

Group Connectivity of Graph with Odd Cycle

Yihao Guo, Xiangjuan Yao

College of Science, China University of Mining and Technology, Xuzhou, Jiangsu, P. R. China

Abstract. Let G be an undirected graph, Λ be an (additive) abelian group and $A^* = A - \{0\}$. A graph *G* is *A*-connected if *G* has an orientation $D(G)$ such that for every function $b: V(G) \otimes A$ satisfyin $v \hat{\mathbf{i}}$ $V(G), b(v) = 0$, there is a function $f : E(G) \otimes A^*$ such that at each vertex $v \in V(G)$, \hat{A} $e^{i} E_D^{\dagger}(v) f(e) - \hat{A}$ $e^{i} E_D^{\dagger}(v) f(e) = b(v)$. In this study, we proved that if G has an odd cycle C and for every vertex $v \hat{\mathbf{i}} V(G)$, $d_C(v) = 3$, then G has no Z_3 - NZF . Furthermore, we proposed a few applications of this result.

Keywords: integer flow; group connectivity; odd cycle

1 Introduction

The graphs in this paper are finite and may have multiple edges and loops. The terms and notations not defined here are from [1].

Let $D = D(G)$ be an orientation of a graph G. If an edge $e \hat{\textbf{I}} E(G)$ is directed from a vertex *u* to a vertex *v*, then let $tail(e) = u$ and $head(e) = v$. We call e an out-edge of u and out-edge of u and an in-edge of v . For a vertex $\nu \hat{\Gamma}$ $V(G)$, let

$$
E_D(v) = \{e \hat{1} \ E(D) : v = tail(e) \}
$$
, and $E_D^+(v) = \{e \hat{1} \ E(D) : v = head(e) \}$.

We write D for $D(G)$ when its meaning can be understood from the context.

The corresponding author. *E-mail address*: 741856964@qq.com

 \mathcal{L}_max

Let Λ denote an (additive) abelian group where the identity of Λ is denoted by 0. Let A^* denote the set of nonzero elements of A . We define

$$
F(G,A) = \{f : E(G) \mapsto \text{ and } F^*(G,A) = \{f : E(G) \mapsto
$$

by

Given a function
$$
f \in \hat{I}
$$
 $F(G, A)$, define $\P f : V(G) \mapsto$

$$
\P f = \mathop{\hat{a}}_{e^i E_D^*(v)} f(e) - \mathop{\hat{a}}_{e^i E_D^*(v)} f(e),
$$

Where " Σ " refers to the addition in Λ .

Group connectivity was introduced by Jaeger *et al.* [3] as a generalization of nowhere-zero flows. For a graph G, a function $b: V(G) \mapsto$ is called an *A* valued zero sum function on G if $\hat{\mathbf{g}}_{\theta V(G)}b(v) = 0$. The set of all A -valued zero sum functions on G is denoted by $Z(G, A)$. Given $b \in Z(G, A)$, a function $f \in F^*(G, A)$ is called an flow(abbreviated as (A,b) *- NZF*) if G has an orientation $D(G)$ such that $\P f = b$. A graph G is A -connected if for any $b\hat{1} Z(G,A), G$ has an (A,b) -nowhere-zero flow. In particular, G admits an A-nowhere-zeros flow(abbreviated as an A - NZF) if G has an $(A, 0)$ -nowhere-zero flow. G admits a nowhere-zero k -flow if G admits a nowhere-zero Z_k -flow(abbreviated as an k - NZF), where Z_k is a cyclic group of order k. Tutte [8] proved that G admits a $A - NZF$ with $|A| = k$ if and only if G admits a $k - NZF$. One notes that if a graph G is A -connected and $|A|^3$ k, then G admits a k - NZF. Generally speaking, when G admits a *k* - *NZF*, *G* may not be *A* -connected with $|A|^3$ *k*. For example, a *n* -cycle is *A*-connected if and only if $|A|^3$ $n+1$ given in [6, Lemma 3.3] while for any *n*, a *n* -cycle admits a 2 - *NZF* .Thus, group connectivity generalizes nowhere-zero flows.

For an abelian group Λ , let Λ be the family of graphs that are Λ -connected It is observed in [3] that the property $G\hat{I}$ *A* is independent of the orientation of G , and that every graph in $\langle A \rangle$ is 2-edge-connected.

The nowhere-zero flow problems were introduced by Tutte in [6, 7, 8] and surveyed by Jaeger in [3] and Zhang in [10]. The following conjecture is due to Tutte. Partial results of this conjecture can be found in [3] and others. However, it is still open.

Conjecture 1.1 (4-flow conjecture, [7]) Every bridgeless graph containing no subdivision of the Petersen graph admits a nowhere-zero 4-flow.

For a 2-edge-connected graph G , define the flow number of G as

 $L(G) = min\{k : \text{if } G \text{ has a } k - NZF \}$

and the group connectivity number of G as

Lg(G)=min{k : if A is an abelian group with $|A|^3$ k, then $G\hat{I}$ A}

If G is 2-edge-connected, then $L(G)$ and $Lg(G)$ exist as finite numbers, and $L(G)$ £ $Lg(G)$.

Some of the known results will be presented below which will be utilized in our proofs.

Let G be a graph and let $X \in E(G)$ be an edge subset. The contraction [2] G/X is the graph obtained from G by identifying the two ends of each edge e in X and deleting e. If $X = \{e\}$, then we write G/e for $G/\{e\}$. If H is a subgraph of G , then we write G/H for $G/E(H)$. Note that even G is a simple graph, the contraction G/X may have multiple edges and (or) loops.

Lemma 1.2 ([4]) Let \vec{A} be an abelian group, then each of the following statements holds:

 $(1) K_1 \hat{I} \langle A \rangle$;

(3) If H is a sub-graph of G , and if $H\hat{I} \langle A \rangle$ and $G/H\hat{I} \langle A \rangle$, then $G\hat{I} \langle A \rangle$.

Lemma 1.3 ([3], [4]) $C_n \hat{I} \langle A \rangle$ if and only if $|A|^3 n+1$, where C_n is a ncycle.

Lemma 1.4 ([3]) Let G be a connected graph with n vertices and m edges, then $\text{Lg}(G) = 2$. If and only if $n = 1$ (*G* has *m* loops).

Lemma 1.5 [5] Let T be a connected spanning subgraph of G . If for each edge $e\hat{\textbf{I}}$ $E(T)$, *G* has a subgraph H_e such that $e\hat{\textbf{I}}$ $E(H_e)$ and $H_e\hat{\textbf{I}}$ $\langle A \rangle$, then $G\hat{I} \langle A \rangle$.

Figure 1: Graph x_n

Let C_n and C'_n are two copies of *n*-cycles(n^3 3). The graph obtained by connecting each vertex in C_n to a vertex in C_n with a new edge in a certain order is called a Column, denoted as x_n (Shown as Figure 1). Obviously, x_n is a 3-regular graph (Shown as Figure 1).

Lemma 1.6 [11] $\text{Lg}(x_n) = 4(n^3 \text{ 3}).$

Let G be a graph and $v \in V(G)$ be a vertex of degree m^3 4. Suppose $N(v) = v_1, v_2, \cdots$ and $X = \{vv_1, vv_2\}$. The graph $G_{[v, X]}$ is obtained from $G - X$ by adding a new edge that joins v_1 and v_2 .

Lemma 1.7 [4] Let Λ be an Abelian group. Let G be a graph and let be a vertex of $v \in V(G)$ degree m^3 4. If for some X of two edges incident with v in G , $G_{\lbrack v,X]}$ \hat{I} $\langle A \rangle$, then $G\hat{I}$ $\langle A \rangle$.

2 Main Results

Theorem 2.1 Let G has a odd cycle C and for every vertex $v \in V(G)$, $d_C(v) = 3$, then G has no Z_3 - *NZF*.

Proof By contradiction. If G has a Z_3 - NZF , there is a function * *f* \hat{I} $F^*(G, Z_3)$, such that $\P f = 0$. Suppose that $C = v_1 e_1 v_2 e_2 \cdots$ $v_{2k+2} = v_1 v_2$ and denote the edge that is correlative with v_i and does not emerge in C as e_i . Suppose the direction of e_i in $D(G)$ is from v_i to v_{i+1} , and v_i is the tail of edge e_i in $D(G)$. For every $i(1 \pm i \pm 2k)$, $f(e_i)^1$ $f(e_{i+1})$, for otherwise, by
 $\frac{\partial}{\partial t} f(e) - \frac{\partial}{\partial t} f(e) = f(e_{i+1}) + f(e_{i+1}) - f(e_i) = 0$
 $\frac{\partial}{\partial t} f(e_{i+1}) - f(e_{i+1}) = 0$

$$
\hat{\mathbf{g}}_{\ell} \int_{\ell^{1}(v_{i+1})}^{\infty} f(e) - \hat{\mathbf{g}}_{\ell^{1}(v_{i+1})}^{\infty} f(e) = f(e_{i+1}) + f(e_{i+1}) - f(e_i) = 0
$$

we know that $f(e_i^{\prime})=0$, which is contradicted to the assumption that * $f \in F^*(G, Z_3)$. In addition, because the value of $f(e)$ is only 1 or 2, $f(e_1) = f(e_3) = \cdots$ + Thus, by $\hat{\mathbf{a}}$ + Thus, by
 $\hat{\mathbf{a}}$ $f(e)$ - $\hat{\mathbf{a}}$ $f(e) = f(e_1) + f(e_1)$ - $f(e_{2k+1}) =$
 $\hat{\mathbf{a}}^{N^{+}(v_1)}$

=...
\n
$$
\hat{a} \int_{e^{i} N^{(v_1)}} f(e) - \hat{a} \int_{e^{i} N^{(v_1)}} f(e) = f(e_1) + f(e_1) - f(e_{2k+1}) = 0
$$

International Journal of Mathematical Engineering and Science ISSN : 2277-6982 Volume 1 Issue 7 (July 2012) http://www.ijmes.com/ https://sites.google.com/site/ijmesjournal/

we know that $f(e_1) = 0$, which is also contradicted to $f \in F^*$ $f \in F^*(G, Z_3)$. So the assumption is wrong.

Let C_n^1, C_n^2, \cdots are *m* copies of *n* -copies of *n* -cycles. The graph obtained by connecting each vertex in C_i to a vertex in C_{i+1} with a new edge in a certain order is called a Cone, denoted as $V(m, n)$. From the definition we know that $x_n \bigcirc \mathcal{Q}V(2,n)$.

Corollary 2.2 $\text{Lg}(V_{2k+1,n}) = 4(k\hat{1} Z)$.

Proof By theorem 2.1, we conclude that $\text{Lg}(V_{2k+1,n}) > 3$. Since every edge of $V(2k+1,n)$ lies in ax_n, we conclude that $Lg(V_{2k+1,n}) \not\in A$ by lemma 1.5 and 1.6. So $Lg(V_{2k+1,n})=4$.

A single fan F_n is a graph obtained from a *n*-path (*n*³ 2) v_1, v_2, \cdots by adding a new vertex x and then joining the new vertex to all vertices in the path. This new vertex x is called the center of F_2 . A double fan F_{2n} is a graph obtained from a *n*-path $(n^3 \ 2) v_1, v_2, \cdots$ by adding two new vertexes *x* and *y* and then joining these two vertexes to all the vertices in the path. These new vertices *x* and *y* are called the centers of F_{2n} (Shown as Figure 2).

Theorem 2.3 $\text{Lg}(F_{2n}) = 3$.

Proof Since every edge of F_{2n} lies on a 3-cycle, by Lemma 1.3 and Lemma 1.5, Lg $(F_{2n}) \pounds 4$. For $d(x)^3$ 4, let be the graph obtained by adding a new edge in F_{2n} - { (xv_1, xv_2) } that connecting xv_1 and xv_2 . Contracting the 2-cycle in H, there is still a 2-cycle. Continue this process, we can obtain a graph which has two vertices with several multiple edges. By Lemma 1.2(3), we know that $H_1^{\dagger} \langle Z_3 \rangle$, and by Lemma 1.7, $F_{2n} \hat{1} \langle Z_3 \rangle$. By lemma 1.4, we can conclude that $\text{Lg}(F_{2n}) = 3$.

Figure 3: Graph *H n*

The graph $H_n = F_n \text{Å } C_3$ (Shown as Figure 3) is obtained from F_n and C_3 by adding three edges which it is cx, av_0, bv_n .

Corollary 2.4 $\text{Lg}(H_n) = 4$.

Proof Proof since Hn has a odd cycle such that every vertex in it has degree 3, so by Theorem 2.1,Hn has no $Z3 - N ZF$. Thus $\Lambda g(H_n) \geq 4$. By contracting cycle $C =$ abca, every edges of H_n/C lies in a 3-cycles, so by lemma 1.2 and lemma 1.4, we conclude that Λ g (H_n) \leq 4. The conclusion is established.

International Journal of Mathematical Engineering and Science ISSN : 2277-6982 Volume 1 Issue 7 (July 2012) http://www.ijmes.com/ https://sites.google.com/site/ijmesjournal/

3 Acknowledgements

This work is jointly funded by National Natural Science Foundation of China (No. 61075061) and Natural Science Foundation of Jiangsu Province (No. BK2010187)

References

- 1. J. A. Bondy, U. S. R. Murty, Graph Theory with Applications. American Elsevier, New York, 1976.
- 2. P. A. Catlin, A. M. Hobbs, H.-J. Lai, Graph family operations, Discrete Math., 230 (2001),71-97.
- 3.F. Jaeger, N. Linial, C. Payan, N. Tarsi, Group connectivity of graphs a nonhomogeneous analogue of nowhere zero flow properties, J. Combin. Theory Ser. B, 56 (1992), 165-182.
- 4.H.-J.Lai, Group connectivity of 3-edge-connected chordal graphs, Graphs and Combin.,16 (2000), 165-176.
- 5 H.-J.Lai, Nowhere-zero 3-flow in locally connected graphs, J.Graph Theory, 2000, 42(3): 211-219.
- 6 R. Steinberg, Grˇtzsch's thorem dualized, M. Math. Thesis, university of Waterloo, Ontarioo,Canada, 1976.
- 7 W. T. Tutte, On the algebraic theory of graph colorings J. Combin. Theory, 1 (1966),
	- 15–50.
- 8 W. T. Tutte, A contribution on the theory of chromatic polynomial, Canad. J. Math.,6 (1954), 80-91.
- 9 W. T. Tutte, On the imbedding of linear graph into surfaces, Proc. Lond. Math. Soc., IISer., 51(1949), 464-483.
- 10 C. Q. Zhang, Integer Flows and Cycle Covers of Graphs. Marcel Dekker, New York, 1997.

International Journal of Mathematical Engineering and Science ISSN : 2277-6982 Volume 1 Issue 7 (July 2012) http://www.ijmes.com/ https://sites.google.com/site/ijmesjournal/

- 12 Chen, J., Eschen, E., Lai, H.-J, Group connectivity of certain graphs. Ars Combin*.*, 89(2008),141–158
- 13 Devos, M., Xu, R., Yu, G, Nowhere-zero Z_3 -flows through Z_3 -connectivity. Discrete Math*.*, 306, 26–30.
- 14 Fan, G., Lai, H.-J., Xu, R., et al, Nowhere-zero 3-flows in triangularly connected graphs. J. Comb. Theory Ser. B, 98(2008), 1325–1336.
- 15 Yao, X., Gong, D,Group connectivity of Kneser graphs. Intern. J. Algebra, 535– 539.
- 16 Lai, H.-J., Miao, L., Shao, Y, Every line graph of a 4-edge-connected graph is *Z*3 -connected. European Journal od Combinatorics, 30(2009),595–601.
- 17 Chen, Z.-H., Lai, H.-J., Lei, X., et al, Group coloring and group connectivity of graphs. Congressus Numerantium,134(1998), 123–130.
- 18 Lai, H.-J., Zhang, X., Group colorability of graphs. Ars Combinatoria, 62(2002), 299–317.
- 19 Lai,H.-J ,Xiang, L, Shao, Y, Group Connectivity and Group Colorings of Graphs——A Survey.,27(2011),405-434.
- 20 Lai, H.-J., Li, X., Yu, G.,An inequality for the group chromatic number of a graph. Discrete Math*.*, 307(2007),3076–3080.
- 21 Lai, H.-J., Li, X.,Group Chromatic number of graph. Graphs and Combinatorics, 21(2005), 469–474.
- 22 Chen, Z.-H., Lai, H.-J., Lai, H.,Nowhere-zero flows in line graphs. Discrete Math*.*, 230 (2001), 133–141.
- 23 Wang,Keke, Group Connectivity of 1-Edge Deletable IM-Extendable Graphs, International Journal of Mathematical Combinatorics,2011.
- 24 Rong Luo, Xu, R., Yu, G, An Extremal problem on group connectivity of graphs,European Journal of Combinatorics,2012,1078-1085.
- 25 Lai, H.-J., Xu, R.,Zhou, J., On group connectivity of graphs. Graphs and Combinatorics, 24(2008), 1–9.

International Journal of Mathematical Engineering and Science

ISSN : 2277-6982 Volume 1 Issue 7 (July 2012) http://www.ijmes.com/ https://sites.google.com/site/ijmesjournal/

- 26 Hou, X., Lai, H.-J.,Zhan, M.,et al., Z_3 -connectivity of 4-edge-connected triangular graphs. Submitted.
- 27 Hou, X., Lai, H.-J., Li, P.,et al.,Group connectivity of complementary graphs. Submitted.
- 28 Fan Yang, Xiang, L,Group connectivity in 3-edge-connected graphs. Graphs and combinatorics 2011.
- 29 Gates, Kathleen M*.*, Ph.D, Novel estimation method for arriving at group connectivity maps with fMRI data, [Quantitative psychology and](http://gradworks.umi.com/browse/THE_PENNSYLVANIA_STATE_UNIVERSITY/Quantitative_psychology_and_psychometrics.html) [psychometrics.](http://gradworks.umi.com/browse/THE_PENNSYLVANIA_STATE_UNIVERSITY/Quantitative_psychology_and_psychometrics.html)2011.
- 30 Li, P.: Ph. D. Dissertation, West Virginia University, to be completed in 2012.