,_1,x are linearly
independent. By Theorem 2.1(A3) we find o € (0,1) such that ||z1,...,2p—1,%||a > 0. The
desired statement follows; see [2,Theorem (37.21)]. O

Some topological notions can be expressed directly in terms of the fuzzy-norm N. For
instance, we have the following result on convergence of sequences. We remark that the defi-
nition of convergence of sequences in a fuzzy n-normed space as given in [16, Definition 2.2] is

meaningless.

Theorem 3.2 Let {x}} be a sequence in X and x € X. Then {x} converges to x in the locally
convez topology generated by N if and only if

(3.1) lim N(ay,...,an-1,2r —x,t) =1

k—o0

forallay,...,an—1 € X and all t > 0.

Proof Suppose that {zy} converges to = in (X, N). Then, for every a € (0,1) and all
ai,az,...,an—1 € X, there is K such that, for all k > K, ||a1,as2,...,an-1,2x — z||oa < €. The
latter implies

N(ai,a2,...,0p—1,Z —T,€) = .

Since a € (0,1) and € > 0 are arbitrary we see that (3.1) holds. The converse is shown in a
similar way. O

In a similar way we obtain the following theorem.
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Theorem 3.3 Let {z1} be a sequence in X. Then {xi} is a Cauchy sequence in the locally
convez topology generated by N if and only if

(3.2) lim N(ai,...,0p—1,Zk — T, t) =1

k,m— o0

forallay,...,an—1 € X and all t > 0.

It should be noted that the locally convex topology generated by a fuzzy n-norm is not
metrizable, in general. Therefore, in many cases it will be necessary to consider nets {x;} in

place of sequences. Of course, Theorems 3.2 and 3.3 generalize in an obvious way to nets.

84. Fuzzy n-norms on finite dimensional spaces

In this section (X, N) is a fuzzy n-normed space and X has finite dimension at least n. Since
the locally convex topology generated by N is Hausdorff by Theorem 3.1. Tihonov’s theorem
[2, Theorem (23.1)] implies that this locally convex topology is the only one on X. Therefore,
all fuzzy n-norms on X are equivalent in the sense that they generate the same locally convex
topology.

In the rest of this section we will give a direct proof of this fact (without using Tihonov’s
theorem). We will set X = R? with d > n.

Lemma 4.1 FEvery n-seminorm on X = R is continuous as a function on X™ with the

euclidian topology.

Proof For every j =1,2,...,n, let {ZEj,k}zO:l be a sequence in X converging to z; € X.
Therefore, klim llzj.x — ;|| = 0, where ||z|| denotes the euclidian norm of z. From property
—00

S4) of an n-seminorm we get
( g
|||$1,k7x2,k7 L) 7:'[;77,,]6” - Hxlu x?,ku L] 7x’n,k||| S ||$1,]€ - $17$2,]€7 o '7:'[;77,,]6”'

Expressing every vector in the standard basis of R? we see that there is a constant M such that

lyisy2s -y ynll < Myl - [[ynll for all y; € X.
Therefore,
lim |21, — 21, T2k,---5 Tkl =0
k—oo
and so
lim ||z16, Z24ks---5 Tkl — |1, T2k,---y Znxll| = 0.
k—o0

We continue this procedure until we reach

lIm |21k, T2k, s Tokll = |21, @2, @0
k—o0
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Lemma 4.2 Let (R% N) be a fuzzy n-normed space. Then ||x1,%2, ..., %y, is an n-norm if
a € (0,1) is sufficiently close to 1.

Proof We consider the compact set
S = {(:vl, Zy..., Tp) € R™ : 21, x,..., &, is an orthonormal system in Rd} )
For each « € (0,1) consider the set
Sa ={(z1,22,...,25) €S ||x1,22,...,24], > 0}.

By Lemma 4.1, S, is an open subset of S. We now show that

4.1 S= U S,

(4.1) ac(0,1) &
If (x1, x2,..., x,) € S then (z1, x2,..., =) is linearly independent and therefore there is 3
such that N(21,22,...,2n,1) < 8 < 1. This implies that [|z1, 2,..., 2,[l5 > 1 so (4.1) is
proved. By compactness of .S, we find a3, as, ..., a,, such that

S=U S,
i=1
Let o = max{o, ag, ..., am}. Then ||z1, z2,..., x|, > 0 for every (z1, z2,..., z,) €S.
Let z1, x2,..., x, € X be linearly independent. Construct an orthonormal system

€1, €2,..., en from xy, x2,..., z, by the Gram-Schmidt method. Then there is ¢ > 0 such
that

llz1, x2,..., xul, =clle1, e2,..., enll, > 0.
This proves the lemma. O

Theorem 4.1 Let N be a fuzzy n-norm on R%, and let {z} be a sequence in R? and x € RY.

(a) {xr} converges to x with respect to N if and only if {xr} converges to x in the euclidian
topology.

(b) {xr} is a Cauchy sequence with respect to N if and only if {x} is a Cauchy sequence
in the euclidian metric.

Proof (a) Suppose {xy } converges to x with respect to euclidian topology. Let a1, as,...,a,—1 €

X. By Lemma 4.1, for every o € (0, 1),

lim |ai, ag,..., apn—1, o — x|, = 0.

k—o0
By definition of convergence in (R?, N), we get that {x;} converges to x in (R%, N). Conversely,
suppose that {x;} converges to = in (R% N). By Lemma 4.2, there is o € (0,1) such that
ly1,92, ..., ynll, is an n-norm. By definition, {z1} converges to x in the n-normed space
(R, |I|l.)- It is known from [8, Proposition 3.1] that this implies that {z}} converges to  with
respect to euclidian topology.

(b) is proved in a similar way. O
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Theorem 4.2 A finite dimensional fuzzy n-normed space (X, N) is complete.

Proof This follows directly from Theorem 3.4. O
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