A series expansion for a real function

Dott. Alessio Mangoni ${ }^{\dagger}$
${ }^{\dagger}$ Bachelor's Degree in Physics, University of Perugia, alessiomangoni.physics@gmail.com

Wednesday $13^{\text {th }}$ August, 2014

Abstract

We show that a class $\mathcal{C}^{\infty}(\mathbb{R})$ function can be written as an n-summation of terms involving its derivative. For many functions, under certain conditions, this summation can become a particular series expansion.

Theorem

Let be $f(x)$ a class $\mathcal{C}^{\infty}(\mathbb{R})$ function with \mathcal{D} domain. Given $a \in \mathcal{D}$ the function satisfies the following identity for all $n \in \mathbb{N}^{+}$

$$
\begin{equation*}
f(x)=f(a)-\sum_{k=1}^{n} \frac{(-1)^{k}}{k!}\left(x^{k} \frac{d^{k} f(x)}{d x^{k}}-\left.a^{k} \frac{d^{k} f(x)}{d x^{k}}\right|_{x=a}\right)+\mathcal{R}_{n}(x), \tag{1}
\end{equation*}
$$

with

$$
\mathcal{R}_{n}(x)=\frac{(-1)^{n}}{n!} \int_{a}^{x} x^{n} \frac{d^{n+1} f(x)}{d x^{n+1}} d x .
$$

In particular, if

$$
\lim _{n \rightarrow+\infty} \mathcal{R}_{n}(x)=0
$$

and $a=0$ then

$$
\begin{equation*}
f(x)=f(0)-\sum_{k=1}^{\infty} \frac{(-x)^{k}}{k!} \frac{d^{k} f(x)}{d x^{k}} \tag{2}
\end{equation*}
$$

Proof

We define the \hat{P} operator that, applied to a continuous function, it gives its primitive with zero constant. We define also the operator \hat{D} as

$$
\hat{D}=\frac{d}{d x} .
$$

Now consider the identity

$$
\begin{equation*}
J:=\int_{a}^{x} \frac{d f(x)}{d x} d x=f(x)-f(a), \tag{3}
\end{equation*}
$$

we can integrate it for parties, considering the product

$$
1 \cdot \frac{d f(x)}{d x}
$$

obtaining

$$
J=[\hat{P}(1) \hat{D} f(x)]_{a}^{x}-\int_{a}^{x} \hat{P}(1) \hat{D}^{2} f(x) d x
$$

Iterating for many times we can write

$$
J=-\sum_{k=1}^{n}(-1)^{k}\left[\hat{P}^{k}(1) \hat{D}^{k} f(x)\right]_{a}^{x}+(-1)^{n} \int_{a}^{x} \hat{P}^{n}(1) \hat{D}^{n+1} f(x) d x
$$

Being

$$
\hat{P}^{k}(1)=\frac{x^{k}}{k!},
$$

the above expression, using (3), becomes

$$
f(x)=f(a)-\sum_{k=1}^{n}(-1)^{k}\left[\frac{x^{k}}{k!} \hat{D}^{k} f(x)\right]_{a}^{x}+(-1)^{n} \int_{a}^{x} \frac{x^{n}}{n!} \hat{D}^{n+1} f(x) d x
$$

and this is an identity $\forall n \in \mathbb{N}^{+}$, equation (1). Taking the limit for $n \rightarrow+\infty$ we have

$$
f(x)=f(a)-\sum_{k=1}^{\infty}(-1)^{k}\left[\frac{x^{k}}{k!} \hat{D}^{k} f(x)\right]_{a}^{x}+\lim _{n \rightarrow+\infty} \mathcal{R}_{n}(x),
$$

where

$$
\mathcal{R}_{n}(x):=\frac{(-1)^{n}}{n!} \int_{a}^{x} x^{n} \hat{D}^{n+1} f(x) d x .
$$

In many cases we have

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \mathcal{R}_{n}(x)=0 \tag{4}
\end{equation*}
$$

and, under this condition, we can write the series expansion

$$
f(x)=f(a)-\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k!}\left(x^{k} \frac{d^{k} f(x)}{d x^{k}}-\left.a^{k} \frac{d^{k} f(x)}{d x^{k}}\right|_{x=a}\right) .
$$

Putting $a=0$, naturally if it is possible seen the domain \mathcal{D}, we obtain the series

$$
f(x)=f(0)-\sum_{k=1}^{\infty} \frac{(-x)^{k}}{k!} \frac{d^{k} f(x)}{d x^{k}}
$$

that is equation (2). In general for the condition (4) we can write

$$
\begin{equation*}
\lim _{n \rightarrow+\infty}\left|\mathcal{R}_{n}(x)\right| \leq \lim _{n \rightarrow+\infty} \frac{1}{n!}\left|\int_{a}^{x}\right| x^{n} \hat{D}^{n+1} f(x)|d x| . \tag{5}
\end{equation*}
$$

Suppose that $x \in[-b, b]$, with $b \in \mathbb{R}^{+}$, so if

$$
\lim _{n \rightarrow+\infty} \frac{1}{\sqrt{n}}\left(\frac{b \cdot e}{n}\right)^{n}\left|\frac{d^{n+1} f(x)}{d x^{n+1}}\right|=0
$$

uniformly, we have

$$
\lim _{n \rightarrow+\infty} \mathcal{R}_{n}(x)=0 .
$$

In fact from (5) we can write, using Stirling formula [1] and the uniform limit condition above,

$$
\begin{aligned}
\lim _{n \rightarrow+\infty}\left|\mathcal{R}_{n}(x)\right| & \leq\left|\lim _{n \rightarrow+\infty} \int_{a}^{x} \frac{e^{n}}{n^{n} \sqrt{2 \pi n}}\right| x^{n} \hat{D}^{n+1} f(x)|d x| \\
& \leq\left|\int_{a}^{x} \lim _{n \rightarrow+\infty}\left(\frac{b^{n} e^{n}}{n^{n} \sqrt{2 \pi n}}\left|\hat{D}^{n+1} f(x)\right|\right) d x\right| \\
& =0 .
\end{aligned}
$$

This could be a usefull method to verify (4) for many functions, in particular we see that all functions that have limited derivative of all orders, like $\sin (x)$, satisfy this condition, so for them it is possible to write (2).

Example

For example we can derive the well known series expansion

$$
\begin{equation*}
e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}=1+\sum_{k=1}^{\infty} \frac{x^{k}}{k!} . \tag{6}
\end{equation*}
$$

Let be

$$
f(x)=e^{x},
$$

and $a=0$, for all $x \in[-b, b]$, with $b \in \mathbb{R}^{+}$we can verify that

$$
\lim _{n \rightarrow+\infty} \mathcal{R}_{n}(x)=\lim _{n \rightarrow+\infty} \frac{(-1)^{n}}{n!} \int_{0}^{x} x^{n} e^{x} d x=0
$$

in fact

$$
\left|\mathcal{R}_{n}(x)\right| \leq \frac{|x|}{n!} \max _{x \in[-b, b]}\left|x^{n} e^{x}\right| \leq \frac{b^{n+1} e^{b}}{n!}
$$

and, taking the limit for $n \rightarrow \infty$,

$$
0 \leq \lim _{n \rightarrow+\infty}\left|\mathcal{R}_{n}(x)\right| \leq \lim _{n \rightarrow+\infty} \frac{b^{n+1} e^{b}}{n!}=0
$$

independently by x. So we apply the equation (2), hence

$$
e^{x}=1-e^{x} \sum_{k=1}^{\infty} \frac{(-x)^{k}}{k!}
$$

from wich

$$
\sum_{k=1}^{\infty} \frac{(-x)^{k}}{k!}=\frac{1-e^{x}}{e^{x}}=e^{-x}-1
$$

that is (6) with the change $x \rightarrow-x$.

References

[1] D. Freedman P. Diaconis. An elementary proof of stirling's formula. Amer. Math. Monthly, 93:123-125, 1986.

