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Abstract. LetG be an undirected graph, A  be an (additive) abelian 

group and 
* {0}A A= - .A graph G  is A -connected if G  has an 

orientation ( )D G  such that for every function : ( )b V G A®  

satisfyin ( ), ( ) 0v V G b vÎ = , there is a function 
*: ( )f E G A® such 

that at each vertex ( ),v V GÎ
( )

( )
De E v

f e+Î
-å  

( )
( )

De E v
f e-Îå ( )b v= . 

In this study, we proved that if G  has an odd cycle C  and for every 

vertex ( ), ( ) 3Cv V G d vÎ = ,then G  has no 3Z NZF- . Furthermore, 

we proposed a few applications of this result. 
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1   Introduction 

The graphs in this paper are finite and may have multiple edges and loops. The terms 

and notations not defined here are from [1].  

Let ( )D D G=  be an orientation of a graph G . If an edge ( )e E GÎ  is 

directed from a vertex u to a vertex v ,then let ( )tail e u= and ( )head e v= . 

We call e an out-edge of u and out-edge of u and an in-edge of v . For a vertex 

( )v V GÎ ,let 

( ) { ( ) : ( )},DE v e E D v tail e- = Î = and ( ) { ( ) : ( )}.DE v e E D v head e+ = Î =  

We write D  for ( )D G  when its meaning can be understood from the context. 
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Let A  denote an (additive) abelian group where the identity of A  is denoted 

by 0. Let
*A  denote the set of nonzero elements of A .We define  

( , ) { : ( ) }F G A f E G A=  and 
* *( , ) { : ( ) }F G A f E G A=  

Given a function ( , )f F G AÎ ,define : ( )f V G A¶ by 

( ) ( )

( ) ( ),
D De E v e E v

f f e f e
+ -Î Î

¶ = -å å  

Where― ‖refers to the addition in A . 

Group connectivity was introduced by Jaeger et al. [3] as a generalization of 

nowhere-zero flows. For a graph G, a function : ( )b V G A  is called an A - 

valued zero sum function on G  if 
( )

( ) 0
v V G

b v
Î

=å .The set of all A -valued zero 

sum functions on G is denoted by ( , )Z G A .Given ( , )b Z G AÎ ,a function 

*( , )f F G AÎ is called an ( , )A b -nowhere-zero flow(abbreviated as 

( , )A b NZF- ) if G has an orientation ( )D G such that f b¶ = .A graph G  

is A -connected if for any ( , )b Z G AÎ ,G  has an ( , )A b -nowhere-zero flow. In 

particular, G admits an A -nowhere-zeros flow(abbreviated as an A NZF- ) if 

G has an ( ,0)A -nowhere-zero flow. G admits a nowhere-zero k -flow if G  

admits a nowhere-zero kZ -flow(abbreviated as an k NZF- ),where kZ is a cyclic 

group of order k .Tutte [8] proved that G admits a A NZF- with A k=  if and 

only if G  admits a k NZF- . One notes that if a graph G  is A -connected 

and A k³ , thenG admits a k NZF- . Generally speaking, when G  admits a 

k NZF- , G  may not be A -connected with A k³ . For example, a n -cycle is 

A -connected if and only if 1A n³ +  given in [6, Lemma 3.3] while for any n ,a 

n -cycle admits a 2 NZF- .Thus, group connectivity generalizes nowhere-zero 

flows. 
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For an abelian group A ,let A  be the family of graphs that are A -connected 

.It is observed in [3] that the property G AÎ  is independent of the orientation of 

G , and that every graph in A  is 2-edge-connected. 

The nowhere-zero flow problems were introduced by Tutte in [6, 7, 8] and 

surveyed by Jaeger in [3] and Zhang in [10]. The following conjecture is due to Tutte. 

Partial results of this conjecture can be found in [3] and others. However, it is still 

open. 

 

Conjecture 1.1 ( 4-flow conjecture, [7] ) Every bridgeless graph containing no 

subdivision of the Petersen graph admits a nowhere-zero 4-flow.   

   For a 2-edge-connected graph G , define the flow number of G  as  

               ( )GL =min{k : if G  has a k NZF-  } 

and the group connectivity number of G as 

( )g GL =min{k : if A  is an abelian group with A k³ , thenG AÎ } 

If G  is 2-edge-connected, then ( )GL  and ( )g GL  exist as finite numbers, and 

( ) ( )G g GL £ L . 

 Some of the known results will be presented below which will be utilized in our 

proofs. 

 Let G  be a graph and let ( )X E GÍ  be an edge subset. The contraction [2] 

G X  is the graph obtained from G  by identifying the two ends of each edge e  

in X  and deleting e . If  { }X e= ,then we write G e  for { }G e . If H  is a 

subgraph of G ,  then we write G H  for ( )G E H . Note that even G  is a 

simple graph, the contraction G X  may have multiple edges and (or) loops. 

Lemma 1.2 ([4]) Let A  be an abelian group, then each of the following statements 

holds: 

(1)
1K AÎ  ; 
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(2) If G AÎ and ( )e E GÎ , thenG e AÎ ; 

(3) If H  is a sub-graph of G , and if H AÎ  and G H AÎ , 

thenG AÎ . 

Lemma 1.3 ([3], [4]) 
nC AÎ if and only if 1A n³ + , where 

nC  is a n -

cycle. 

Lemma 1.4 ([3]) Let G  be a connected graph with n  vertices and m  edges, 

then ( ) 2g GL = . If and only if 1n =  ( G  has m  loops). 

Lemma 1.5 [5] Let T  be a connected spanning subgraph of G . If for each edge 

( )e E TÎ , G  has a subgraph eH  such that ( )ee E HÎ and 
eH AÎ , then 

G AÎ . 

 

Figure 1: Graph nx  

Let nC  and 
'

nC are two copies of n -cycles( 3n ³ ).The graph obtained by 

connecting each vertex in nC  to a vertex in 
'

nC with a new edge in a certain order is 

called a Column, denoted as nx (Shown as Figure 1). Obviously, nx  is a 3-regular 

graph (Shown as Figure 1). 

Lemma 1.6 [11] ( ) 4( 3).ng nxL = ³  
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 Let G  be a graph and ( )v V GÎ  be a vertex of degree 4m ³ . Suppose 

1 2( ) , , , mN v v v v=  and
1 2{ , }X vv vv= . The graph 

[ , ]v XG  is obtained from 

G X-  by adding a new edge that joins 
1v  and 

2v  . 

Lemma 1.7 [4] Let A  be an Abelian group. Let G  be a graph and let  be a 

vertex of ( )v V GÎ degree 4m ³ . If for some X  of two edges incident with v in 

G , 
[ , ]v XG AÎ , then G AÎ . 

 

2 Main Results 

Theorem 2.1 Let G  has a odd cycle C  and for every vertex ( )v V GÎ , 

( ) 3Cd v = , then G has no 3Z NZF- . 

Proof  By contradiction. If G  has a 3Z NZF- , there is a function 

*

3( , )f F G ZÎ , such that 0f¶ = . Suppose that 1 1 2 2 2 1 2 1 2 2 1( )k k kC v e v e v e v v+ + += =  

and denote the edge that is correlative with iv  and does not emerge in C  as 
'

ie . 

Suppose the direction of ie  in ( )D G  is from iv  to 1iv +  , and iv  is the tail of 

edge 
'

ie in ( )D G . For every (1 2 )i i k£ £ , 1( ) ( )i if e f e +¹ , for otherwise, by 

1 1

'

1 1
( ) ( )

( ) ( ) ( ) ( ) ( ) 0
i i

i i i
e N v e N v

f e f e f e f e f e
+ -

+ +

+ +
Î Î

- = + - =å å  

we know that 
'( ) 0if e = , which is contradicted to the assumption that 

*

3( , )f F G ZÎ . In addition, because the value of ( )f e  is only 1 or 2, 

1 3 2 1( ) ( ) ( )kf e f e f e += = Thus, by 

1 1

'

1 1 2 1
( ) ( )

( ) ( ) ( ) ( ) ( ) 0k
e N v e N v

f e f e f e f e f e
+ -

+
Î Î

- = + - =å å  
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we know that 
'

1( ) 0f e = , which is also contradicted to 
*

3( , )f F G ZÎ . So the 

assumption is wrong. 

  Let 
1 2, , m

n n nC C C are m copies of n -copies of n -cycles. The graph 

obtained by connecting each vertex in 
iC to a vertex in 

1iC +
 with a new edge in a 

certain order is called a Cone, denoted as ( , )m nV . From the definition we know 

that (2, )n nx V@ . 

Corollary 2.2 
2 1,( ) 4( )k ng k ZV +L = Î . 

Proof  By theorem 2.1, we conclude that
2 1,( ) 3k ng V +L > . Since every edge of 

(2 1, )k nV +  lies in a nx , we conclude that
2 1,( ) 4k ng V +L £ by lemma 1.5 and 1.6. 

So
2 1,( ) 4k ng V +L = . 

A single fan nF is a graph obtained from a n -path ( 2n ³ ) 1 2, , nv v v by 

adding a new vertex x  and then joining the new vertex to all vertices in the path. 

This new vertex x  is called the center of 2F  . A double fan 2nF  is a graph 

obtained from a n -path ( 2n ³ ) 1 2, , nv v v by adding two new vertexes x  and 

y  and then joining these two vertexes to all the vertices in the path. These new 

vertices x  and y  are called the centers of 2nF (Shown as Figure 2). 

 

 

Theorem 2.3 2( ) 3ng FL = . 
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 Proof  Since every edge of 
2nF  lies on a 3-cycle, by Lemma 1.3 and Lemma 

1.5, 
2( ) 4ng FL £ .For ( ) 4d x ³ , let be the graph obtained by adding a new edge 

in 
2 1 2{( , )}nF xv xv-  that connecting 

1xv  and 
2xv . Contracting the 2-cycle in 

H, there is still a 2-cycle. Continue this process, we can obtain a graph which has two 

vertices with several multiple edges. By Lemma 1.2(3), we know that 
3H ZÎ , 

and by Lemma 1.7,
2 3nF ZÎ . By lemma 1.4, we can conclude that 

2( ) 3ng FL = . 

 

Figure 3: Graph nH  

The graph 3n nH F C= Å (Shown as Figure 3) is obtained from nF  and 3C  

by adding three edges which it is 0, , ncx av bv . 

Corollary 2.4 ( ) 4ng HL = . 

Proof Proof since Hn has a odd cycle such that every vertex in it has degree 3, 

so by Theorem 2.1,Hn has no Z3 − N ZF . Thus Λg ( nH  ) ≥ 4. By contracting cycle 

C = abca, every edges of nH C lies in a 3-cycles,so by lemma 1.2 and lemma 1.4, 

we conclude that Λg ( nH  ) ≤ 4. The conclusion is established. 
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