International Journal of Mathematical Engineering and Science		
ISSN : 2277-6982	Volume 1 Issue 7 (July 2012)	
http://www.ijmes.com/	https://sites.google.com/site/ijmesjournal/	

Group Connectivity of Graph with Odd Cycle

Yihao Guo, Xiangjuan Yao

College of Science, China University of Mining and Technology, Xuzhou, Jiangsu, P. R. China

Abstract. Let G be an undirected graph, A be an (additive) abelian group and $A^* = A - \{0\}$. A graph G is A -connected if G has an orientation D(G) such that for every function $b:V(G) \otimes A$ satisfyin $v \hat{I} V(G), b(v) = 0$, there is a function $f: E(G) \otimes A^*$ such that at each vertex $v \hat{I} V(G), \hat{a}_{e\hat{I} E_D^-(v)} f(e) - \hat{a}_{e\hat{I} E_D(v)} f(e) = b(v)$. In this study, we proved that if G has an odd cycle C and for every vertex $v \hat{I} V(G), d_C(v) = 3$, then G has no $Z_3 - NZF$. Furthermore, we proposed a few applications of this result.

Keywords: integer flow; group connectivity; odd cycle

1 Introduction

The graphs in this paper are finite and may have multiple edges and loops. The terms and notations not defined here are from [1].

Let D = D(G) be an orientation of a graph G. If an edge $e\hat{1} E(G)$ is directed from a vertex u to a vertex v, then let tail(e) = u and head(e) = v. We call e an out-edge of u and out-edge of u and an in-edge of v. For a vertex $v\hat{1} V(G)$, let

$$E_D^-(v) = \{e\hat{1} \ E(D) : v = tail(e)\}, \text{ and } E_D^+(v) = \{e\hat{1} \ E(D) : v = head(e)\}.$$

We write D for D(G) when its meaning can be understood from the context.

The corresponding author. E-mail address: 741856964@gq.com

International Journal of Mathematical Engineering and Science		
ISSN : 2277-6982	Volume 1 Issue 7 (July 2012)	
http://www.ijmes.com/	https://sites.google.com/site/ijmesjournal/	

Let A denote an (additive) abelian group where the identity of A is denoted by 0. Let A^* denote the set of nonzero elements of A. We define

$$F(G, A) = \{ f : E(G) \mapsto$$
 and $F^*(G, A) = \{ f : E(G) \mapsto$

Given a function $f\hat{1} F(G, A)$, define $\P f: V(G) \mapsto$ by

$$\P f = \mathop{\mathrm{a}}_{e^{\mathrm{i}} E_D^+(v)} f(e) - \mathop{\mathrm{a}}_{e^{\mathrm{i}} E_D^-(v)} f(e),$$

Where " Σ "refers to the addition in A.

Group connectivity was introduced by Jaeger et al. [3] as a generalization of nowhere-zero flows. For a graph G, a function $b: V(G) \mapsto$ is called an A valued zero sum function on G if $a_{\hat{v} V(G)} b(v) = 0$. The set of all A -valued zero sum functions on G is denoted by Z(G,A) . Given $b\hat{1} Z(G,A)$, a function $f \hat{I} F^*(G, A)$ is called an (A, b) -nowhere-zero flow(abbreviated as (A,b) - NZF) if G has an orientation D(G) such that $\P f = b$. A graph G is A -connected if for any $b\hat{1} Z(G,A), G$ has an (A,b) -nowhere-zero flow. In particular, G admits an A -nowhere-zeros flow(abbreviated as an A - NZF) if G has an (A,0)-nowhere-zero flow. G admits a nowhere-zero k-flow if G admits a nowhere-zero Z_k -flow(abbreviated as an k-NZF), where Z_k is a cyclic group of order k. Tutte [8] proved that G admits a A - NZF with |A| = k if and only if G admits a k - NZF. One notes that if a graph G is A-connected and $|A|^3 k$, then G admits a k - $N\!Z\!F$. Generally speaking, when G admits a k - NZF, G may not be A -connected with $|A|^3$ k. For example, a n -cycle is A -connected if and only if $|A|^3 n+1$ given in [6, Lemma 3.3] while for any n, a n-cycle admits a 2- NZF. Thus, group connectivity generalizes nowhere-zero flows.

International Journal of Mathematical Engineering and Science		
ISSN : 2277-6982	Volume 1 Issue 7 (July 2012)	
http://www.ijmes.com/	https://sites.google.com/site/ijmesjournal/	

For an abelian group A, let A be the family of graphs that are A-connected .It is observed in [3] that the property $G\hat{I} A$ is independent of the orientation of G, and that every graph in $\langle A \rangle$ is 2-edge-connected.

The nowhere-zero flow problems were introduced by Tutte in [6, 7, 8] and surveyed by Jaeger in [3] and Zhang in [10]. The following conjecture is due to Tutte. Partial results of this conjecture can be found in [3] and others. However, it is still open.

Conjecture 1.1 (4-flow conjecture, [7]) Every bridgeless graph containing no subdivision of the Petersen graph admits a nowhere-zero 4-flow.

For a 2-edge-connected graph G, define the flow number of G as

 $L(G) = \min\{k : if G \text{ has a } k - NZF \}$

and the group connectivity number of G as

 $Lg(G) = \min\{k : if A \text{ is an abelian group with } |A|^3 k, \text{ then } G\widehat{I} A\}$

If G is 2-edge-connected, then L(G) and Lg(G) exist as finite numbers, and $L(G) \pounds Lg(G)$.

Some of the known results will be presented below which will be utilized in our proofs.

Let G be a graph and let $X \stackrel{f}{I} E(G)$ be an edge subset. The contraction [2] G/X is the graph obtained from G by identifying the two ends of each edge e in X and deleting e. If $X = \{e\}$, then we write G/e for $G/\{e\}$. If H is a subgraph of G, then we write G/H for G/E(H). Note that even G is a simple graph, the contraction G/X may have multiple edges and (or) loops.

Lemma 1.2 ([4]) Let A be an abelian group, then each of the following statements holds:

(1) $K_1 \hat{I} \langle A \rangle$;

International Journal of Mathematical Engineering and Science		
ISSN : 2277-6982	Volume 1 Issue 7 (July 2012)	
http://www.ijmes.com/	https://sites.google.com/site/ijmesjournal/	
(2) If $G\hat{I} \langle A \rangle$ and $e\hat{I} E(G)$,	then $G/e\hat{I}\langle A\rangle$;	

(3) If H is a sub-graph of G, and if $H\hat{1}\langle A\rangle$ and $G/H\hat{1}\langle A\rangle$, then $G\hat{1}\langle A\rangle$.

Lemma 1.3 ([3], [4]) $C_n \hat{1} \langle A \rangle$ if and only if $|A|^3 n+1$, where C_n is a *n*-cycle.

Lemma 1.4 ([3]) Let G be a connected graph with n vertices and m edges, then Lg(G) = 2. If and only if n=1 (G has m loops).

Lemma 1.5 [5] Let T be a connected spanning subgraph of G. If for each edge $e\hat{I} E(T)$, G has a subgraph H_e such that $e\hat{I} E(H_e)$ and $H_e\hat{I} \langle A \rangle$, then $G\hat{I} \langle A \rangle$.

Figure 1: Graph x_n

Let C_n and C'_n are two copies of n-cycles $(n^3 3)$. The graph obtained by connecting each vertex in C_n to a vertex in C'_n with a new edge in a certain order is called a Column, denoted as x_n (Shown as Figure 1). Obviously, x_n is a 3-regular graph (Shown as Figure 1).

Lemma 1.6 [11] $Lg(x_n) = 4(n^3 3)$.

International Journal of Mathematical Engineering and Science		
ISSN : 2277-6982	Volume 1 Issue 7 (July 2012)	
http://www.ijmes.com/	https://sites.google.com/site/ijmesjournal/	

Let G be a graph and $v\hat{1} V(G)$ be a vertex of degree m^3 4. Suppose $N(v) = v_1, v_2, \cdots$ and $X = \{vv_1, vv_2\}$. The graph $G_{[v,X]}$ is obtained from G-X by adding a new edge that joins v_1 and v_2 .

Lemma 1.7 [4] Let A be an Abelian group. Let G be a graph and let be a vertex of $v\hat{1} V(G)$ degree $m^3 4$. If for some X of two edges incident with v in G, $G_{[v,X]}\hat{1} \langle A \rangle$, then $G\hat{1} \langle A \rangle$.

2 Main Results

Theorem 2.1 Let G has a odd cycle C and for every vertex $v\hat{I} V(G)$, $d_C(v) = 3$, then G has no $Z_3 - NZF$.

Proof By contradiction. If G has a $Z_3 - NZF$, there is a function $f\hat{1} F^*(G, Z_3)$, such that $\P f = 0$. Suppose that $C = v_1 e_1 v_2 e_2 \cdots \dots v_{2k+2} (=v_1)$ and denote the edge that is correlative with v_i and does not emerge in C as e'_i . Suppose the direction of e_i in D(G) is from v_i to v_{i+1} , and v_i is the tail of edge e'_i in D(G). For every $i(1 \pounds i \pounds 2k)$, $f(e_i)^1 f(e_{i+1})$, for otherwise, by

$$\mathring{a}_{\hat{A}N^{+}(v_{i+1})} f(e) - \mathring{a}_{e\hat{I}N^{-}(v_{i+1})} f(e) = f(e_{i+1}) + f(e_{i+1}) - f(e_i) = 0$$

we know that $f(e_i) = 0$, which is contradicted to the assumption that $f\hat{1} F^*(G, Z_3)$. In addition, because the value of f(e) is only 1 or 2, $f(e_1) = f(e_3) = \cdots$) Thus, by

$$\mathring{a}_{e^{1}N^{+}(v_{1})}^{*} f(e) - \mathring{a}_{e^{1}N^{-}(v_{1})}^{*} f(e) = f(e_{1}) + f(e_{1}) - f(e_{2k+1}) = 0$$

International Journal of Mathematical Engineering and ScienceISSN : 2277-6982Volume 1 Issue 7 (July 2012)http://sites.google.com/site/ijmesjournal/

we know that $f(e_1)=0$, which is also contradicted to $f\hat{1} F^*(G,Z_3)$. So the assumption is wrong.

Let C_n^1, C_n^2, \cdots are *m* copies of *n*-copies of *n*-cycles. The graph obtained by connecting each vertex in C_i to a vertex in C_{i+1} with a new edge in a certain order is called a Cone, denoted as V(m, n). From the definition we know that $x_n @V(2, n)$.

Corollary 2.2 $Lg(V_{2k+1,n}) = 4(k\hat{I} Z)$.

Proof By theorem 2.1, we conclude that $Lg(V_{2k+1,n}) > 3$. Since every edge of V(2k+1,n) lies in ax_n , we conclude that $Lg(V_{2k+1,n}) \pounds$ 4 by lemma 1.5 and 1.6. So $Lg(V_{2k+1,n}) = 4$.

A single fan F_n is a graph obtained from a n-path $(n^3 \ 2)v_1, v_2, \cdots$ by adding a new vertex x and then joining the new vertex to all vertices in the path. This new vertex x is called the center of F_2 . A double fan F_{2n} is a graph obtained from a n-path $(n^3 \ 2)v_1, v_2, \cdots$ by adding two new vertexes x and y and then joining these two vertexes to all the vertices in the path. These new vertices x and y are called the centers of F_{2n} (Shown as Figure 2).

Theorem 2.3 $Lg(F_{2n}) = 3$.

International Journal of Mathematical Engineering and Science		
ISSN : 2277-6982	Volume 1 Issue 7 (July 2012)	
http://www.ijmes.com/	https://sites.google.com/site/ijmesjournal/	

Proof Since every edge of F_{2n} lies on a 3-cycle, by Lemma 1.3 and Lemma 1.5, $Lg(F_{2n}) \pounds 4$. For $d(x)^3 4$, let be the graph obtained by adding a new edge in $F_{2n} - \{(xv_1, xv_2)\}$ that connecting xv_1 and xv_2 . Contracting the 2-cycle in H, there is still a 2-cycle. Continue this process, we can obtain a graph which has two vertices with several multiple edges. By Lemma 1.2(3), we know that $H\hat{1} \langle Z_3 \rangle$, and by Lemma 1.7, $F_{2n} \hat{1} \langle Z_3 \rangle$. By lemma 1.4, we can conclude that $Lg(F_{2n})=3$.

Figure 3: Graph H_n

The graph $H_n = F_n \text{ Å } C_3$ (Shown as Figure 3) is obtained from F_n and C_3 by adding three edges which it is cx, av_0, bv_n .

Corollary 2.4 $Lg(H_n) = 4$.

Proof Proof since Hn has a odd cycle such that every vertex in it has degree 3, so by Theorem 2.1, Hn has no Z3 – N ZF. Thus $\Lambda g(H_n) \ge 4$. By contracting cycle C = abca, every edges of H_n/C lies in a 3-cycles, so by lemma 1.2 and lemma 1.4, we conclude that $\Lambda g(H_n) \le 4$. The conclusion is established.

International Journal of Mathematical Engineering and Science ISSN : 2277-6982 Volume 1 Issue 7 (July 2012) http://www.ijmes.com/ https://sites.google.com/site/ijmesjournal/

3 Acknowledgements

This work is jointly funded by National Natural Science Foundation of China (No. 61075061) and Natural Science Foundation of Jiangsu Province (No. BK2010187)

References

- J. A. Bondy, U. S. R. Murty, Graph Theory with Applications. American Elsevier, New York, 1976.
- P. A. Catlin, A. M. Hobbs, H.-J. Lai, Graph family operations, Discrete Math., 230 (2001),71-97.
- 3.F. Jaeger, N. Linial, C. Payan, N. Tarsi, Group connectivity of graphs a nonhomogeneous analogue of nowhere zero flow properties, J. Combin. Theory Ser. B, 56 (1992), 165-182.
- 4.H.-J.Lai, Group connectivity of 3-edge-connected chordal graphs, Graphs and Combin.,16 (2000), 165-176.
- 5 H.-J.Lai, Nowhere-zero 3-flow in locally connected graphs, J.Graph Theory, 2000, 42(3): 211-219.
- 6 R. Steinberg, Gr'tzsch's thorem dualized, M. Math. Thesis, university of Waterloo, Ontarioo, Canada, 1976.
- 7 W. T. Tutte, On the algebraic theory of graph colorings J. Combin. Theory, 1 (1966),

15-50.

- 8 W. T. Tutte, A contribution on the theory of chromatic polynomial, Canad. J. Math.,6 (1954), 80-91.
- 9 W. T. Tutte, On the imbedding of linear graph into surfaces, Proc. Lond. Math. Soc., IISer., 51(1949), 464-483.
- 10 C. Q. Zhang, Integer Flows and Cycle Covers of Graphs. Marcel Dekker, New York, 1997.

International Journal of Mathematical Engineering and Science

ISSIN : 2277-0982	volume i issue / (July 2012)	
http://www.ijmes.com/	https://sites.google.com/site/ijmesjournal/	

- 11.X. J. Yao, Y. H. Guo, Group Connectivity About Regular Graphs. Under review.
- 12 Chen, J., Eschen, E., Lai, H.-J, Group connectivity of certain graphs. Ars Combin., 89(2008),141–158
- 13 Devos, M., Xu, R., Yu, G,Nowhere-zero Z_3 -flows through Z_3 -connectivity. Discrete Math., 306,26–30.
- 14 Fan, G., Lai, H.-J., Xu, R., et al, Nowhere-zero 3-flows in triangularly connected graphs. J. Comb. Theory Ser. B, 98(2008), 1325–1336.
- 15 Yao, X., Gong, D,Group connectivity of Kneser graphs. Intern. J. Algebra, 535– 539.
- 16 Lai, H.-J., Miao, L., Shao, Y, Every line graph of a 4-edge-connected graph is Z_3 -connected. European Journal od Combinatorics, 30(2009),595–601.
- 17 Chen, Z.-H., Lai, H.-J., Lei, X., et al, Group coloring and group connectivity of graphs. Congressus Numerantium, 134(1998), 123–130.
- 18 Lai, H.-J., Zhang, X., Group colorability of graphs. Ars Combinatoria, 62(2002), 299–317.
- 19 Lai,H.-J ,Xiang, L, Shao, Y, Group Connectivity and Group Colorings of Graphs——A Survey.,27(2011),405-434.
- 20 Lai, H.-J., Li, X., Yu, G., An inequality for the group chromatic number of a graph. Discrete Math., 307(2007), 3076–3080.
- 21 Lai, H.-J., Li, X., Group Chromatic number of graph. Graphs and Combinatorics, 21(2005), 469–474.
- 22 Chen, Z.-H., Lai, H.-J., Lai, H.,Nowhere-zero flows in line graphs. Discrete Math., 230 (2001), 133–141.
- 23 Wang,Keke, Group Connectivity of 1-Edge Deletable IM-Extendable Graphs, International Journal of Mathematical Combinatorics,2011.
- 24 Rong Luo, Xu, R., Yu, G, An Extremal problem on group connectivity of graphs, European Journal of Combinatorics, 2012, 1078-1085.
- 25 Lai, H.-J., Xu, R.,Zhou, J., On group connectivity of graphs. Graphs and Combinatorics, 24(2008), 1–9.

International Journal of Mathematical Engineering and Science

ISSN : 2277-6982Volume 1 Issue 7 (July 2012)http://sites.google.com/site/ijmesjournal/

- 26 Hou, X., Lai, H.-J.,Zhan, M.,et al., Z₃-connectivity of 4-edge-connected triangular graphs. Submitted.
- 27 Hou, X., Lai, H.-J., Li, P.,et al., Group connectivity of complementary graphs. Submitted.
- 28 Fan Yang, Xiang, L,Group connectivity in 3-edge-connected graphs. Graphs and combinatorics 2011.
- 29 Gates, Kathleen M., Ph.D, Novel estimation method for arriving at group connectivity maps with fMRI data, Quantitative psychology and psychometrics.2011.
- 30 Li, P.: Ph. D. Dissertation, West Virginia University, to be completed in 2012.