
Electric Triple Layer Theory

Rajib Chakraborty∗

Department of Physical Sciences, Indian Institute of

Science Education and Research (IISER) Kolkata,

Mohanpur Campus, Mohanpur-741 252, West Bengal, India

(Dated: May 29, 2014)

Abstract

I correct hundred years old theory of charge distribution within an electrolytic solution sur-

rounded by charged walls. Existing theory always implies excess amount of counter-ions (having

polarity unlike walls) everywhere in the solution domain; so it cannot handle a solution that pos-

sesses excess ions of other type (co-ions) or is electrically neutral as a whole. Here, in the corrected

distribution, counter-ions dominate near the walls, while the rest of the domain is allowed to be

dominated by co-ions; the algebraic sum gives the net charge present, which can be of any sign and

magnitude that makes theory quite general. This clarifies and raises many important concepts:

a novel concept of ‘Electric Triple Layer’ (ETL) replaces ‘Electric Double Layer’ (EDL) theory;

widths of electric layers can be calculated accurately instead of estimating by Debye length scale

etc.
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Analysis of charge density distribution (ρe) within an electrolytic solution confined by

charged walls is very important in the study of electrokinetics and colloid science. Many

scientists like Helmholtz, Smoluchowski, Debye, Gouy, Chapman etc. developed the theory

since a very long time [1, 2]. In recent days it attracted considerable attention due to its

applicability in various novel microfluidic devices that are used in different fields like micro-

pumping and micro-mixing [3–5], lab-on-a-chip [5, 6], chemical separation and analysis [7],

bio-technology, bio-medical drug delivery, etc. [8–10]. Processes at small scales are difficult

to understand because of experimental difficulties and the non-intuitiveness due to dominant

surface effects. In this regard, a precisely formulated theory could prove very useful in

describing, analyzing and predicting new phenomena. However, the widely used formula of

ρe is incomplete, because the derivation did not take care of charge conservation principle

properly.

When exposed to solution, the charged wall attracts counter-ions and repels co-ions,

hence, the counter-ions appear excess in number near the wall region and that must be

accompanied by the absence of same number of them in other regions. In particular, at

equilibrium, a solution that is electrically neutral as whole (i.e. the net charge, Q0 over a

domain cross-section is zero), must have regions with excess co-ions to satisfy principle of

conservation of charge. However, the existing theory always predicts an excess number of

counter-ions everywhere in the solution and clearly cannot handle the cases Q0 = 0, or excess

co-ions. In this paper I have achieved the correct formula using fundamental considerations,

that removes above discrepancies.

It is well known that, electrostatic potential ψ is defined to within an additive constant,

i.e. adding an arbitrary constant ‘C’ to ψ does not change the physics [11–13]. Now, in

order to derive ρe as a spatial function, the earlier works, in an intermediate step, derived a

relation between ρe and ψ, [14, 15]. This demands ‘C ’ to be fixed to a definite value, because

for a given problem, Q0 is constant, and the integral of ρe must be consistent with it. This

crucial point was overlooked in the old theory. I write the corrected distribution ρe,Corr. as a

sum of old distribution ρe,Old and another term containing ‘C’. I integrate ρe,Corr. using old

expression of ρe,Old, and equate it to Qo, which is assumed to be known, and that fixes ‘C’

in terms of solution/geometrical parameters and Q0. The graph of ρe,Old (plotted along the

domain cross-section) never crosses the abscissa (see Fig. 1); when ‘C’ is fixed properly, old

graph gets a uniform translation to give the graph of ρe,Corr. (see Fig. 1(a) and Fig. 2) that
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could subtend both positive and negative areas, the algebraic sum of the areas is precisely

equal to Q0, which in turn, can be assigned any magnitude and sign, and hence the theory

can handle both types of solution polarities and a neutral solution.

Consider a rectangular domain of width 2a� length, containing solution; y-axis is aligned

with long, vertical domain-axis, x-axis is horizontal and along shorter domain axis. Long,

charged walls are at x = ±a. For simplicity, concept of ‘Stern layer’ [16, 17] is avoided

without sacrificing the main idea. The fluid has uniform material properties: permittivity

ε, viscosity µ etc. Define non-dimensional distance, η ≡ x/a [18].

The initial steps for the derivation of ρe,Corr are similar to that of ρe,Old; I briefly mention

a few old formulae below, see Refs. [14, 15]. Whenever any expression is found with suffix

‘Old’, it means it will have a corrected version with suffix ‘Corr’.

The number density distributions of ±ve ions separately follow Boltzmann distribution

that can be linearized [19] for small values of arguments in the exponential (see Ref. [9]):

n±
Old = n0 exp[∓(ezψ)/(kBT )] ≈ n0[1∓ (ezψ)/(kBT )], where, n0 is mean of number densities

of ±ve ions; for a symmetric electrolyte z = |z±|, where z± are valences of ±ve ions; e, kB

and T are elementary charge, Boltzmann constant and absolute temperature respectively.

The Debye length scale is defined as λD ≡ [(2n0z
2e2)/(εkBT )]−1/2. An important non-

dimensional parameter is κ ≡ a/λD.

ρe,Old and ψ are related [20]: ρe,Old = − (εκ2/a2)ψ. Also, ψ and ρe,Old can be expressed

as functions of η: ψ = ζ cosh(κη)/ cosh(κ) and ρe,Old = − (εκ2ζ/a2) cosh(κη)/cosh(κ), where

ζ comes from the boundary conditions ψ|η=±1 = ζ, see Refs. [14, 15].

One remark: ψ|η=0 = ζ/ cosh(κ) 6= 0, so it is not clear where the datum of ψ (i.e. where

ψ = 0) was fixed in the earlier works. I define ζ∗ ≡ ψ|η=±1 − ψ|η=0 = ζ − ψ|η=0. Clearly, ζ∗

is measurable and physically meaningful, and ζ may be written in terms of it.

Now, hyperbolic cosine function is strictly positive, so ρe,Old never changes sign and is

∓ve for ±ve values of ζ, hence, implies an excess amount of counter-ions everywhere in the

solution, and Q0 (=
∫ +

−1
ρedη) always has this polarity; see Fig. 1, here I plot ρe,Old/ρ0 vs η,

where ρ0 ≡ |(εκ2ζ/a2)|.
The shortcoming of the formula was evident and it became a topic of debate whether

the fluid domain should be electrically neutral as a whole or not; [5, 7, 15, 17] say, near the

wall the solution has a net charge due to the domination of counter-ions, while the bulk

is neutral (that means Q0 is nonzero ); on the other hand [1] says, the debate is resolved
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in favour of electro-neutrality (Q0 = 0). So, the electro-neutrality issue was handled with

intuitive reasoning, without proper theoretical justification.

Some researchers tried to find some systems that indeed contain net charges in the solu-

tion, together with an explanation that the wall may adsorb ions from solution, acquire a

net charge on surface, leaving equal number of counter-ions in solution and thus supports

the theoretical prediction (although ‘qualitatively’) [5, 10, 15, 17, 21]. However, derivation

of ρe is not sophisticated enough to anticipate such chemical interaction between wall and

solution; it never prohibits a charged wall that does not at all exchange ions with solution

and hence a neutral solution must remain neutral as a whole when exposed to that wall. So,

modification of the old formulae became a necessity that I describe below.

When ψ is replaced by ψ + C in ρe,Old, I call it ρe,Corr,

ρe,Corr = ρe,Old −
εκ2

a2
C = −εκ

2ζ

a2
cosh(κη)

cosh(κ)
− εκ2

a2
C (1)

Now, I fix ‘C’ by the condition
∫ +

−1
ρe,Corrdη = Q0 , where Q0 is assumed to be known; I
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FIG. 1. Charge density distribution along the domain cross-section, in an electrolytic solution,

enclosed by charged walls, according to EDL theory. The graph never crosses abscissa; counter-

ions dominate everywhere; incompatible with cases where the solution is electrically neutral as a

whole, or has excess co-ions. (a) For positively charged wall. (b) For negatively charged wall. In

each case κ = 25.
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FIG. 2. Charge density distribution along the domain cross-section, in an electrolytic solution

enclosed by positively charged walls, according to ETL theory. Counter-ion dominated layer

forms near wall; point ‘P’ is electrically neutral where the graph crosses abscissa, and a co-ion

dominated layer forms away from wall (except when number of counter-ions is much greater than

co-ions). The algebraic sum of areas represents net charge Qo in solution, which can be of any sign

and magnitude. (a): Q0 = 0 (b): Q0 > 0 (c): Q0 < 0 (d): Q0 � 0 (no co-layer). In each case

κ = 25.

get,

C = −
[

tanh(κ)

κ
ζ +

(
a2

εκ2

)(
Q0

2

)]
(2)

‘C’ depends upon various parameters describing geometry and solution properties, and it is

not zero even for an electrically neutral solution (in old theory, it implicitly assumed zero

value). Hence,

ρe,Corr =

(
εκ2ζ

a2

)[
tanh(κ)

κ
− cosh(κη)

cosh(κ)

]
+

(
Q0

2

)
(3)

The graph of ρe,Corr is obtained from that of ρe,Old, (see Eq. 1, Fig. 1(a) and Fig. 2), with

a uniform translation due to ‘C’. Unlike before, the translated graph may change sign and

hence can subtend both positive and negative areas under it. The translation is of precisely

that amount, which makes the algebraic sum of the areas equal to Q0. We can assign any

number and sign to Q0; I plot ρe,Corr in Fig. 2 for different cases: Fig. 2(a): Q0 = 0, Fig. 2(b):

Q0 > 0, Fig. 2(c): Q0 < 0, and Fig. 2(d): Q0 � 0. The point ‘P’, where the graph crosses

the η-axis (at η = ηp, say) is electrically neutral and can be called ‘neutral point’. We have
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three distinct kinds of electric layers, layer-1: a layer of wall surface charge, layer-2: adjacent

to a wall a layer having net polarity opposite to that of wall (counter-layer) and layer-3: far

away from wall, near the longer domain-axis, a layer having polarity same to that of wall

(co-layer). The aggregate can be called Electric Triple Layer or ETL. Unlike this, the old

Electric Double Layer (EDL) theory contains two electric layers: the layer of wall charge

and the layer of counter-ions.

The error in the previous theory occurred because it implicitly assumed excess counter-

ions at the very beginning. With ψ = ζ cosh(κη)/ cosh(κ), the pair of number density

distribution functions n±
Old behave differently, one increases (corresponds to counter-ions)

while the other decreases (corresponds to co-ions) with |η|; this increasing function always

lies above the other, hence has greater area i.e. counter-ions are excess in number, see

Fig. 3(a), that I plot for κ = 4, ζ > 0 and |ζez/kBT | = 0.2.

Adding constant ‘C’ (given by Eq. 2) to ψ in n±
Old, I arrive at,

n±
Corr = n0

[
1∓ ez

kBT
ψ

]
± n0ez

kBT

[
tanh(κ)

κ
ζ +

(
a2

εκ2

)
Q0

2

]
(4)

For Q0 = 0, I plot the graphs of n±
Corr in Fig. 3(b); the two graphs may cross each other

and one graph may lie above and below the other in different parts of the domain, hence
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FIG. 3. Number density distribution along domain cross-section, for counter-ions and co-ions in

an electrolytic solution, enclosed by positively charged walls. Area under a graph represents total

number of corresponding ion. (a) according to EDL theory, counter-ion graph always lies above

co-ion graph, implies excess counter-ions. (b) according to ETL theory, two graphs can cross each

other; they subtend equal areas if net charge Q0 = 0. In each case κ = 4
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it is possible that their areas are equal, which is necessary for Q0 = 0. The corrected pair

coincide with the old pair for C = 0 i.e. Q0 = −2εκ tanh(κ)ζ/a2, and the old analysis can

handle a net charge of that amount only, out of infinite possibilities.

In the old theory, charged layer was thought to occupy only a fraction of the fluid domain

and its extent was estimated using Debye length scale λD. In new ETL theory, the spatial

extents of different electrical layers in the fluid domain can be calculated accurately (although

numerically) by solving for the neutral point ‘P’, i.e. solving the equation ρe,Corr = 0 for

η, for a given set of parameter values. In a 3-D rectangular domain, the collection of all

neutral points forms a plane that can be called ‘neutral plane’; for a channel of arbitrary

geometry there corresponds a neutral surface.

For a given solution concentration (i.e. constant λD), when the domain width is increased,

the parameter κ increases; I plot ρe,Corr. (see Eq. 3), in Fig. 4 for different values of κ. When

κ increases, the counter-layer (adjacent to wall) becomes narrower but deeper, while co-layer

(far from wall) becomes wider but shallower ; if the width of the domain is so large that we

take it as infinite, charge density is visible only in the counter-layer, while co-layer amplitude

almost vanishes. It happens because, if a quantity (here, it is ρe), integrated over an infinite

domain results a finite number (here, the net charge in co-layer is finite), that quantity (i.e.

ρe) must be infinitesimal every where (discrete spikes are mathematically possible, but this

possibility is neglected here). Hence, for a wide domain, the presence of the co-layer is likely

to be undetected. The same argument applies when one analyzes the ion distribution around

a charged wall that bounds a semi-infinite domain [22].

However, for very narrow domains, ρe in co-layer is integrated over a very small distance

and hence its amplitude may be appreciable.

In summary, I have generalized the theory of charge distribution in an electrolytic solution

enclosed by charged walls; it can handle a solution that is electrically neutral as a whole, or

can have a net charge of any kind of polarity, that was not possible with the old theory. I

have achieved this by adding a suitable constant term to electrostatic potential in existing

formulae, to make distribution consistent with the net charge present in the solution. The

net charge can be assigned any value or sign explicitly unlike before. A novel theory of

Electric Triple Layer emerges, replaces Electric Double Layer theory by adding the concept

of a third possible electric layer, dominated by co-ions; spatial extents of electric layers can

be calculated accurately.
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FIG. 4. Variation of corrected charge density distribution with parameter κ, in an electrolytic

solution, which is electrically neutral as a whole , enclosed by positively charged walls. Amplitude

of co-layer (see Fig. 2(a)) decreases as κ increases. For very large κ, co-layer is hard to detect; it

corresponds where the domain thickness is large.

I conclude by saying, this work puts theoretical electrokinetics and colloid science on

a firm foundation by filling up certain gaps and would be invaluable for future research

works in these fields and many inter-disciplinary areas. A large volume of works needs to

be modified using ETL theory.
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