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§1. Introduction

A Smarandache space is such a space that a straight line passing through a point p may turn

an angle θp ≥ 0. If θp > 0 , then p is called a non-Euclidean. Otherwise, we call it an

Euclidean point. In this paper, normed spaces are considered to be Euclidean, i.e., every point

is Euclidean. In [7], S. Gähler introduced n-norms on a linear space. A detailed theory of n-

normed linear space can be found in [8], [10], [12]-[13]. In [8], H. Gunawan and M. Mashadi gave

a simple way to derive an (n−1)- norm from the n-norm in such a way that the convergence and

completeness in the n-norm is related to those in the derived (n− 1)-norm. A detailed theory

of fuzzy normed linear space can be found in [1], [3]-[6], [9], [11] and [15]. In [14], A. Narayanan

and S. Vijayabalaji have extend n-normed linear space to fuzzy n-normed linear space. In

section 2, we quote some basic definitions, and we show that a fuzzy n-norm is closely related

to an ascending system of n-seminorms. In Section 3, we introduce a locally convex topology in

a fuzzy n-normed space, and in Section 4 we consider finite dimensional fuzzy n-normed linear

spaces.

§2. Fuzzy n-norms and ascending families of n-seminorms

Let n be a positive integer, and let X be a real vector space of dimension at least n. We recall

the definitions of an n-seminorm and a fuzzy n-norm [14].

Definition 2.1 A function (x1, x2, . . . , xn) 7→ ‖x1, . . . , xn‖ from Xn to [0,∞) is called an

n-seminorm on X if it has the following four properties:
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(S1)‖x1, x2, . . . , xn‖ = 0 if x1, x2, . . . , xn are linearly dependent;

(S2) ‖x1, x2, . . . , xn‖ is invariant under any permutation of x1, x2, . . . , xn;

(S3) ‖x1, . . . , xn−1, cxn‖ = |c|‖x1, , . . . , xn−1, xn‖ for any real c;

(S4) ‖x1, . . . , xn−1, y + z‖ 6 ‖x1, . . . , xn−1, y‖ + ‖x1, . . . , xn−1, z‖.

An n-seminorm is called a n-norm if ‖x1, x2, . . . , xn‖ > 0 whenever x1, x2, . . . , xn are

linearly independent.

Definition 2.2 A fuzzy subset N of Xn × R is called a fuzzy n-norm on X if and only if:

(F1) For all t 6 0, N(x1, x2, . . . , xn, t) = 0;

(F2) For all t > 0, N(x1, x2, . . . , xn, t) = 1 if and only if x1, x2, . . . , xn are linearly depen-

dent;

(F3) N(x1, x2, . . . , xn, t) is invariant under any permutation of x1, x2, . . . , xn;

(F4) For all t > 0 and c ∈ R, c 6= 0,

N(x1, x2, . . . , cxn, t) = N(x1, x2, . . . , xn,
t

|c| );

(F5) For all s, t ∈ R,

N(x1, . . . , xn−1, y + z, s+ t) ≥ min {N(x1, . . . , xn−1, y, s), N(x1, . . . , xn−1z, t)} .

(F6) N(x1, x2, . . . , xn, t) is a non-decreasing function of t ∈ R and

lim
t→∞

N(x1, x2, . . . , xn, t) = 1.

The following two theorems clarify the relationship between definitions 2.1 and 2.2.

Theorem 2.1 Let N be a fuzzy n-norm on X. As in [14] define for x1, x2, . . . , xn ∈ X and

α ∈ (0, 1)

(2.1) ‖x1, x2, . . . , xn‖α := inf {t : N(x1, x2, . . . , xn, t) ≥ α} .

Then the following statements hold.

(A1) For every α ∈ (0, 1), ‖•, •, . . . , •‖α is an n-seminorm on X;

(A2) If 0 < α < β < 1 and x1, . . . , xn ∈ X then

‖x1, x2, . . . , xn‖α 6 ‖x1, x2, . . . , xn‖β;

(A3) If x1, x2, . . . , xn ∈ X are linearly independent then

lim
α→1−

‖x1, x2, . . . , xn‖α = ∞.
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Proof (A1) and (A2) are shown in Theorem 3.4 in [14]. Let x1, x2, . . . , xn ∈ X be linearly

independent, and t > 0 be given. We set β := N(x1, x2, . . . , xn, t). It follows from (F2) that

β ∈ [0, 1). Then (F6) shows that, for α ∈ (β, 1),

‖x1, x2, . . . , xn‖α > t.

This proves (A3). �

We now prove a converse of Theorem 2.2.

Theorem 2.2 Suppose we are given a family ‖•, •, . . . , •‖α, α ∈ (0, 1), of n-seminorms on X

with properties (A2) and (A3). We define

(2.2) N(x1, x2, . . . , xn, t) := inf{α ∈ (0, 1) : ‖x1, x2, . . . , xn‖α > t}.

where the infimum of the empty set is understood as 1. Then N is a fuzzy n-norm on X.

Proof (F1) holds because the values of an n-seminorm are nonnegative.

(F2): Let t > 0. If x1, . . . , xn are linearly dependent then N(x1, . . . , xn, t) = 1 follows from

property (S1) of an n-seminorm. If x1, . . . , xn are linearly independent thenN(x1, . . . , xn, t) < 1

follows from (A3).

(F3) is a consequence of property (S2) of an n-seminorm.

(F4) is a consequence of property (S3) of an n-seminorm.

(F5): Let α ∈ (0, 1) satisfy

(2.3) α < min{N(x1, . . . , xn−1, y, s), N(x1, . . . , xn−1, z, s)}.

It follows that ‖x1, . . . , xn−1, y‖α < s and ‖x1, . . . , xn−1, z‖α < t. Then (S4) gives

‖x1, . . . , xn−1, y + z‖α < s+ t.

Using (A2) we find N(x1, . . . , xn−1, y + z, s + t) > α and, since α is arbitrary in (2.3), (F5)

follows.

(F6): Definition 2.2 shows thatN is non-decreasing in t. Moreover, limt→∞N(x1, . . . , xn, t)

= 1 because seminorms have finite values. �

It is easy to see that Theorems 2.1 and 2.2 establish a one-to-one correspondence between

fuzzy n-norms with the additional property that the function t 7→ N(x1, . . . , xn, t) is left-

continuous for all x1, x2, . . . , xn and families of n-seminorms with properties (A2), (A3) and

the additional property that α 7→ ‖x1, . . . , xn‖α is left-continuous for all x1, x2, . . . , xn.

Example 2.3(Example 3.3 in [14]). Let ‖•, •, . . . , •‖ be a n-norm on X . Then define N(x1, x2,

. . . , xn, t) = 0 if t 6 0 and, for t > 0,

N(x1, x2, . . . , xn, t) =
t

t+ ‖x1, x2, . . . , xn‖
.
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Then the seminorms (2.1) are given by

‖x1, x2, . . . , xn‖α =
α

1 − α
‖x1, x2, . . . , xn‖.

§3. Locally convex topology generated by a fuzzy n-norm

In this section (X,N) is a fuzzy n-normed space, that is, X is real vector space and N is

fuzzy n-norm on X . We form the family of n-seminorms ‖•, •, . . . , •‖α, α ∈ (0, 1), according to

Theorem 2.1. This family generates a family F of seminorms

‖x1, . . . , xn−1, •‖α, where x1, . . . , xn−1 ∈ X and α ∈ (0, 1).

The family F generates a locally convex topology on X ; see [2, Def.(37.9)], that is, a basis of

neighborhoods at the origin is given by

{x ∈ X : pi(x) 6 ǫi for i = 1, 2, . . . , n},

where pi ∈ F and ǫi > 0 for i = 1, 2 . . . , n. We call this the locally convex topology generated

by the fuzzy n-norm N .

Theorem 3.1 The locally convex topology generated by a fuzzy n-norm is Hausdorff.

Proof Given x ∈ X , x 6= 0, choose x1, . . . , xn−1 ∈ X such that x1, . . . , xn−1, x are linearly

independent. By Theorem 2.1(A3) we find α ∈ (0, 1) such that ‖x1, . . . , xn−1, x‖α > 0. The

desired statement follows; see [2,Theorem (37.21)]. �

Some topological notions can be expressed directly in terms of the fuzzy-norm N . For

instance, we have the following result on convergence of sequences. We remark that the defi-

nition of convergence of sequences in a fuzzy n-normed space as given in [16, Definition 2.2] is

meaningless.

Theorem 3.2 Let {xk} be a sequence in X and x ∈ X. Then {xk} converges to x in the locally

convex topology generated by N if and only if

(3.1) lim
k→∞

N(a1, . . . , an−1, xk − x, t) = 1

for all a1, . . . , an−1 ∈ X and all t > 0.

Proof Suppose that {xk} converges to x in (X,N). Then, for every α ∈ (0, 1) and all

a1, a2, . . . , an−1 ∈ X , there is K such that, for all k > K, ‖a1, a2, . . . , an−1, xk − x‖α < ǫ. The

latter implies

N(a1, a2, . . . , an−1, xk − x, ǫ) > α.

Since α ∈ (0, 1) and ǫ > 0 are arbitrary we see that (3.1) holds. The converse is shown in a

similar way. �

In a similar way we obtain the following theorem.
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Theorem 3.3 Let {xk} be a sequence in X. Then {xk} is a Cauchy sequence in the locally

convex topology generated by N if and only if

(3.2) lim
k,m→∞

N(a1, . . . , an−1, xk − xm, t) = 1

for all a1, . . . , an−1 ∈ X and all t > 0.

It should be noted that the locally convex topology generated by a fuzzy n-norm is not

metrizable, in general. Therefore, in many cases it will be necessary to consider nets {xi} in

place of sequences. Of course, Theorems 3.2 and 3.3 generalize in an obvious way to nets.

§4. Fuzzy n-norms on finite dimensional spaces

In this section (X,N) is a fuzzy n-normed space and X has finite dimension at least n. Since

the locally convex topology generated by N is Hausdorff by Theorem 3.1. Tihonov’s theorem

[2, Theorem (23.1)] implies that this locally convex topology is the only one on X . Therefore,

all fuzzy n-norms on X are equivalent in the sense that they generate the same locally convex

topology.

In the rest of this section we will give a direct proof of this fact (without using Tihonov’s

theorem). We will set X = R
d with d > n.

Lemma 4.1 Every n-seminorm on X = R
d is continuous as a function on Xn with the

euclidian topology.

Proof For every j = 1, 2, . . . , n, let {xj,k}∞k=1 be a sequence in X converging to xj ∈ X .

Therefore, lim
k→∞

‖xj,k − xj‖ = 0, where ‖x‖ denotes the euclidian norm of x. From property

(S4) of an n-seminorm we get

|‖x1,k, x2,k, . . . , xn,k‖ − ‖x1, x2,k, . . . , xn,k‖| ≤ ‖x1,k − x1, x2,k, . . . , xn,k‖.

Expressing every vector in the standard basis of R
d we see that there is a constant M such that

‖y1, y2, . . . , yn‖ ≤M ‖y1‖ . . . ‖yn‖ for all yj ∈ X.

Therefore,

lim
k→∞

‖x1,k − x1, x2,k, . . . , xn,k‖ = 0

and so

lim
k→∞

|‖x1,k, x2,k, . . . , xn,k‖ − ‖x1, x2,k, . . . , xn,k‖| = 0.

We continue this procedure until we reach

lim
k→∞

‖x1,k, x2,k, . . . , xn,k‖ = ‖x1, x2, . . . , xn‖ .

�
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Lemma 4.2 Let (Rd, N) be a fuzzy n-normed space. Then ‖x1, x2, . . . , xn‖α is an n-norm if

α ∈ (0, 1) is sufficiently close to 1.

Proof We consider the compact set

S =
{
(x1, x2, . . . , xn) ∈ R

dn : x1, x2, . . . , xn is an orthonormal system in R
d
}
.

For each α ∈ (0, 1) consider the set

Sα = {(x1, x2, . . . , xn) ∈ S : ‖x1, x2, . . . , xn‖α > 0} .

By Lemma 4.1, Sα is an open subset of S. We now show that

(4.1) S = ∪
α∈(0,1)

Sα.

If (x1, x2, . . . , xn) ∈ S then (x1, x2, . . . , xn) is linearly independent and therefore there is β

such that N(x1, x2, . . . , xn, 1) < β < 1. This implies that ‖x1, x2, . . . , xn‖β ≥ 1 so (4.1) is

proved. By compactness of S, we find α1, α2, . . . , αm such that

S =
m∪

i=1
Sαi

.

Let α = max {α1, α2, . . . , αm}. Then ‖x1, x2, . . . , xn‖α > 0 for every (x1, x2, . . . , xn) ∈ S.

Let x1, x2, . . . , xn ∈ X be linearly independent. Construct an orthonormal system

e1, e2, . . . , en from x1, x2, . . . , xn by the Gram-Schmidt method. Then there is c > 0 such

that

‖x1, x2, . . . , xn‖α = c ‖e1, e2, . . . , en‖α > 0.

This proves the lemma. �

Theorem 4.1 Let N be a fuzzy n-norm on R
d, and let {xk} be a sequence in R

d and x ∈ R
d.

(a) {xk} converges to x with respect to N if and only if {xk} converges to x in the euclidian

topology.

(b) {xk} is a Cauchy sequence with respect to N if and only if {xk} is a Cauchy sequence

in the euclidian metric.

Proof (a) Suppose {xk} converges to x with respect to euclidian topology. Let a1, a2, . . . , an−1 ∈
X . By Lemma 4.1, for every α ∈ (0, 1),

lim
k→∞

‖a1, a2, . . . , an−1, xk − x‖α = 0.

By definition of convergence in (Rd, N), we get that {xk} converges to x in (Rd, N). Conversely,

suppose that {xk} converges to x in (Rd, N). By Lemma 4.2, there is α ∈ (0, 1) such that

‖y1, y2, . . . , yn‖α is an n-norm. By definition, {xk} converges to x in the n-normed space

(Rd, ‖·‖α). It is known from [8, Proposition 3.1] that this implies that {xk} converges to x with

respect to euclidian topology.

(b) is proved in a similar way. �



Some Remarks on Fuzzy N-Normed Spaces 45

Theorem 4.2 A finite dimensional fuzzy n-normed space (X,N) is complete.

Proof This follows directly from Theorem 3.4. �
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