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Abstract

This review aims to show the Light cone gauge quantization of strings. It is divided

up into three parts. The first consists of an introduction to bosonic and superstring

theories and a brief discussion of Type II superstring theories. The second part deals

with different configurations of D-branes, their charges and tachyon condensation. The

third part contains the compactification of an extra dimension, the dual picture of

D-branes having electric as well as magnetic field and the different dualities in string

theories. In ten dimensions, there exist five consistent string theories and in eleven

dimensions there is a unique M-Theory under these dualities, the different superstring

theoies are the same underlying M-Theory.
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INTRODUCTION

General relativity and quantum mechanics were the two major breakthroughs that

revolutionized theoretical physics in the twentieth century. General relativity gives

the idea to understand of the large-scale expansion of the Universe and gives a small

correction to the predictions of Newtonian gravity for the motion of planets and the

deflection of light rays, and it predicts the existence of gravitational radiation and black

holes. It describes the gravitational force in terms of the curvature of spacetime which

has fundamentally changed our view of space and time i.e. they are now viewed as

dynamical [1].

Quantum mechanics, on the other hand, is the essential tool for understanding the sub

atomic particles and microscopic physics. The evidence continues to build that it is

an exact property of Nature [2]. The fundamental law of Nature is surely incomplete

until general relativity and quantum mechanics are successfully reconciled and unified.

String theory is a candidate which resolves this problem and a straightforward attempt

to combine the General relativity and Quantum mechanics. String theory is based on

the idea that particles are not point-like, but rather tiny loops (i.e. closed strings)

or (open) pieces of string i.e. the 0-dimensional point particle is replaced by a 1-

dimensional string [3]. This assumption leads to some features which are

1
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General features

Even though string theory is not yet fully formulated, and we cannot yet understand the

detailed description of how the standard model of elementary particles should emerge

at low energies, or how the Universe originated, there are some general features of the

theory that have been well understood.

Vibrating string

String theory predicts that all objects in our universe are composed of Vibrating strings

and different vibrational modes of the strings represent different kinds of particles. Since

there is just one type of string, and all particles arise from string vibrations, all particles

are naturally incorporated into a single theory [3].

Gravity

String theory attempts to reconcile the General relativity and Quantum mechanics.

One of the vibrational modes of strings is the graviton particle, the quantum version of

the gravity, so string theory has the remarkable property of predicting gravity [3].

Unification of forces

There are four fundamental forces that had been recognized to exist in nature.

1. Electromagnetic force

2. Weak force

3. Strong force

4. Gravitational force

As the quantum version of electromagnetism describes the photon (a massless particle)

and its interactions with charged particles, while the Yang-Mills theory describes W
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and Z bosons and gluons (the mediators of the weak and the strong nuclear forces)

and their interactions. All of these theories make a single theory named the Standard

Model of particle interactions, which is a gauge theory. The Standard Model of particle

physics does not include the graviton particle and its interactions. The graviton which

has spin 2 can not be described by the gauge theory. Since the standard model is

believed to incomplete due to it does not incorporate the gravity forces. String theory

is currently the most promising candidate to unify all the fundamental forces. This is

a general feature of the string theory [3].

Yang-Mills gauge theory

Standard model of particle physics describe the elementary particles in nature. It

reconciles the special relativity and Quantum mechanics [4]. And is based on Yang-

Mills theory having the gauge group

SU(3)× SU(2)× U(1)

However it has some shortcomings. It does not include Gravity and it has about 20

parameters that cannot be calculated and we use them as an input. While string

theory predicts the gravity as well as describe all the elementary particles and has one

parameter, the string length. Its value is roughly equal to the typical size of strings.

Yang-Mills gauge theories arise very naturally in string theory. However, it is not yet

fully understood why the gauge group

SU(3)× SU(2)× U(1)

Of the standard model with three generations of quarks and leptons should be singled

out in nature [5, 6].

Supersymmetry

A supersymmetry is a symmetry which relates bosons and fermions. There exists a non

supersymmetric bosonic string theory which is an unrealistic theory due to the lack
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of fermions. In the order to get a realistic string theory which explains the beauty of

nature, we need a supersymmetry. Hence supersymmetry is a general feature of string

theory [3].

Extra dimensions of space

In quantum field theory, for point particle, we let the dimensions of the spacetime to

be four while superstring theories predict some additional dimensions of the spacetime.

The superstring theories are only able to work in a ten dimensions or eleventh (in some

cases) dimensions of spacetime. To make an ordinary four dimensional space time,

there is a straight forward possibility that is, the additional six or seven dimensions

can be curled up and compactified on an internal manifold having the sufficient small

size, which can not be detectable at the low energies. The idea of an extra dimension

was first introduce by Kaluza and Klein in 1920s. Their aim was to unify the electro-

magnetic force and the gravitational force. The compactification of an extra dimension

can be imagined as, let us consider we have a cylinder having the radius R. when the

cylinder is viewed from a very large distance or equivalently, when the radius of the

cylinder R becomes too small then the two dimensional cylinder will look like a one

dimensional line.

Generalizing this idea by letting the cylinder as a four dimensional spacetime and replac-

ing the short circle of radius R (compact space) by a six or seven dimensional manifold,

hence at large distance or at the low energies, the additional dimensions (compact man-

ifold) can not be visible. These additional dimensions or compact manifold are called

Calabi-Yau manifolds [3].

The size of the strings

Quantum field theory deals the particles as a mathematical zero dimensional point while

in string theory the ordinary point particles are replaced by a one dimensional string.

These one dimensional strings will have a characteristic length scale which is denoted
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be and can estimated by the dimensionality analysis. As string theory is a relativistic

quantum theory which also includes the force of gravity, since it must involves the fun-

damental constants speed of light c Planck’s constant h̄, and the gravitational constant

G From these, we can form a length, called the Planck length

ls =

(
h̄G

c3

)1/2

= 1.6× 10−33cm ,

The Planck mass becomes

mp =

(
h̄c

G

)1/2

= 2.176× 10−5g ,

And similarly the Planck time

tp =

(
h̄G

c5

)1/2

= 5.391× 10−44s .

The Planck length scale is a natural guess for a fundamental string length scale as well

as the characteristic size of compact extra spatial dimensions. At low energies string

can be approximated by the point particle that explains why the quantum field theory

has been successfully in the describing our world. The relativistic quantum gravity

effects can be important on the above three scales of planks length, planks mass and

planks time [3].



BOSONIC STRING THEORY

The bosonic string theory is the simplest string theory that predicts and describes

only a certain set of boson. As the theory does not describe any fermions, so it is an

unrealistic theory but this theory is a natural place to start, because the same techniques

and structures, together with some additional terms are required for analysis of more

realistic theory (super string theories).

String can be regarded as 1-brane moving through a space-time which is a special case

of a p-brane, p-dimensional extended object. Point particle corresponds to 0-brane.

Similarly the two dimensional extended object or 2-brane are called membranes.

2.1 The relativistic string action

In quantum field theory, the action for point particle (0-brane) is proportional to the

invariant length of the word-line or particle trajectory. Similarly when we replace the

point particle by 1 dimensional string (1-brane) then the action is proportional to the

proper area of the word-sheet or the area swept out by the string in D dimensional

space-time.

SNG = − T
∫
dA (2.1)

The word-sheet is parameterized by the two coordinates ξ0= τ which is time-like and

ξ1= σ which is space-like. For close string the σ will be periodic while for open string

σ will be have some finite value [3].

6
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2.1.1 The Nambu-Goto string action

As one-dimensional string having1 Xµ(τ, σ) space-time coordinates tracing out a two

dimensional word-sheet. In the order to calculate the area of word-sheet, we will need

a metric. Let ξi(i = 0, 1) denote the word-sheet coordinates and take the metric

gµν having the signature ( − ,+,+,......,+) with µ, ν = 0, 1,....,D − 1 , describe the

background geometry in which the string propagates then

− ds2 = gµνdX
µdXν = gµν

∂Xµ

∂ξi
∂Xν

∂ξj
dξidξj ≡ gijdξ

idξj (2.2)

Here ξ0= τ ,ξ1= σ and the minus sign is used with ds2 is for having real time-like

trajectory. In Minkowski flat space-time gµν= ηµν . The Nambu-Goto action then takes

the form

SNG = −T
∫ √

− det gijd
2ξ = −T◦

∫ √
(Ẋ.X ′)2 − (Ẋ2)(X ′2)dτdσ (2.3)

Here Ẋµ = ∂Xµ

∂τ
, X ′µ = ∂Xµ

∂σ
and by the dimensional analysis T =To

c
, To is the string

tension and we will use natural units in which speed of light is 1.

2.1.2 Equation of motions, boundary conditions and D-branes

Let us start from the Nambu-Goto string action which is in the form of lagrangian

density

S =

τf∫
τi

dτL=

τf∫
τi

dτ

σ1∫
0

dσL(Ẋµ, X ′µ) (2.4)

Where L is given as

L(Ẋµ, X ′µ) =− T◦
√

(Ẋ.X ′)− (Ẋ)2(X ′)2 (2.5)

The equations for the motion of string can be obtained by the action principle.

δS =

τf∫
τi

dτ

σ1∫
0

dσ

[
∂

∂τ

(
δXµP τ

µ

)
+

∂

∂σ

(
δXµP σ

µ

)]
− δXµ

(
∂P τ

µ

∂τ
+
∂P σ

µ

∂σ

)
(2.6)

1As we will use the Xµ for string coordinate while for general space-time we will called xµ
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Where

P τ
µ ≡

δL

δẊµ
= −T◦

(Ẋ.X ′)X ′µ − (X ′)2Ẋµ√
(Ẋ.X ′)2 − (Ẋ)2(X ′)2

(2.7)

And

P σ
µ ≡

δL

δX ′µ
= −T◦

(Ẋ.X ′)Ẋµ − (X ′)2X ′µ√
(Ẋ.X ′)2 − (Ẋ)2(X ′)2

(2.8)

For δS = 0 we get some conditions (boundary conditions) and equations of motion,

which are, the equations of motion for relativistic string2. (closed or open) are.

∂P τ
µ

∂τ
+
∂P σ

µ

∂σ
= 0 (2.9)

And the boundary conditions are 3

A) The boundary condition for closed string is, as for the closed string the word-sheet

is like a tube (cylinder type), so their boundary conditions are

Xµ(τ, σ + 2π) = Xµ(τ, σ) (2.10)

B) While the word-sheet of open string is like a sheet, there are two types of boundary

conditions for open string

i) Neumann conditions

Pσµ (τ, σ∗) = 0 (2.11)

ii) Dirichlet conditions

∂Xµ

∂τ
(τ, σ∗) = 0, µ 6= 0 (2.12)

Here σ∗ are the end points of the open string. No momentum flows off the ends of the

String by implying the Neumann conditions while the endpoints are fixed in spacetime

by implying the Dirichlet conditions. When the end points are fixed in space-time this

means that the string is attached with some physical object, which is called D-brane.

While when the Dirichlet conditions are applied to a subset of the d indices (spatial

2For closed string σ ∼ [0, 2π]. While for open string σ ∼ [0, π]. The length of string is σ1
3These are the momentum densities, P τµ , P

σ
µ . While P τµ is called momentum conjugate.
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dimensions) of Xµ , i.e. to the indices p+1, . . . ,d, this mean that the endpoints of the

string are restricted to move on a p-dimensional hyper-plane. This higher dimensional

object is called a Dp-brane, where p indicates its dimension and D stands for Dirichlet.

It turns out that these objects should be considered to be dynamical as well [3, 7, 8, 9,

10].

2.2 Constraints and wave equations

As the word-sheet have the two parameters, (τ, σ) by reparameterization (gauge) of τ

and σ of the word-sheet, simply using a class of gauges 4 which fix the parameterization

(τ and σ) of the word-sheet [11] and give the some constraints equations which are

Ẋ.X ′ = 0, Ẋ2 +X ′2 = 0 (2.13)

Both these constraints equations combine to give

(Ẋ ±X ′)2 = 0 (2.14)

Using these two constraints equation to simplify the momentum densities P τµ and P σµ

which give5

P τµ =
1

2πα′
Ẋµ, P σµ = − 1

2πα′
X ′µ (2.15)

Putting these momentum densities in the equation of motion which is ∂τP
τµ+∂σP

σµ =

0, we get

Ẍµ −X ′′µ = 0 (2.16)

So by reparameterization we got the equation of motion just as a wave equation.

4Reparameterization of word-sheet In static gauge (t = τ), our solution is not fully explicit so we

use the more general gauges. A class of choices for τ is n.X(τ, σ) = βα′(n.p)τ , Where β is equal to

two for open string and one for closed string and ”n” is chosen in such a way that (n.p) is conserved.

And the conservation of (n.p) means n.Pσ = 0 for both closed as well as open strings And similarly

the associated σ parameterization gives n.p = 2π
β n.P

τ

5The string tension T◦ is equal to T◦ = 1
2πα′ , and α′ is the Regge-slope parameter.
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2.3 Open string Mode expansions

Let we have a space-filling D-brane for this all the string coordinates Xµ satisfy the

boundary condition (Neumann) at the end points. And as the solution of a wave

equation can be written in the form of superposition of waves moving to the left and

right on the string.

Xµ(τ, σ) =
1

2
(fµ(τ + σ) + gµ(τ − σ)) (2.17)

Where fµ and gµ are the arbitrary functions. As the Neumann boundary conditions

P σµ = 0 at the endpoints

∂Xµ

∂σ
= 0 , at σ = 0, π

The Neumann boundary conditions at σ = 0 give

∂Xµ

∂σ
(τ, 0) =

1

2
(f ′µ(τ)− g′µ(τ)) = 0 (2.18)

This equation means that the derivative of fµ and gµ are same then these two functions

are differ by some constant i.e. gµ = fµ+cµ, so replacing this and absorbing the constant

into the definition of fµ. This give

Xµ(τ, σ) =
1

2
(fµ(τ + σ) + fµ(τ − σ)) (2.19)

Now consider boundary conditions at σ = π

∂Xµ

∂σ
(τ, π) =

1

2
(f ′µ(τ + π)− f ′µ(τ − π)) = 0 (2.20)

Since from this equation we see that f ′µ is a periodic with period of 2π. so we can write

it in term of Fourier series

f ′µ(u) = fµ1 +
∞∑
n=1

(aµn cosnu+ bµn sinnu) (2.21)
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Now integrating this equation and then putting the result fµ(u) back into equation

(2.17) and simplifying, we get

Xµ(τ, σ) = fµ0 + fµ1 τ +
∞∑
n=1

(Aµn cosnτ +Bµ
n sinnτ) cosnσ (2.22)

Now replace the coefficients in above equation (2.22) by new coefficients which have

some simple physical interpretation.

Aµn cosnτ +Bµ
n sinnτ = −i

√
2α′√
n

(
aµ∗n e

inτ − aµne−inτ
)

(2.23)

Here * denote the complex conjugate and
√

2α′ factor is to make the aµn dimensionless

and the physical interpretation of these new constant and their conjugate is, they

become annihilation and creation operators when considering Quantum field theory

Similarly fµ1 in equation (2.22) has also a simple physical interpretation which is as

from the momentum conjugate equation

P µ =

∫ π

0

P τµdσ =
1

2πα′

∫ π

0

Ẋµdσ =
1

2α′
fµ1 (2.24)

This equation tells us that the quantity fµ1 is proportional to the space-time momentum

which is carried by the string. From above equation (2.24), putting the value of fµ1 with

the new coefficients equation (2.23) into equation (2.22), then we gets6

Xµ(τ, σ) = xµ0 + 2α′pµτ − i
√

2α′
∞∑
n=1

(
aµ∗n e

inτ − aµne−inτ
) cosnσ√

n
(2.25)

In the order to make the simple expression of above equation (2.25), we replace the

constant fµo = xµo and defining7

αµ0 =
√

2α′pµ , αµn = aµn
√
n and αµ−n = aµ∗n

√
n , n ≥ 1

And also αµ−n = (αµn)∗, using these new coefficients (modes) and simplifying by which

we get

Xµ(τ, σ) = xµ0 +
√

2α′αµ0τ + i
√

2α′
∑
n 6=0

1

n
αµne

−inτ cosnσ (2.26)

6If all the coefficients (oscillators) aµn vanishes, then the equation represents the point particle.
7As a is oscillators while α is mode.
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This is the solution of wave equation and a simple expression for the open string.

Similarly we can get

Ẋµ ±X ′µ =
√

2α′
∑
n∈Z

αµne
−in(τ±σ) (2.27)

2.4 Closed string Mode expansions

Let us consider the general solution for the wave equation, which is

Xµ(τ, σ) = Xµ
L(τ + σ) +Xµ

R(τ − σ) (2.28)

Where Xµ
L is for left-moving wave while Xµ

R is for right-moving wave of the string.

The word-sheet of the closed string is a cylinder, so to describe the closed string, we

need some conditions, as the closed string have no endpoints but having the periodicity

condition.

(τ, σ) ∼ (τ, σ + 2π) (2.29)

So by this periodicity, we can write

Xµ(τ, σ) = Xµ(τ, σ + 2π) for all τ and σ (2.30)

Now let introduce two variables

u = τ + σ and v = τ − σ

By putting these new variable in equation (2.28), which becomes

Xµ(τ, σ) = Xµ
L(u) +Xµ

R(v) (2.31)

Now by periodicity condition (τ, σ) ∼ (τ, σ + 2π), the above equation becomes

Xµ
L(u+ 2π)−Xµ

L(u) = Xµ
R(v)−Xµ

R(v − 2π) (2.32)

From this equation we can say that both Xµ
L(u) and Xµ

R(v) are periodic with the period

of 2π. Therefore we can write the mode expansions
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X
′µ
L (u) =

√
α′

2

∑
n∈Z

ᾱµne
−inu (2.33)

X
′µ
R (v) =

√
α′

2

∑
n∈Z

αµne
−inv (2.34)

By integrating these equations, we get

Xµ
L(u) =

1

2
xLµ0 +

√
α′

2
ᾱµ0u+ i

√
α′

2

∑
n6=0

1

n
ᾱµne

−inu (2.35)

Xµ
R(v) =

1

2
xRµ0 +

√
α′

2
ᾱµ0v + i

√
α′

2

∑
n6=0

1

n
ᾱµne

−inv (2.36)

Now putting these two equations (2.35) and (2.36) into equation (2.32) and solving by

which we get

ᾱµ0 = αµ0v (2.37)

Now by using this equality and equations (2.35) and (2.36), we get the equation (2.31)

as

Xµ(τ, σ) =
1

2
(xLµ0 + xRµ0 ) +

√
2α′αµn + i

√
α′

2

∑
n6=0

1

n
e−inτ (αµne

inσ + ᾱµne
−inσ) (2.38)

As from the canonical momentum conjugate equation, we can write

P µ =

∫ 2π

0

P τµdσ =
1

2πα′

∫ 2π

0

Ẋµdσ =

√
2

α′
αµ0 (2.39)

αµ0 =

√
α′

2
P µ (2.40)

This equation (2.40) differs by a factor of two from the corresponding open string

result and also tells the same idea i.e. the quantity αµ0 is proportional to the space-time

momentum which is carried by the closed string.

And let xLµ0 and xRµ0 be equal i.e. having one conjugate coordinate zero mode, without

any loss of generality,

xLµ0 = xRµ0 ≡ xµ0
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Finally using the above equation then equation (2.38) becomes

Xµ(τ, σ) = xµ0 +
√

2α′αµ0τ + i

√
α′

2

∑
n6=0

1

n
e−inτ (αµne

inσ + ᾱµne
−inσ) (2.41)

Here we required these two relations for the reality of the above equation

αµ−n = (αµn)∗, ᾱµ−n = (ᾱµn)∗

As when αµn = ᾱµn then the above equation (for closed string) is equal to equation (2.26)

which is for open string. Since the closed string can be viewed as a two copies of the

open strings. This is a complete mode expansion for a closed string [3, 7].

2.5 Light cone solution and Transverse Virasoro Modes

The light cone solution is, to represents the motion of string by using the light cone

coordinates and this impose a set of conditions which is called light cone gauge. The

light cone gauge is one of the choices among the general gauges. As we know that the

more general gauges

n.X(τ, σ) = βα′(n.p) τ , n.p =
2π

β
n.P τ (2.42)

Where β is equal to two for open string and one for closed string. In the order to select

the light cone gauge, we need to impose the above conditions with a vector nµ such

that n.X = X+ So

nµ =

(
1√
2
,

1√
2
, 0...., 0

)
(2.43)

n.X =
X0 +X1

√
2

= X+ , n.P =
P 0 + P 1

√
2

= P+ (2.44)

Now using this pair of equations (2.44) into equation (2.42), we get

X+(τ, σ) = βα′P+τ , P+ =
2π

β
P+τ (2.45)
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This choice of gauge is called the light cone gauge. Let the transverse coordinates be

denoted as

X l =
(
X2, X3, ...Xd

)
Here (l = 2, 3, ..., d). Now using the constraints equation (2.14) and expanding it into

light cone coordinates.

(Ẋ ±X ′)2 = 0

= (Ẋ ±X ′).(Ẋ ±X ′) = 0

= −2(Ẋ+ ±X ′+). (Ẋ−±X ′−) + (Ẋ l±X ′l)2 = 0 (2.46)

Here we use the dot products of light cone coordinates.

Now using the equation (2.45) and calculating the equation (2.46), we get8

Ẋ−±X ′− =
1

βα′
1

2P+
(Ẋ l±X ′l)2 (2.47)

So we have developed the relation between the light cone coordinates and the transverse

coordinates. And the mode expansions for open string (β = 2) in the term of light cone

coordinates are

X l(τ, σ) = xl0 +
√

2α′αl0τ + i
√

2α′
∑
n6=0

1

n
αlne

−inτ cosnσ (2.48)

And as our gauge conditions give

X+(τ, σ) = 2α′P+τ =
√

2α′α+
0 τ (2.49)

With position zero mode and oscillators for the X+ are

x+
0 = 0, α+

n = α+
−n = 0, n = 1, 2, ...,∞

Similarly

8We assume that P + 6= 0, the vanishing of P + means that a massless particle moving in the

negative x1 direction. While P + certainly satisfied P + ≥ 0.
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X−(τ, σ) = x−0 +
√

2α′α−0 τ + i
√

2α′
∑
n6=0

1

n
α−n e

−inτ cosnσ (2.50)

These are the complete set of mode expansions in light cone coordinate [12]. Now using

equation (2.27) with µ = − and µ = l, then we get

Ẋ− ±X ′− =
√

2α′
∑
n∈Z

α−n e
−in(τ±σ) (2.51)

Ẋ l ±X ′l =
√

2α′
∑
n∈Z

αlne
−in(τ±σ) (2.52)

Now putting these two equations (2.51) and (2.52) into equation (2.47), by simplifying

we get

α−n =
1

2P+

1√
2α′

∑
p∈Z

αln−pα
l
p (2.53)

From above equation (2.53)9 , we have the explicit expression for the minus oscillators

α−n in the term of transverse oscillators αln. This represents the full solutions [3, 11].

From the above equation (2.53), the right side has given a special type name, which is

the Transverse Virasoro mode L⊥n ,

√
2α′α−n =

1

P+
L⊥n , L⊥n ≡

1

2

∑
p∈Z

αln−pα
l
p (2.54)

Now by using the equation (2.53) and the equation which we defined earlier that is

αµ0 =
√

2α′pµ , then we get

1

α′
L⊥0 = 2P+P− (2.55)

Now using the value of α−n from equation (2.54) then equation (2.51) and (2.47) are

written

Ẋ− ±X ′− =
1

P+

∑
n∈Z

L⊥n e
−in(τ±σ) =

1

4α′P+
(Ẋ l ±X ′l)2 (2.56)

9A critical string only have transverse excitations, just like for a massless particle only has transverse

polarization states.
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Similarly for closed string (β = 1) since the equation (2.47) becomes

Ẋ− ±X ′− =
1

α′
1

2P+
(Ẋ l ±X ′l)2 (2.57)

And as like equation (2.56) we can also write for closed strings

(Ẋ l +X ′l)2 = 4α′
∑
n∈Z

(
1

2

∑
p∈Z

ᾱlpᾱ
l
n−p

)
e−in(τ+σ) ≡ 4α′

∑
n∈Z

L̄⊥n e
−in(τ+σ) (2.58)

(Ẋ l −X ′l)2 = 4α′
∑
n∈Z

(
1

2

∑
p∈Z

αlpα
l
n−p

)
e−in(τ−σ) ≡ 4α′

∑
n∈Z

L⊥n e
−in(τ−σ) (2.59)

So we define the Verasoro mode for closed string

L̄⊥n =
1

2

∑
p∈Z

ᾱlpᾱ
l
n−p , L⊥n =

1

2

∑
p∈Z

αlpα
l
n−p (2.60)

Now using equations (2.58), (2.59) and equations (2.57), (2.41) we can easily finds

√
2α′α−n =

2

P+
L⊥n ,

√
2α′ᾱ−n =

2

P+
L̄⊥n (2.61)

From this equation (2.61) we cal also write

ᾱ−n =
1

2P+

1√
2α′

∑
p∈Z

ᾱln−pᾱ
l
p

And for n = 0 then ᾱ−0 = ᾱ−0 for equation (2.61), then, we have

L̄⊥0 = L⊥0 (2.62)

This equality is called level-matching and it means that one in the terms of right-moving

oscillators and one in terms of left-moving oscillators are equal as level matching.

In the quantum theory level matching implies that the states of right-moving excitations

of a string are equal to the states of its left-moving excitations [12]. We will explain

this later.



18

2.6 Quantization and Commutations relations

In the order to quantize our classical results we need to replace the Poisson brackets

by commutation relations and the fields by operators and then will solve the Virasoro

constraint equations, and will describe our theory in a Fock space that describes the

physical degrees of freedom [13]. Before we have written the classical equations of

motion in the light cone gauge. Now we will use (to quantization) the results of our

light cone analysis of the classical relativistic strings. Our Hamiltonian for open strings,

as we have X+ = 2α′p+τ so from this we can write ∂τ = 2α′p+∂X+ and in addition, as

p− generates X+ translations so from this we can write Hamiltonian as

H = 2α′p+p−

For quantization and commutation relations, we will start from a set of operators.

(X l(τ, σ) , x−0 , P τl(τ, σ) , P+(τ)) (2.63)

From this, we have the full set of basic operators of string theory because the above list

has the collection of all zero modes plus the infinite set of the annihilation and creation

operators [3]. First we will deal the open string and assume the space-filling D-brane.

Let postulate some commutation relations from the above set of operators

[
X l(τ, σ), P τj(τ, σ′)

]
= iηljδ(σ − σ′) (2.64)

And [
x−0 , P

+
]

= −i (2.65)

And all the other commutation relations are equal to zero i.e.

[
X l(τ, σ), Xj(τ, σ′)

]
= 0,

[
P τl(τ, σ), P τj(τ, σ′)

]
= 0

[
x−0 , X

l(τ, σ)
]

= 0,
[
x−0 , P

τl(τ, σ)
]

= 0[
P+, X l(τ, σ)

]
= 0 ,

[
P+, P τl(τ, σ)

]
= 0 (2.66)
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From the commutation relation in equation (2.64) we can also write as[
X l(τ, σ), Ẋj(τ, σ′)

]
= i2πα′ηljδ(σ − σ′) (2.67)

Similarly the other commutation relations from the above relations are[
X ′l(τ, σ), Ẋj(τ, σ′)

]
= i2πα′ηlj

d

dσ
δ(σ − σ′) (2.68)

[
Ẋ l(τ, σ), Ẋj(τ, σ′)

]
= 0 ,

[
X ′l(τ, σ), X ′j(τ, σ′)

]
= 0 (2.69)

Now by solving these equations we get[
(Ẋ l ±X ′l)(τ, σ), (Ẋj ±X ′j)(τ, σ′)

]
= ±i4πα′ηlj d

dσ
δ(σ − σ′) (2.70)

This commutation relation in equation (2.70) is useful to write down the commutation

relations for the oscillators. The classical modes αln will become the quantum operators

with a nontrivial commutation relation. For commutation relation of oscillators, let

recall the equation (2.27), we can write

(Ẋ l +X ′l)(τ, σ) =
√

2α′
∑
n∈Z

αlne
−in(τ+σ) , σ ∈ [0, π] (2.71)

(Ẋ l −X ′l)(τ,−σ) =
√

2α′
∑
n∈Z

αlne
−in(τ+σ) , σ ∈ [−π, 0] (2.72)

Now let define an operator Al(τ, σ)

Al(τ, σ) ≡
√

2α′
∑
n∈Z

αlne
−in(τ+σ), Al(τ, σ + 2π) = Al(τ, σ) (2.73)

The periodicity is due to the definition of Al(τ, σ) and from this definition we can write

Al(τ, σ) =

 (Ẋ l +X ′l)(τ, σ), σ ∈ [0, π]

(Ẋ l −X ′l)(τ,−σ), σ ∈ [−π, 0].
(2.74)

So from this set of equation (2.74), there are four possibilities of commutation relations,

we can summarized as
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[
Al(τ, σ), Aj(τ, σ′)

]
= 4πα′ηlj

d

dσ
δ(σ − σ′) , σ, σ′ ∈ [−π, π] (2.75)

Now solving this equation (2.75) by using equation (2.73), we find

[
αlm, α

j
n

]
= m ηljδm+n,0 (2.76)

This shows the commutation relation between the α modes and also αl0 commutes with

others oscillators and these are equivalent to an infinite set of annihilation and creation

operators. To see this let start from our defining oscillators i.e.

αµn = aµn
√
n , αµ−n = aµ∗n

√
n , n ≥ 1 (2.77)

As both (a, α) are classical variables and now they become operators. As those classical

variables which are complex conjugate of each other will now become the Hermitian

operators in quantum theory i.e. the operators xl0 and pl are Hermitian as

(xl0)† = xl0 , (pl)† = pl (2.78)

Similarly the above oscillators and modes are now operators and we will take these like

αln = aln
√
n and αl−n = al†n

√
n, n ≥ 1

From this we have

(αln)† = αl−n , n ∈ Z (2.79)

From these conditions we can replace equation (2.76) as

[
αlm, α

j
−n
]

= m ηljδm,n ,
[
alm, a

j†
n

]
= δm,nη

lj (2.80)

And similarly [
αlm, α

j
n

]
= 0,

[
αl†m, α

j†
n

]
= 0

These commutation relations shows (al†m, a
l
m) satisfy the commutation relations of canon-

ical creation and annihilation operators of the quantum simple harmonic oscillator. So
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from this, we have αln are annihilation operators while αl−n are creation operators for

n ≥ 1. Using these Hermiticity conditions (2.78) and (2.79) we can write

(X l(τ, σ))† = X l(τ, σ)

Now to find the commutation relation between αl0 and xln, for this as αl0 =
√

2α′P l and

using equation (2.64) and by simplification we get[
xl0, P

j
]

= i ηlj (2.81)

By quantization, replacing the classical variables to operators, our mode expansion then

become

X l(τ, σ) = xl0 + 2α′plτ + i
√

2α′
∞∑
n=1

(
aµne

−inτ − al†n einτ
) cosnσ√

n
(2.82)

Here replace the α modes by corresponding oscillators. And this is in the term of

annihilation and creation operators, expansion of the coordinate operator. Similarly

now quantize the closed string, the Poisson brackets will be replaced by commutation

relations and the classical variables by quantum operators. For commutation relations,

as the operators content of closed strings can be treated as the two commuting copies

the open string operators i.e. left moving and right moving. Similarly we can use the

almost same techniques to derive the commutation relations for closed strings. The

commutations relations for closed strings are[
ᾱlm, ᾱ

j
n

]
= m ηljδm+n,0,

[
ᾱlm, ᾱ

j
n

]
= m ηljδm+n,0[

ᾱlm, α
j
n

]
= 0,

[
ᾱlm, ᾱ

j†
n

]
= δm,nη

lj

[
xl0, p

l
]

= iηlj →
[
xl0, α

j
0

]
= iηlj

√
α′

2
,
[
xl0, ᾱ

j
0

]
= iηlj

√
α′

2
(2.83)

Our Hamiltonian for closed strings in light cone coordinates is, as we know from our

light cone gauge, as p− generates X+ translation and also we have X+ = α′p+τ so from
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this we can write ∂τ = α′p+∂X+ , so our Hamiltonian will be

H = α′p+p−

There is only the factor of two in the open strings and closed strings Hamiltonian due

to the value of β, which is two for open string while one for closed string [3, 14].

2.7 Transverse Verasoro operators

As before we have write down the classical solution of motion of both open and closed

strings in light cone coordinates and then we solved for X− in the term of transverse

coordinates by using the constraints equation (2.47) i.e. α−n the in the term of αln modes

as shown (for open string) in equation (2.53) so

√
2α′α−n =

1

P+
L⊥n , L⊥n ≡

1

2

∑
p∈Z

αln−pα
l
p (2.84)

Where l (repeated index) is summed over transverse light cone direction. As before L⊥n

were transverse Virasoro modes but now it is called transverse Virasoro operators due

to the modes become operators. As the two α operators (inL⊥n ) fail to commute for

n = 0, so L⊥0 is the only operator which needs a Normal Ordering. From the definition

of L⊥0 as

L⊥0 =
1

2

∑
p∈Z

αl−pα
l
p (2.85)

=
1

2
αl0α

l
0 +

1

2

∞∑
p=1

αl−pα
l
p +

1

2

∞∑
p=1

αlpα
l
−p

Since the last term is not Normal Ordered, taking the last term and making it as a

normal order by using the commutation relation, such that

1

2

∞∑
p = 1

αlpα
l
−p =

1

2

∞∑
p = 1

αl−pα
l
p +

1

2
(D− 2)

∞∑
p = 1

p
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So L⊥0 then become

L⊥0 =
1

2
αl0α

l
0 +

∞∑
p=1

αl−pα
l
p +

1

2
(D− 2)

∞∑
p=1

p (2.86)

And also from the definition of L⊥0 (with normal ordering constant a ) in the term of

p− is as

2α′P− ≡ 1

p+

(
L⊥n + a

)
(2.87)

From equation (2.86) and (2.87), we can say that

a =
1

2
(D − 2)

∞∑
p = 1

p (2.88)

By Zeta function we find the value of
∞∑

p = 1

p and so

a = − 1

24
(D − 2) (2.89)

The Normal order L⊥0 is then become

L⊥0 = α′plpl +
∞∑

p = 1

αl−pα
l
p −

1

24
(D− 2) (2.90)

This is all about the open string transverse Virasoro operators. Similarly for closed

strings, the transverse Virasoro operators are

√
2α′α−n =

1

P+
L⊥n , L⊥n ≡

1

2

∑
p∈Z

αln−pα
l
p

√
2α′ᾱ−n =

1

P+
L̄⊥n , L̄⊥n ≡

1

2

∑
p∈Z

ᾱln−pᾱ
l
p (2.91)

With (L⊥0 )† = L⊥0 , (L⊥n )† = L⊥−n and (L̄⊥n )† = L̄⊥−n due to (αln)† = αl−n and (ᾱln)† = ᾱl−n.

Similarly we have (α−n )† = α−−n. As we shown that αlm and αln commutes only when

(m+ n) equal to zero but the case is totally change for α−n i.e. two Virasoro operators

L⊥m and L⊥n never commute for (m 6= n) . Now to find the commutation relations for
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Virasoro operators lets begin from the commutation relation of Virasoro operator and

oscillator, which is [
L⊥m, α

j
n

]
=

1

2

∑
p∈Z

[
αln−pα

l
p, α

j
n

]
=

1

2
(−nαjm+n − nα

j
m+n)

So we find [
L⊥m, α

j
n

]
= −nαjm+n (2.92)

This commutation relation is also valid for m = 0 . Similarly[
L⊥m, x

l
0

]
= −i

√
2α′αlm (2.93)

Now let us consider the two Virasoro operators L⊥m and L⊥n , and the commutation

relation between them is not quit easy. So let the sum split as

L⊥m =
1

2

∑
k≥0

αlm−kα
l
k +

1

2

∑
k<0

αlkα
l
m−k

We made the above L⊥m as normal ordered for any value of m. So we can now evaluate

the commutation relation like[
L⊥m, L

⊥
n

]
=

1

2

∑
k≥0

[
αlm−kα

l
k, L

⊥
n

]
+

1

2

∑
k<0

[
αlkα

l
m−k, L

⊥
n

]
Now evaluating then we get

[
L⊥m, L

⊥
n

]
=

1

2

∑
k≥0

(m− k)αlm+n−kα
l
k +

1

2

∑
k<0

(m− k)αlkα
l
m+n−k

+
1

2

∑
k≥0

kαlm−kα
l
k+n +

1

2

∑
k<0

kαlk+nα
l
m−k (2.94)

Here we have now deal with two different cases m+n 6= 0, m+n = 0 and . If m+n 6= 0

, the two in each term commute then their order is irrelevant so in that case, we will

switch the order in the last two terms of equation (2.94) and then replace the variable

k by k − n. So we get [
L⊥m, L

⊥
n

]
= (m− n)L⊥m+n , m+ n 6= 0 (2.95)
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A mathematical set of operators L⊥m with n ∈ Z, satisfying the above equation (2.95)

defines the Lie algebra. This algebra is called the Witt algebra or the Virasoro algebra

without central extension. Now the second case m + n = 0, let n = −m in equation

(2.94) then an extra contribution arises due to insisting the normal order. Such that

[
L⊥m, L

⊥
n

]
=

1

2

∑
k=0

(m− k)αl−kα
l
k +

1

2

∑
k<0

(m− k)αlkα
l
−k

+
1

2

∑
k=0

kαlm−kα
l
k−m +

1

2

∑
k<0

kαlk−mα
l
m−k (2.96)

For normal ordering, let replace k → −k in the second terms, k → m + k in the 3rd

terms, and k → m− k in the last terms

[
L⊥m, L

⊥
n

]
=

1

2

∑
k=0

(m− k)αl−kα
l

k
+

1

2

∑
k=1

(m+ k)αl−kα
l
k

+
1

2

∑
k=−m

(m+ k)αl−kα
l
k +

1

2

∑
k=m+1

(m− k)αl−kα
l
k (2.97)

Let assume that m > 0, (this argument goes the same way as in the other case) by

this all the terms are now normal ordered except the 3rd term for which −m ≤ k ≤ 0.

Splitting the summation of 3rd term in above equation (2.97) and then simplifying, we

get

[
L⊥m, L

⊥
n

]
=

1

2

∞∑
k=0

(m− k)αl−kα
l
k +

1

2

∞∑
k=1

(m+ k)αl−kα
l
k + (D − 2)A(m) (2.98)

Where A(m) is

A(m) =
1

2

m∑
k=0

k(m− k) =
1

2
m

m∑
k=1

k − 1

2

m∑
k=1

k2 (2.99)

By using the Mathematical induction and Zeta functions. We get

A(m) =
1

12
(m3 −m) (2.100)
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Now putting the value of A(m) from equation (2.100) into equation (2.98) and solving,

we find [
L⊥m, L

⊥
n

]
= 2m L⊥0 +

1

12
(D − 2)(m3 −m)

This completes the commutation relation of Virasoro operators for m + n = 0. Now

generalizing these two cases, we get[
L⊥m, L

⊥
n

]
= 2m L⊥m+n +

1

12
(D − 2)(m3 −m)δm+n,0 (2.101)

The second term of right-hand side of the above equation (2.101) is called the central

extension and a mathematical set of operators L⊥m with n ∈ Z, which satisfying the

above equation (2.101) defines the centrally extended Virasoro algebra. As the term is

said to be central because it is a constant and commute with all other operators in the

algebra. There is no central term for m = 0 and m = ±1.

These are the complete commutation relations, here i, j are the transverse indices.

Closed strings Virasoro operators and their commutation relations have the same tech-

niques as we have done for open strings [12, 15].
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2.8 Lorentz generators and critical dimensions

Lorentz invariance of a string action allows us to find a set of conserve word sheet

currents, Mα
µν and the resulting word-sheet charges Mµν for open strings with σ ∈ [0, π],

are

Mµν =

π∫
0

Mα
µν(τ, σ)dσ =

π∫
0

(XµP
τ
ν −XνP

τ
µ )dσ (2.102)

Now putting the value of P τ
µ from equation (2.15) so we get

Mµν =
1

2πα′

π∫
0

(XµẊν −XνẊµ)dσ (2.103)

Now using the explicit mode expansion for and from equation (2.26), by simplifying we

get

Mµν = xµ0p
ν − xν0pµ − i

∞∑
n=1

1

n
αµ−nα

ν
n − αν−nαµn) (2.104)

where the 1st two terms are due to orbital angular momentum while the summation

terms are due to the angular momentum due to excited oscillator modes [12]. This

equation (2.104) is the classical Lorentz generators of open strings in the terms of

oscillators. Similarly for closed strings, the Lorentz generator becomes

Mµν = xµ0p
ν − xν0pµ − i

∞∑
n=1

1

n
(αµ−nα

ν
n − αν−nαµn)− i

∞∑
n=1

1

n
ᾱµ−nᾱ

ν
n − ᾱν−nᾱµn) (2.105)

M−l is the most delicate quantum Lorentz generators in light cone gauge because, X−

coordinate is a non-trivial function of the transverse coordinates X l and a consistent

M−l should be generates the Lorentz transformations on the strings coordinates. As

Lorentz algebra is not generally reproduces by generators , Mµν which implies that the

theory is not Lorentz invariant, so to make it invariant, we should10

[
M−l,M−j] = 0 (2.106)

10As for point particle [Jµ, Jν ] = 0, as J is the Lorentz generator for point particle.
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Since from above equation (2.104), we have

M−l ∼ x−0 p
l − xl0p− − i

∞∑
n=1

1

n
(α−−nα

l
n − αl−nα−n ) (2.107)

As we know that the Lorentz generators should be Hermitian and normal ordered but

as from equation (2.107) we write

(M−l)† 6= M−l

So making it Hermitian by writing 1
2
(xl0p

− + p−xl0) instead of xl0p
−, we find

M−l ∼ x−0 p
l − 1

2
(xl0p

− + p−xl0)− i
∞∑
n=1

1

n
(α−−nα

l
n − αl−nα−n ) (2.108)

Now it’s fully Hermitian and it’s also normal ordered because of α− are normal ordered.

To make it complete Lorentz generator, we should put the definition of P− and α− from

equation (2.87) and (2.84), so our Lorentz charge M−l becomes

M−l = x−0 p
l − 1

4α′p+

(
xl0(L⊥n + a) + (L⊥n + a)xl0

)
− i√

2α′p+

∞∑
n=1

1

n
(L⊥−nα

l
n − αl−nL⊥n )

(2.109)

The above equation (2.109) is our Lorentz charges in light cone gauge, in the order

to make it Lorentz invariant, we should calculate the above commutation relation in

equation (2.106) and then simplifying, we got

[
M−l,M−j] = − 1

α′p+2

∞∑
m=1

∆m(αl−mα
l
m − αl−mαlm) (2.110)

With ∆m which is

∆m =

{
m

[
1− 1

24
(D − 2)

]
+

1

m

[
1

24
(D − 2) + a

]}
(2.111)

As for Lorentz invariance, the above equation (2.110) should be equal to zero, so this

means

m

(
1− 1

24
(D − 2)

)
+

1

m

(
1

24
(D − 2) + a

)
= 0, ∀ m ∈ Z+
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By solving this we get

D = 26

And a = −1. This shows that the relativistic strings can be properly quantized in the

flat Minkowski space if the number of space-time dimensions is 26 [3, 13, 16, 17, 18].

A similar calculation can fix the dimensionality of space time to the value D = 10 in

super strings.

2.9 State space and mass spectrum

The mass of relativistic string (that perform an arbitrary motion) can be calculated

from the mass operators, which is the relativistic equation in light cone coordinates, as

M2 = −p2 = 2p+p− − plpl

Now writing the mass operator in the term of Virasoro operators (open strings), as from

equation (2.55) putting the value of 2p+p− , with normal ordering constant (a = −1)

we find

M2 =
1

α′

(
−1 +

∞∑
n=1

nal†na
l
n

)
(2.112)

As the sum inside the bracket in the Number operator, like

N⊥ ≡
∞∑
n=1

nal†na
l
n (2.113)

So the mass operator then becomes

M2 =
1

α′
(−1 +N⊥) (2.114)

And we can easily calculate the commutation relations of number operator with oscil-

lators, which are [
N⊥, al†n

]
= nal†n ,

[
N⊥, aln

]
= −naln (2.115)
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Now let us define our ground state of quantum strings. We have started the quantization

from our basic operators as in equation (2.63) and from this we have canonical pairs

(xl0, p
l) and (x−0 , p

+) so we can define the ground state from this pairs, as it is usually

convenience to work in momentum space so the ground states is

∣∣p+, ~pT
〉

(2.116)

These are the ground states of string for all values of momenta indicated by the labels

and also called the vacuum states for oscillators in string theory. We can create states

from the ground states by simply acting the creation operator on the ground states. As

we have an infinite numbers of creations operator, for which we can write the general

basis state |λ〉 of the state space, so

|λ〉 =
∞∏
n=1

25∏
l=2

(
al†n
)λn,l ∣∣p+, ~pT

〉
(2.117)

Here λn,l is the positive integer and is define as the number of times that al†n (creation

operators) appears. And as the number operator acts on the basis state, so their Eigen

value will be

N⊥ |λ〉 = N
⊥

λ |λ〉 , with N
⊥

λ =
∞∏
n=1

25∏
l=2

nλn,l

Similarly for closed strings, the states becomes

∣∣λ, λ̄〉 =
∞∏
n=1

25∏
l=2

(
al†n
)λn,l ∣∣p+, ~pT

〉
×
∞∏
m=1

25∏
j=2

(
āj†m
)λ̄m,j ∣∣p+, ~pT

〉
(2.118)

And the number operators are

N⊥ =
∞∑
n=1

nal†na
l
n And N̄⊥ =

∞∑
m=1

maj†ma
j
m (2.119)

From the zero modes of transverse Virasoro operators, the level matching condition is

N⊥ = N̄⊥. Some of states and the mass spectrum of both open and closed strings are

given in the below tables.
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List of some open string states

List of some closed string states

Since from the closed string spectrum, we get a particle named graviton which shows

that the gravity emerge into string theory [3].



SUPERSTRINGS

The bosonic string theory has some unsatisfactory features, like the spectrum of the

closed-string contains a tachyon particle. Open strings spectrum also contains tachyons

which are unphysical because of implying instability of the vacuum. As the eliminations

of the open string tachyons has been well understood in the term of D-branes’s decay,

while, the closed-strings tachyon has not been understood yet [7].

And also the spectrum of the open as well as closed strings does not contain fermions.

With out fermions, the theory is unrealistic. To make a realistic theory which describes

the nature and all particles (Bosons and Fermions), we required a supersymmetry, which

relates the bosons and fermions, and the resultant theory is called superstring theory.

There are two basic approaches to develop the super string theories [3].

1. The Ramond-Neveu-Schwarz (RNS) formalism, which is the supersymmetric on

the string world sheet.

2. The Green-Schwarz (GS) formalism, which is supersymmetric in ten-dimensional

Minkowski space-time.

These approaches are equivalent at least for ten-dimensional Minkowski spacetime. This

chapter will describe the RNS formalism.

This version of string theory will be constructed along the same line as for the bosonic

theory i.e. we will consider the classical action, the solutions to the equation of motion

and their mode expansions and then we will apply the canonical and light cone gauge

quantization procedures [19].

32
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3.1 The super string Action

To get fermions in our theory we introduce a new dynamical world-sheet variables

ψµ1 (τ, σ) , and ψµ2 (τ, σ) as like for bosons the dynamical word-sheet variable is Xµ(τ, σ).

These classical variables are ψµα(τ, σ) with (α = 1, 2) are anti-commuting variables,

rather than commuting variables.

In light cone gauge we set X+ proportional to τ and X− was solved for, in terms of

other quantities. While in the case of superstrings, this remains the same but in addi-

tionally the light cone gauge condition also set ψ+
α = 0 and then allow us to solve for

ψ−α . As X− and ψ−α , both gets contributions from transverse X l and ψlα, So this means

that both contributes into the light cone Lorentz Generator M−l , And from this we

can fixed the space time dimensions, which is D = 10 for super string.

Now let us start from the classical action that describes the full set of degree of freedom.

As we will use the light cone gauge which concern with transverse field, so we can write

the action in the term of transverse field

S =
1

4πα′

∫
dτ

π∫
0

dσ(Ẋ lẊ l −X ′lX ′l) + Sψ (3.1)

With

Sψ =
1

2π

∫
dτ

π∫
0

dσ
[
ψl1(∂τ + ∂σ)ψl1 + ψl2(∂τ − ∂σ)ψl2

]
(3.2)

Here Sψ action is the Dirac action for fermions, which live in the two dimension world-

sheet [7, 20].

3.1.1 Equations of motion and Boundary conditions

In the order to find the equations of motion and the boundary conditions, we will vary

the fields ψµα in action Sψ. So we have

δSψ =
1

2π

∫
dτ

π∫
0

dσ
[
δψl1(∂τ + ∂σ)ψl1 + ψl1(∂τ + ∂σ)δψl1
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+ δψl2(∂τ − ∂σ)ψl2 + ψl2(∂τ − ∂σ)δψl2
]

(3.3)

By simplifying we can get the equations of motion and the boundary conditions, as

δSψ = 0 which gives the equations of motion

(∂τ + ∂σ)ψl1 = 0, (∂τ − ∂σ)ψl2 = 0 (3.4)

This implies that ψl1 is the right moving while ψl2 is left moving such as

ψl1(τ, σ) = ψl
1(τ − σ)

ψl2(τ, σ) = ψl
2(τ + σ) (3.5)

Similarly from δSψ = 0, the boundary conditions becomes

ψl1(τ, σ∗)δψ
l
1(τ, σ∗)− ψl2(τ, σ∗)δψ

l
2(τ, σ∗) = 0 (3.6)

This should hold for both the end points, σ∗ = 0 and σ∗ = π for all τ . As from above

equation (3.6) we can also write ψl1(τ, σ∗) = ± ψl2(τ, σ∗) for each end point and by this,

with out loss of generality, we take

ψl1(τ, 0) = ψl2(τ, 0) (3.7)

And the relative sign between ψl1 and ψl2 become important for other end of string. So

we have

ψl1(τ, π) = ±ψl2(τ, π) (3.8)

Let we have a fermion field, ψl which is define over an interval σ ∈ [−π, π] then the

boundary conditions can be written as

ψl ≡

ψl1(τ, σ) σ ∈ [0, π]

ψl2(τ,−σ) σ ∈ [−π, 0].
(3.9)

And finally, from the relative sign, we have the two conditions i.e. periodic and anti

periodic fermions ψl. which are

ψl(τ, π) = +ψl(τ,−π) (3.10)
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ψl(τ, π) = −ψl(τ,−π) (3.11)

These are the two sectors or boundary conditions for fermion field and we will call

them, Ramond (R) sector for periodic as in equation (3.10) and Neveu Schwarz (NS)

sector for anti periodic fermion ψl as in equation (3.11).

3.2 Neveu Schwarz sector

As Neveu Schwarz fermion is the function of τ − σ and has changed the sign when

σ → σ + 2π, so the mode expansion can be written as

ψl(τ, σ) ∼
∑

r∈Z+1/2

blre
−ir(τ−σ) (3.12)

Here ψl is an anti periodic, for any r = n+ 1
2

with n is an integer.

As ψl is an anti commuting ‘field which means that the expansion coefficients blr will be

then anti commuting operators, and for the negatively r like bl−1/2 , bl−3/2 , bl−5/2 ,..., are

the creation operators, while for positively like bl1/2, bl3/2, bl5/2 ,..., are the annihilation

operators. And these operators will also satisfy the anti commuting relation, like

{
blr, b

j
s

}
= δr+s,0 δ

lj (3.13)

Similarly these operators will act on the ground or vacuum which we called Neveu

Schwarz vacuum or simply |NS〉. And the states in the Neveu Schwarz sectors are

|λ〉 =
9∏
l=2

∞∏
n=1

(αl−n)λn,l
9∏
j=2

∞∏
r=1/2,3/2..

(bj−r)
ρr,j |NS〉 ⊗

∣∣p+, ~pT
〉

(3.14)

This is the full ground state which is in the product, ⊗ of the ground state |p+, ~pT 〉 for

αl−n and |NS〉 for bj−r operators.

For the NS sector the mass squared operator with out normal ordering, is given by

M2 =
1

α′

1

2

∑
p 6=0

αl−pα
l
p +

1

2

∑
r∈Z+1/2

rbl−rb
l
r

 (3.15)
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Now to find the normal ordering constant, we use the same procedure as we have done

for Bosonic string theory. As for bosonic oscillators, αl each coordinate contribute − 1
24

to the normal ordering constant, ” a ”. So we take this as

ab = − 1

24

Similarly for NS sector fermions the contribution term in mass squared operator M2

will be

1

2

∑
r=−1/2,−3/2,..

rbl−rb
l
r =

1

2

∑
r=1/2,3/2,..

rbl−rb
l
r − (D − 2)

∑
r∈Z++1/2

r (3.16)

And as
∞∑
r=1

r =
∑
r∈Z+

odd

r +
∑

r∈Z+
Even

r =
∑
r∈Z+

odd

r + 2
∞∑
r=1

r

From this we write ∑
r∈Z+

odd+1/2

r = −1

2

∞∑
r=1

r =
1

24
(3.17)

So the above equation (3.16) then becomes

1

2

∑
r=−1/2,−3/2,..

rbl−rb
l
r =

1

2

∑
r=1/2,3/2,..

rbl−rb
l
r −

1

48
(D − 2) (3.18)

above equation (3.18) gives the idea that the contribution term for NS fermions is

aNS = − 1

48

And the full normal ordering constant for M2 is written as

a = (D − 2)(aB + aNS) = −(D − 2)
1

16
(3.19)

For D = 10 then from above equation (3.19), a = −1
2

and hence the mass squared

operator becomes

M2 =
1

α′

(
−1

2
+N⊥

)
, with N⊥ =

∞∑
p=1

αl−pα
l
p +

∑
r=1/2,3/2,..

rbl−rb
l
r (3.20)



37

As the fermionic oscillators are contributing half integers N⊥ to so by this we get some

of the first few states in this NS sector are as

α′M2 = −1

2
, N⊥ = 0 : |NS〉 ⊗

∣∣p+, ~pT
〉

α′M2 = 0 , N⊥ =
1

2
: bl−1/2 |NS〉 ⊗

∣∣p+, ~pT
〉

α′M2 =
1

2
, N⊥ = 1 :

{
αl−1, b

l
−1/2b

j
−1/2

}
|NS〉 ⊗

∣∣p+, ~pT
〉

α′M2 = 1 , N⊥ =
3

2
:
{
αl−1b

j
−1/2, b

l
−3/2, b

l
−1/2b

j
−1/2b

k
−1/2

}
|NS〉 ⊗

∣∣p+, ~pT
〉

(3.21)

The ground state (N⊥ = 0) of the NS sector is a tachyon. The first excited states

(N⊥ = 1
2
) are massless and are eight states labeled by transverse index l.

As from this list we have both boson as well as fermions. As from above list (3.21)

States which have an even fermion number are bosonic while odd fermion number are

fermionic. So let us define an operator which distinguishes bosons and fermions from

one another. This operator will be called as (−1)F , where F stand for fermion number.

The operator has plus one value on the bosonic state while minus one value for fermionic

state. The fermions ground state is then written as

(−1)F |NS〉 ⊗
∣∣p+, ~pT

〉
= − |NS〉 ⊗

∣∣p+, ~pT
〉

(3.22)

Similarly the operator (−1)F acts on the state, as in equation (3.14)

(−1)F |λ〉 = −(−)
∑
r,j ρr,j |λ〉 (3.23)

Hence this result allow us to take (−1)F operator as an anti commuting with all other

fermionic operators, like {
(−1)F , blr

}
= 0 (3.24)

The fermionic or bosonic character of the states is so far restricted to the (τ, σ) world-

sheet [7, 21]. We will discuss later that these states are fermions or bosons in spacetime.
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3.3 Ramond sector

Now the Ramond boundary conditions (3.10) in which field ψl is a periodic and can be

expanded in the terms of oscillators

ψl(τ, σ) ∼
∑
n∈Z

dlne
−ir(τ−σ) (3.25)

As ψl is an anti commuting, so the Ramond oscillators dln will be also anti commuting

operators. And the negatively like dl−1, d
l
−2, d

l
−3 ,..., are the creation operators, while

for positively like dl1, d
l
2, d

l
3 ,..., are the annihilation operators. Similarly the Ramond

oscillators dln will satisfy the anti commutation relations

{
dlm, d

j
n

}
= δm+nδ

l j (3.26)

As from this (3.26) the zero modes, dl0 should be treated with care. It turns out the

idea that these eight operators will have to organize by the simple linear combination

of the four creation and four annihilation operators. Let us we have the four creation

operators out of these eight operators

ξ1, ξ2, ξ3, ξ4 (3.27)

As being the zero modes, these creation operators will act with out changing the mass

squared state. Let we have a vacuum |0〉, since the creation operators in (3.27) can

give the 24 degenerate Ramond ground states. Since we have total 16 ground states in

which eight of them will have an even number of ξs acting on |0〉, while the other eight

will have an odd number of ξs acting on |0〉. Let the eight states which have an even

number of creation operators is |Ra〉 with a = 1, 2, ..., 8 then

|Ra〉 :


|0〉 ,

ξ1ξ2 |0〉 , ξ1ξ3 |0〉 , ξ1ξ4 |0〉 , ξ2ξ3 |0〉 , ξ2ξ4 |0〉 , ξ3ξ4 |0〉 ,

ξ1ξ2ξ3ξ4 |0〉 .

(3.28)
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Similarly the other eight states which have an odd number of creation operators is |Rā〉

with ā = 1̄, 2̄, ..., 8̄ then

|Rā〉 :

 ξ1 |0〉 , ξ2 |0〉 , ξ3 |0〉 , ξ4 |0〉 ,

ξ1ξ2ξ3 |0〉 , ξ1ξ2ξ4 |0〉 , ξ1ξ3ξ4 |0〉 , ξ2ξ3ξ4 |0〉 .
(3.29)

Hence |Ra〉and |Rā〉 states makes the complete set of the degenerate Ramond ground

states and can be denoted as |RA〉 with A = 1, 2, ..., 16 . The state space of Ramond

sector can be written as

|λ〉 =
9∏
l=2

∞∏
n=1

(αl−n)λn,l
9∏
j=2

∞∏
r=1/2,3/2..

(dj−m)ρm,j |RA〉 ⊗
∣∣p+, ~pT

〉
(3.30)

Just like as in NS sector, the Ramond sector has also an operator,(−1)F which is anti

commuting with all the other fermionic oscillators, including the zero modes

{
(−1)F , dln

}
= 0 (3.31)

Conventionally, we declare |0〉 to be fermionic, like

(−1)F |0〉 = − |0〉 (3.32)

The operator gives the idea that (−1)F states are fermionic while |Ra〉 states are bosonic.

In the R sector |Rā〉, the mass squared operator without normal ordering can be written

as

M2 =
1

α′

(
1

2

∑
p 6=0

αl−pα
l
p +

1

2

∑
n∈Z

ndl−nd
l
n

)
(3.33)

Similarly for R sector, the contribution term in M2 is

1

2

∑
n=−1,−2,..

ndl−nd
l
n =

1

2

∑
n=1,2,..

ndl−nd
l
n +

1

24
(D − 2) (3.34)

Since the above equation (3.34) gives the idea that the contribution term for R fermions

is

aR =
1

24
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Hence the contribution term for R sector aR is equal (with opposite sign) to the contri-

bution term for bosonic aB. So the total normal ordering constant becomes zero, thus

we can write the mass squared operators as

M2 =
1

α′

∑
n≥1

(
αl−pα

l
p + ndl−nd

l
n

)
(3.35)

This implies that the Ramond ground states are massless and some of few excited states

in this R sector are as

α′M2 = 0 |Ra〉 ‖ |Rā〉

α′M2 = 1 αl−1 |Ra〉 ,dl−1 |Rā〉 ‖ αl−1 |Rā〉 , dl−1 |Ra〉

α′M2 = 2 αl−2, α
l
−1α

j
−1, d

l
−1d

j
−1 |Ra〉 , ‖ {αl−2, α

l
−1α

j
−1, d

l
−1d

j
−1} |Rā〉 ,

{αl−1d
j
−1,dl−2} |Rā〉 ‖ {αl−1d

j
−1,dl−2} |Ra〉 (3.36)

As we have separated the states into the two groups which have an identical number of

states, the left of the bars states gives (−1)F = −1 (fermionic states). While the right of

the bars states gives the bosonic states i.e. (−1)F = +1 . And hence for each fermionic

state, there is a corresponding bosonic state which is the supersymmetry [7, 21]. But

however, this supersymmetry is on the world sheet and the space time supersymmetry

will be arise by combining the states from both, Ramond and Neveu Schwarz sectors.

3.4 Super transverse Virasoro operators

For quantization of superstring theory, we needed the super Transverse Virasoro op-

erators which are the generalization of the Transverse Virasoro operators. As before

we find the transverse Virasoro operators for bosonic string theory, the similar calcula-

tion will be required for the superstring [13, 22]. By including the supersymmetry, the

Virasoro operators will become the super Virasoro operators and can be written as
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L⊥n = L
⊥(a)
n + L

⊥(b)
n NS sector

L⊥n = L
⊥(a)
n + L

⊥(d)
n R sector

Here L
⊥(a)
n is the transverse Virasoro operator which can be written as

L⊥(a)
n =

1

2

∑
p∈Z

αln−pα
l
p

And the L
⊥(b)
n is terms is due to NS sector while L

⊥(d)
n term is for R sector, which can

be written as

L
⊥(b)
n = 1

2

∑
r∈Z+1/2

(r + n
2
)bl−rb

l
n+r and L

⊥(d)
n = 1

2

∑
m∈Z

(m+ n
2
)dl−nd

l
n+m

These are helpful in quantizing the theory.

3.5 Counting states

In the order to count the number of states at any given mass squared operator. For

this we need a generating function which contains the information about the num-

ber of states. As for bosonic string theory (open string), we have the oscillators

(a†1, a
†
2, a
†
3, ..., a

†
n), then the generating function can be written as

f(x) =
∞∏
n=1

1

1− xn
(3.37)

As there are 24 transverse light cone directions for each oscillator, since each will have

a generating function. So the complete generating function for bosonic string theory

can be written as

f(x) =
∞∏
n=1

1

(1− xn)24
(3.38)

This is the generating function for the bosonic open string or simply for N⊥. Since the

mass squared α/M2, is more physical than the number operator N⊥. So we need to

define the generating function by using α/M2 instead of N⊥. As for bosonic open string

α/M2 = N⊥ − 1 then for this the generating function will be obtain by dividing the
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above generating function (3.38) by the one power of x. Hence the generating function

for the bosonic open string theory, fos(x) can be written as

fos(x) =
1

x

∞∏
n=1

1

(1− xn)24
(3.39)

We can also expand it as

fos(x) =
1

x
+ 24 + 324x+ 3200x2 + 25650x3 + .... (3.40)

These are the states of the mass squared operators i.e. 24 massless states of photon

and so on.

Similarly the generating function for Neveu Schwarz is written as

fr(x) = 1 + xr

As there are 8 transverse light cone directions for each oscillators bl−1/2, b
l
−3/2, ... , since

each will have a generating function, and also the α′M2 = N⊥− 1
2

for NS sector, so the

complete generating function for NS sector can be written as

fNS(x) =
1√
x

∞∏
n=1

(1 + xn−
1
2 )8

(1− xn)8
(3.41)

And by expanding we find

fNS(x) =
1√
x

+ 8 + 36
√
x+ 128x+ 402x

√
x+ ... (3.42)

These are the states of the mass squared operators i.e. 8 massless states.

Now for Ramond sector, as α′M2 = N⊥, since the generating function becomes

fR(x) = 16
∞∏
n=1

(1 + xn)8

(1− xn)8
(3.43)

The overall 16 factor is due to each combination of the Ramond oscillator which gives

rise to the 16 states as by acting on each ground state. By expanding, we find

fR(x) = 16 + 256x+ 2304x2 + ... (3.44)

We notice that the Ramond coefficients (3.44) are actually double to the corresponding

Neveu Schwarz coefficients (3.42). We will discuss this later.
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3.6 Open superstrings and the GSO projection

As from the Ramond sector, we see that the word sheet has a supersymmetry i.e. the

ground state which is divided into two groups of |Ra〉 and |Rā〉, which built from the

zero modes dl0, and has an equal number of fermionic and bosonic states having the

opposite value of (−1)F .

As the zero modes, dl0 carry the Lorentz index vector and can transform under Lorentz

transformation but the Ramond ground states (|Ra〉 , |Rā〉) do not transform like a

vectors but transform as a spinors. Which shows that the index a, ā are the spinor

indices but are different spinors (and different fermions).

This means that there are two types of fermions in R sector, but both of them gives the

opposite values of (−1)F and with two types of fermions we cannot get any space time

supersymmetry because we identified |Rā〉 as a space time bosons, but bosons cannot

carry any kind of spinor index.

Now to solve this issue as, by projecting the spectrum of R sector in a specific way in

which we choose only those fermions which have (−1)F = −1, by this we can get space

time fermions, and this projection is called Gliozzi, Scherk, and Olive (GSO) projection

[3, 7, 21]. Hence the resultant projected R sector is then called the R− sector (R minus)

which have (−1)F = −1. Similarly, the , is the set of states for which (−1)F = +1. So

the generating function for R− sector then becomes as

fR−(x) = 8
∞∏
n=1

(1 + xn)8

(1− xn)8
(3.45)

By expanding, the power series of (3.45) is then

fR−(x) = 8 + 128x+ 1152x2 + ... (3.46)

So we see that there are eight fermionic massless states in R− sector. Similarly doing

the same thing for NS sector, hence, we find sector states for which (−1)F = −1 and

NS+ sector which have (−1)F = +1 . Since the NS− sector contain a tachyon, hence

it is useful to take the full open superstring by combining the set of states from the R−
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sector and NS+ sector.

Now to find the generating function for NS+ sector fNS+(x) by taking account of GSO

projection which eliminate the contribution of even number of fermions, so we get the

generating function for NS+ sector as

fNS+(x) =
1

2
√
x

[
∞∏
n=1

(1 + xn−
1
2 )8

(1− xn)8
−
∞∏
n=1

(1− xn− 1
2 )8

(1− xn)8

]
(3.47)

For supersymmetry, we need to have fNS+(x) = fR−(x) so this means that

1

2
√
x

(
∞∏
n=1

(1 + xn−
1
2 )8

(1− xn)8
−
∞∏
n=1

(1− xn− 1
2 )8

(1− xn)8

)
= 8

∞∏
n=1

(1 + xn)8

(1− xn)8
(3.48)

This identity is being proved by Carl Gustav Jacob Jacobi in his work on elliptic

functions, which is published in 1829. While in our case, for the basis of supersymmetric,

it is a key equation.

3.7 Closed string theories

As we know that the closed (bosonic) strings can be obtained by the combining the

left moving, and the right moving copies of the open strings. Similarly the closed

superstrings can be obtained by combining the open superstrings. Since there are two

sectors (NS and R) for open superstring, so there are four possibilities for the closed

string sectors, like

(NS, NS), (NS, R), (R, NS), (R, R) (3.49)

As in the case of open superstrings, the space time bosons arises from NS sector while

the space time fermions arises from R sector. Similarly, in the case of closed superstring,

we can get the space time bosons from (NS, NS) as well as from the (R, R)1 sectors

while the space time fermions from (R, NS) and (NS, R) sectors.

1The (R,R) sectors are ”doubly” fermionic and thus the spacetime bosons
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3.7.1 Type IIA Superstring Theory

In the order to get the closed superstring theory with a supersymmetry, for this we

need to truncate the above four sectors in equation (3.49). Since we can truncate as

Left sector :

 NS +

R −

 Right sector :

 NS +

R +

 (3.50)

By this we find the four sectors which is called the type IIA superstring and these

sectors are

(NS + , NS + ), (NS + , R + ), (R − , NS + ), (R − , R + ) (3.51)

This is the type IIA superstring and for this, the mass squared is written as

1

2
α′M2 = α′M2

L + α′M2
R (3.52)

Here M2
L and M2

R are denoting the mass squared operators of the left and right sectors

respectively. Now listing some of the massless states of the varies sectors, which are

(NS + , NS + ) : b̄l−1/2 |NS〉L ⊗ bj−1/2 |NS〉R ⊗
∣∣p+, ~pT

〉
(3.53)

(NS + , R + ) : b̄l−1/2 |NS〉L ⊗ |Rb̄〉R ⊗
∣∣p+, ~pT

〉
(3.54)

(R − , NS + ) : |Ra〉L ⊗ bl−1/2 |NS〉R ⊗
∣∣p+, ~pT

〉
(3.55)

(R − , R + ) : |Ra〉L ⊗ |Rb̄〉R ⊗
∣∣p+, ~pT

〉
(3.56)

Hence, there are 64 bosonic states in (3.53) due to the index and having eight values.

These are just like the bosonic closed string theory massless states and carry the two

indices. So we get the graviton (35 states), the Kalb-Ramond field (28 states), and the

dilaton (one state).

(NS + , NS + ) massless fields are : gµν , Bµν , φ (3.57)

There are 64 fermionic states in each of the states (3.54) and (3.55) due to Both the

states given in (3.54) and (3.55) have included a Ramond ground state, so these states
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are space time fermions. And give the total of 2 x 8 x 8 = 128 fermionic states. Similarly,

the states given (3.56) having the two R ground states, which have doubly fermionic,

so these will be the space time bosons which have 8 x 8 = 64 massless bosonic states

and together with the bosonic states in (3.53) gives the total massless, bosonic states

as 64 + 64 = 128 of the type IIA superstring. The space time bosonic states match

with the space time fermionic states, which is the supersymmetry of the theory.

3.7.2 Type IIB Superstring Theory

A different superstring theory arises by truncating the four sectors which is given in

(3.49) such that

Left sector :

 NS +

R −

 Right sector :

NS +

R −

 (3.58)

By this we find the four sectors which is called the type IIB superstring and these

sectors are

(NS + , NS + ), (NS + , R − ), (R − , NS + ), (R − , R − ) (3.59)

Now listing the massless states of this type IIB superstring theory, which are

(NS + , NS + ) : b̄l−1/2 |NS〉L ⊗ bj−1/2 |NS〉R ⊗
∣∣p+, ~pT

〉
(3.60)

(NS + , R − ) : b̄l−1/2 |NS〉L ⊗ |Rb〉R ⊗
∣∣p+, ~pT

〉
(3.61)

(R − , NS + ) : |Ra〉L ⊗ bl−1/2 |NS〉R ⊗
∣∣p+, ~pT

〉
(3.62)

(R − , R − ) : |Ra〉L ⊗ |Rb〉R ⊗
∣∣p+, ~pT

〉
(3.63)

(NS - NS ) sector: This sector is same for both the superstrings, type IIA and type IIB.

(NS - R ) and (R - NS ) sectors: these sectors give the space time fermions and contain

a spin 3/2 gravitino (56 states) and a spin 1/2 fermion called the dilatino (eight states).

In the case of type IIB, the two gravitinos will have the same chirality while for the

type IIA superstring, they will have opposite chirality.
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(R - R ) sector: This sector gives the space time bosons and in the case of type IIA

superstring theory, the massless bosons contain the Maxwell field (eight states) and the

anti-symmetric gauge field with three index (56 states), while the type IIB superstring

theory, the massless bosons contain the scalar field (one state), the Kalb Ramond field

(28 states), and the totally anti-symmetric gauge field with four index (35 states) [3, 7].

(R - R) the massless fields of type IIA : Aµ, Aµνρ (3.64)

(R - R) the massless fields of type IIB : A,Aµν , Aµνρσ (3.65)

These are the some massless field of R sectors.

3.7.3 Heterotic superstring theories

There are two types of Heterotic superstring theories. These are the closed superstring

theories. in the Heterotic string, we will combine the left moving bosonic open string

with the right moving open superstring as like the type II closed superstring theories

which arises by the combination of both left and right moving copies of the open super-

strings. As there are 26 space time dimension of open bosonic string theory, ten of them

are matched by the right moving open bosonic coordinates with the open superstring

[3]. The extra 16 left moving coordinates can be described a torus with a very special

properties to gives a consistent superstring theory. There are precisely two distinct tori

which have the require properties and they will corresponds to a Lie algebras SO(32)2

and E8 × E8
3. By this we can get a consistent theory which lives in a 10 dimensional

space time. Heterotic superstrings theory comes into two versions, E8 × E8 type and

SO(32) type. These groups characterize the symmetries which exist in the theories.

2The group SO(32) is the group generated by 32-by-32 matrices which are the orthogonal and

having a unit determinant.
3Es is the largest exceptional group, here E is for the exceptional.
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3.8 Type I

We have discussed the oriented string theory 4 in which the operator X l(τ, σ) involves

a parameter σ ∈ [0, π] i.e. both the type II superstring theories and the Heterotic

superstring theories are the theories of oriented closed strings. We can also construct a

theory that will be an unoriented string theory. For this, we define an operator Ω which

can reverse the orientation of the strings [3, 7]. The unoriented strings can be obtained

by restricting the oriented strings spectrum to the set of the states which are invariant

under the action of Ω. Unoriented strings are not the strings with out the orientation

i.e. they viewed like the quantum superposition of states which as a whole are invariant

under the action of Ω. Hence, we can imagine the unoriented state as a superposition of

a string states and the same states with opposite orientation. A supersymmetric theory

of both open and closed unoriented strings is called the Type I superstring theory.

These are the five different superstrings theories which can be relate by the dualities.

3.9 Critical dimensions

For bosonic string theory, we have fixed the space time dimension by using the com-

mutation relation of the Lorentz generators, M−l as

[
M−l,M−j] = 0

The same idea will be used here as we used before in bosonic theory [7]. Now will take

the super Generators, by the same phenomenology we can construct the super Lorentz

generators. For NS sector the super Lorentz generator becomes

M−l = x−◦ p
l − 1

4α′p+

(
xl◦(L

⊥
0 + a) + ((L⊥0 + a)xl◦

)
− i√

2α′p+

∞∑
n=1

1

n
(L⊥−nα

l
n − αl−nL⊥n )

− i√
2α′p+

∞∑
r=1/2

r(L⊥−rb
l
r − bl−rL⊥r )

4The orientation is defined as the direction of increasing of σ.



49

And similarly, the super Lorentz generator for R sector can be written as

M−l = x−◦ p
l − 1

4α′p+

(
xl◦(L

⊥
0 + a) + ((L⊥0 + a)xl◦

)
− i√

2α′p+

∞∑
n=1

1

n
(L⊥−nα

l
n − αl−nL⊥n )

− i√
2α′p+

∞∑
m=1

m(L⊥−md
l
m − dl−mL⊥m)

By calculating the above commutation relation for NS sector the super Lorentz gener-

ator, we get the non vanishing result which is

[
M−l,M−j] = − 1

α′p+2

∞∑
m=1

∆m(αl−mα
l
m − αl−mαlm)

with ∆m is

∆m =

{
m

[
1− 1

8
(D − 2)

]
+

1

m

[
−1

8
(D − 2)− 2a

]}

As for Lorentz invariance, the above equation should be equal to zero and for this

the dimension of space time, D = 10 and the normal ordering constant, NS sector

aNS = −1
2
. and by the similarly method, for the super Lorentz generator R sector

aR = 0.



D-BRANES

A Dp-brane (with p spatial dimensions) is an extended object. The letter D stands

for Dirichlet. When p is equal to the total number of spatial dimensions, then this

type of Dp-brane is called space filling brane. In bosonic string theory, D25-brane is a

space filling brane because p is equal to the total number of spatial dimensions. The

endpoints of open strings must lie on the D-brane.

Similarly, when the Dirichlet conditions applied to the subset of the d indices of Xµ,

i.e. to the indices p+ 1, ..., d, this means that the endpoints of the string are restricted

to move on a p-dimensional hyper plane. This higher dimensional object is then calling

a Dp-brane, where p indicates its (spatial) dimensions and D stands for Dirichlet.

It turns out that these objects should be considered to be dynamical as well.

4.1 Tachyons and D-brane decay

In bosonic string theory there is a particle having imaginary mass, called tachyon. The

open string is attached to a D-brane. The tachyons make the D-brane unstable [7, 23].

In the order to study the tachyons and D-brane decay, let start from the scalar field

because the field associated with the tachyons are the scalar field and the Lagrangian

for a scalar field can be written as

L = −1

2
ηµν∂µφ ∂νφ− V (φ)

50
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Here V (φ) is the potential of scalar field. From scalar field Lagrangian, we can find the

equation of motion

−∂
2φ

∂t2
+∇2φ− V ′(φ) = 0

As the scalar field potential can be written in the form of mass, as

V (φ) =
1

2
M2φ2

As when M2 > 0 then the potential V (φ) will have the stable minimum at φ = 0 while

when M2 < 0 then the potential V (φ) will have the unstable maximum at φ = 0. For

simplicity, let us consider the field only depends on time, then the equation of motion

becomes as
∂2φ(t)

∂t2
+M2φ(t) = 0

Now when the mass squared is greater than zero then the solution of the above equation

become

φ = A sin(Mt+ a0)

As due to the stable point, the scalar field could be sitting at φ = 0 forever and will be

simply oscillate whenever it is displaced [24]. Now consider the imaginary mass squared,

like M2 = −β2, where β is positive, in this case the equation of motion becomes as

∂2φ(t)

∂t2
− β2φ(t) = 0

The solution of this equation become as

φ(t) = A cosh(βt) +B sinh(βt)

Let the solution φ(t) = sinh(βt). As when time is zero, φ(0) = 0 but when time goes

to infinite then φ(∞) = ∞. This can be imagining as the field φ is rolled up. By

using the trivial solution, we can say that the tachyon will stay at φ = 0 but any small

perturbation could make it to roll-off. The point φ = 0 is an unstable point for tachyon

and tachyon cannot stay here for some definite time, which shows the instability. As

the mass squared of tachyon in an open string theory is

M2 = − 1

α′
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Since the potential of the free tachyon becomes

V free
tach (φ) = − 1

2α′
φ2

As the presence of the tachyon is the signal of instability of the open string theory. As

the open string is attached to the D-brane, since we can say that there is instability in

the background of space filling D-branes. In bosonic open string theory, the space filling

D-brane is D25-brane. As it is a physical object and its have some energy density T25[7].

Tachyons are the states of an open string which is attached to D-brane this means that

the tachyons are the excited states of D-brane and by this, we can say the tachyons

states will lower the energy of D-brane. Explicitly, the existence of tachyons means

that the space filling brane, D25-brane is unstable.

4.2 Quantization of open strings in the presence of

various kinds of D-branes

4.2.1 Dp-branes and boundary conditions

Considering a Dp-brane and let introduces the spacetime coordinates xµ, with µ =

0, 1, 2, .., 25 for bosonic string theory, splitting these coordinates into two groups i.e.

tangent to the brane and normal to the brane. As the tangential coordinates includes

the time coordinate as well as let some spatial coordinates p , then the normal to the

brane includes (D − p) coordinates. We can write it as

x0, x1, x2, .., xp︸ ︷︷ ︸
DP tangential coordinates

, xp+1, xp+2, xp+3, .., xd︸ ︷︷ ︸
DP normal coordinates

(4.1)

For simplicity we let xa = x̄a, with (a = p + 1, ..., d). We can also write the above

equation (4.1) for string coordinates Xµ(τ, σ) in similar fashion, like

X0, X1, X2, .., Xp︸ ︷︷ ︸
DP tangential coordinates

, Xp+1, Xp+2, Xp+3, .., Xd︸ ︷︷ ︸
DP normal coordinates

(4.2)
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Since the open string attached with the Dp-brane and the end points must lies on this

Dp-brane then the normal coordinates of string to the brane will satisfy the Dirichlet

boundary conditions such that

Xa(τ, σ)|σ=0 = Xa(τ, σ)|σ=π = x̄a , a = p+ 1, ..., d (4.3)

The coordinatesXα will call DD coordinates due to these satisfying the Dirichlet bound-

ary condition on both the end points. The end points of the open string can move ev-

erywhere along the tangent direction to the brane. By this the open string coordinates

which is tangent to the D-brane will satisfy the Neumann boundary conditions, as

X ′m(τ, σ)|σ=0 = X ′m(τ, σ)|σ=π = 0 , m = 0, 1, ..., p (4.4)

These call NN coordinates due to both of the open string endpoints satisfying the

Neumann boundary condition. Hence we can summarize this as

X0, X1, X2, .., Xp︸ ︷︷ ︸
NN coordinates

,Xp+1, Xp+2, Xp+3, .., Xd︸ ︷︷ ︸
DD coordinates

(4.5)

Now in the order to use the light cone coordinates we need to have at least one of the

spatial NN coordinate from which we define X± coordinates. So this means that we

will assume p ≥ 1 and our analysis will not apply to the strings which will attach to a

D0-brane. Hence in light cone coordinates, we may write

X+, X−, {X i}︸ ︷︷ ︸
NN

, {Xa}︸ ︷︷ ︸
DD

, i = 2, ..., p and a = p+ 1, ..., d (4.6)

4.2.2 Quantizing open strings on Dp-branes

As before we have quantized the open string in the presence of the space filling D-

brane and now we will quantize the open string in the presence of the Dp-brane and

to study the effects on string spectrum states due to the presence of the Dp-brane. As

the NN coordinates X i(τ, σ) will also satisfy the same conditions that were satisfied

by the light-cone coordinates X i(τ, σ) of the open strings which were attached to the
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D25-brane. Since our previous results are useful for the coordinates X i. Let start from

equation (2.47) and let l→ (i, a) then we finds

Ẋ−±X ′− =
1

2α′
1

2P+

(
(Ẋ i ±X ′i)2 + (Ẋa ±X ′a)2

)
(4.7)

As X i(τ, σ) are satisfying exactly the same conditions which satisfied by X l(τ, σ) so by

this we can write

Ẋ i ±X ′i =
√

2α′
∑
n∈Z

αine
−in(τ±σ) (4.8)

Now to investigate the normal coordinates X i(τ, σ), as these coordinates are normal to

the brane will satisfy the wave equation. Now solving the wave equation for Xα, we

get1

Xa(τ, σ) = x̄a +
√

2α′
∑
n6=0

1

n
αane

−inτ sinnσ (4.9)

And by this we can easily finds

X ′a ± Ẋa =
√

2α′
∑
n6=0

αane
−in(τ±σ) (4.10)

This is same as equation (4.8) but differ by a minus sign and a zero mode which is

absent here in equation (4.10).

We can easily quantize this string which is attached with a Dp-Brane. As P τa = 1
2πα′ Ẋ

a

then the non vanishing commutation relations are[
Xa(τ, σ), Ẋb(τ, σ′)

]
= i2πα′ηabδ(σ − σ′) (4.11)

Similarly we can easily find that

[
αam, α

b
n

]
= m ηabδm+n,0 (4.12)

The mass squared operators becomes as

M2 =
1

α′

(
−1 +

∞∑
n=1

nai†n a
i
n +

∞∑
m=1

maa†ma
a
m

)
(4.13)

1Here x̄a is not an operator but a number.
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Here the repeated index will be summed, the normal ordering constant is (a = −1),

and the critical dimensions are same as for D25-brane. As l → (i, a) since our ground

state will not remain the same as D25-brane. Since for Dp-brane, the ground state will

be labeled by p+ , pi and then becomes |p+, ~p〉as with ~p = (p2, ..pp). Now the state

space are written as

|λ〉 =

[
∞∏
n=1

p∏
i=2

(
ai†n
)λn,i][ ∞∏

m=1

d∏
a=p+1

(
aa†m
)λm,a] ∣∣p+, ~p

〉
(4.14)

The associated wave functions take the form

ψi1....ipa1....aq.(τ, p
+, ~p)

Since some of the fields that satisfy M2 ≤ 0 associated with Dp-branes are, the scalar

field (tachyons), the massless Maxwell field (photons) ai†1 |p+, ~p〉 and similarly the os-

cillator that acts on the ground states from those coordinates normal to the Dp-branes

are ai†1 |p+, ~p〉 , these are the massless the Lorentz scalar (due to the index ) which are

normal to the branes.

4.2.3 Open string between parallel Dp-branes

Now considering the open strings which is extends between the two parallel Dp-branes.

Let the first Dp-brane is located at xa = x̄a1 ’while the second one is at xa = x̄a2. The

classes of the open string which are supported on the particular configurations of the

D-branes are called sectors. In the presence of a two parallel Dp-branes, an open string

can begin from one brane and end on the other brane. There are four sectors in our

case of two parallel Dp-branes.

Consider the sector, in which open strings begins on the brane one and end on the

brane two. For this, the boundary conditions for the DD strings coordinates are

Xa(τ, σ)|σ=0 = x̄a1 , Xa(τ, σ)|σ=π = x̄a2 , a = p+ 1, ..., d (4.15)
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Similarly for Xawhich are normal to the branes and will satisfy the wave equation. By

solving the wave equation for Xa, we find

Xa(τ, σ) = x̄a1 + (x̄a2 − x̄a1)
σ

π
+
√

2α′
∑
n6=0

1

n
αane

−inτ sinnσ (4.16)

From this we get

X ′a ± Ẋa =
√

2α′
∑
n∈Z

αane
−in(τ±σ) and

√
2α′αa0 =

1

π
(x̄a2 − x̄a1) (4.17)

Similarly the mass squared will becomes

M2 =

(
x̄a2 − x̄a1

2πα′

)2

+
1

α′
(
−1 +N⊥

)
(4.18)

Where

N⊥ =
∞∑
n=1

p∑
i=2

nai†n a
i
n +

∞∑
m=1

d∑
a=p+1

maa†ma
a
m (4.19)

To develop the ground state for our parallel Dp-branes, we need additional labels which

distinguish the various sectors [7]. These additional labels will be two numbers. The

first number will denote the brane on which the open string end point σ = 0 lies while

the second number will denote the brane on which the other end point σ = π lies. Since

the ground states can be written as |p+, ~p; [ij]〉 and the four sectors are

∣∣p+, ~p; [11]
〉
,
∣∣p+, ~p; [22]

〉
,
∣∣p+, ~p; [12]

〉
,
∣∣p+, ~p; [21]

〉
. (4.20)

Here the first two sectors are those which we discuss earlier i.e. x̄a2 = x̄a1 . Let us

first discuss the [12] sector, the mass squared operators for the lowest value of number

operators becomes ∣∣p+, ~p; [12]
〉

, M2 = − 1

α′
+

(
x̄a2 − x̄a1

2πα′

)2

When the separations between the two branes vanished then the field associated is a

scalar tachyonic field. From this we can find the critical separation which is

|x̄a2 − x̄a1| = 2π
√
α′
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Hence the ground states represents the massless scalar field for the zero separation while

for large separation, the ground states represents the massive scalar fields. The next

states (due to the number operators) are

aa†
∣∣p+, ~p; [12]

〉
, M2 = − 1

α′
+

(
x̄a2 − x̄a1

2πα′

)2

These are the (d− p) Lorentz scalar which is normal to the branes.

ai†
∣∣p+, ~p; [12]

〉
, M2 = − 1

α′
+

(
x̄a2 − x̄a1

2πα′

)2

These are the (p + 1)− 2 = p + 1 massive states. As we know that the massive gauge

fields has more degree of freedom than the massless gauge field. Hence from this we

have one massive vector as well as (d− p− 1) massive scalars.

We have obtained a very interesting situation, as the separation between the Dp-branes

goes to zero and coincide but still they are distinguishable and we have four open string

sectors. The massless string states that represents a strings extending from Dp-brane

one to Dp-brane two, includes the massless gauge field and (d− p) states of a massless

scalars. This is same content as that of a sector in which strings begin and end on

the same Dp-brane. Whenever the two D-branes coincides, we get four massless gauge

fields. From the world-volume of two coincide D-branes we indeed to get a U(2) Yang-

Mills theory.

Let we have N Dp-branes, for this the sectors will be labeled by the pairs [i, j]2 , here

i = 1, 2, ..N . The [i,j] sector will consist of the open strings which will start on ith and

end on jth brane and we have N2 sectors. The interaction of strings can be visualized

as The first open string will join with a second open string and will form another open

string. For this, the end point of first string (σ = π) will join the beginning point of the

second string (σ = 0). And the new string (became from these two) will begin at the

beginning point of the first string and will end on the end point of the second string

[7, 25]. If the strings stretched between the D-branes, then the first string will from

2The discrete labels i, j are used to label the branes, and the various open string sectors are

sometimes called Chan-Paton indices.
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the sector will have to join by the second string from sector to gives the product open

string in the sector. The interaction can be written as

[i, j] ∗ [j, k] = [i, k], here j is not summed

If the N Dp-branes are coincides, then the N2 sectors results in the N2 interacting

massless gauge fields. Since from this N coinciding D-branes will carry U(N) massless

gauge fields.

4.2.4 Strings between parallel Dp and Dq-branes

Now considering the two parallel D-branes, but having different dimension. Let we have

two D-branes which are Dp-brane and Dq-brane and assume that p > q. From this,

there will be a p-dimensional hyperplane parallel to the Dp-brane which will contain

the Dq-brane. This means that we will have some common tangent as well as normal

directions for both branes. For strings coordinates Xµ, we can write for parallel Dp-

brane and Dq-brane with p > q

X0, X1, .., Xq︸ ︷︷ ︸
common tangential coordinates

,Xq+1, Xq+2, .., Xp︸ ︷︷ ︸
mixed coordinates

, Xp+1, Xp+2, .., Xd︸ ︷︷ ︸
common normal coordinates

(4.21)

Here the mixed coordinates will satisfy the Neumann boundary conditions on the start-

ing Dp-brane while the Dirichlet boundary conditions on the ending of the Dq-brane

and these coordinates will call ND coordinates. Similarly for the strings coordinates,

we can also write

X0, X1, .., Xq︸ ︷︷ ︸
NN coordinates

,Xq+1, Xq+2, .., Xp︸ ︷︷ ︸
ND coordinates

, Xp+1, Xp+2, .., Xd︸ ︷︷ ︸
DD coordinates

(4.22)

In light cone coordinates, we can write these as

X+, X−, {X i}︸ ︷︷ ︸
NN

, {Xr}︸ ︷︷ ︸
ND

, {Xa}︸ ︷︷ ︸
DD

(4.23)

Where i = 2, ..., q , r = q + 1, ..., p and a = p+ 1, ..., d . Now let for the position of the

Dp-brane is while for position of Dq-brane is x̄r2 and x̄a2. The boundary conditions for
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the ND coordinates Xr are

X ′r(τ, σ)|σ=0 = 0 , Xr(τ, σ)|σ=π = x̄r2 (4.24)

The expansion of Xr(τ, σ), by using the same procedure, can be written as

Xr(τ, σ) = x̄r2 + i
√

2α′
∑

n∈Zodd

2

n
αrn

2
e−iτ

n
2 cos

(nσ
2

)
(4.25)

The Hermiticity of the above expansion, Xr gives (αrn
2
)† = αr−n

2
. And by the above

expansion (4.16) we can find

Ẋr ±X ′r =
√

2α′
∑

n∈Zodd

αrn
2
e−i

n
2

(τ±σ) (4.26)

The non vanishing commutation relations are[
Xr(τ, σ), Ẋs(τ, σ′)

]
= i(2πα′)δ(σ − σ′)δrs (4.27)

And by the similar method as we have done for space filling D-Brane, we can also find

as [
αrm

2
, αsn

2

]
=
m

2
δrsδm+n,0 (4.28)

Now as we have three types of coordinates like NN, DD, and ND or DN. The normal

ordering contribution term for both NN and DD coordinates is same because of all

oscillators are integrally moded

aDD = aNN = − 1

24
(4.29)

However, for the ND or DN coordinates, the contribution term can be calculated as

1

2

∑
m∈Zodd

αr−m
2
αrm

2
=

1

2

∑
m∈Z+

odd

αr−m
2
αrm

2
+

1

48
(p− q) (4.30)

Since this means that the contribution term for ND or DN is

aDN = aND =
1

48
(4.31)
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Similarly we can easily find the total normal order constant, which is

a = − 1

24
[q + 25− (p+ 1)] +

1

48
(p− q)

= −1 +
1

16
(p− q) (4.32)

Now the mass squared operator then becomes

M2 =

(
x̄a2 − x̄a1

2πα′

)2

+
1

α′

(
N⊥ − 1 +

1

16
(p− q)

)
(4.33)

With

N⊥ =
∞∑
n=1

p∑
i=2

nai†n a
i
n +

∑
k∈Z +

odd

p∑
r=q+1

k

2
αr†k

2

αrk
2

+
∞∑
m=1

d∑
a=p+1

maa†ma
a
m (4.34)

And the ground state are now labeled as∣∣p+, ~p; [12]
〉

, ~p = (p2, ....., pq) (4.35)

The labels of the ground state indicates that the corresponding fields will be living in

a (q+1 ) dimensions of the space time i.e. the fields will live on the Dq-brane world-

volume, which has the lower dimensions. The ground states having N⊥ = 0 corresponds

to a scalar field on Dq-brane. This scalar depends upon the separation of the branes.

4.3 String charge and electric charge

4.3.1 Fundamental string charge

As we know that, for the point particle, the word line is one dimensional and Maxwell

gauge field Aµ carrying one index and the point particle carries electric charges whenever

it interacts with Maxwell field, in which the particle couples to the Maxwell field.

Similar idea used for string charge, the string should couples to a new kind of gauge

field. This gauge field is the Kalb Ramond anti symmetric tensor (of rank two)Bµν

which is the massless field and arisen in closed string. The complete dynamics of the

string coupling to Kalb Ramond field can be written in the term of action is

S = Sstr−
1

2

∫
dτdσBµν(X) (∂τX

µ∂σX
ν − ∂τXν∂σX

µ)− 1

6k2

∫
dDx HµνρH

µνρ (4.36)
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Here Sstr is the string action the second term is the action term due to string charge

while the last term is the action for the Kalb Ramond. And k is the dimensionful

constant which makes the action dimensionless i.e. ([k2] = M6−D). The Hµνρ is the

field strength of Bµν which can be written as

Hµνρ ≡ ∂µBνρ + ∂νBµρ + ∂ρBµν (4.37)

In the second term of the above action (4.36), Bµν(X(τ, σ)) can be written for the

general space time Bµν(X) as

Bµν(X(τ, σ)) =

∫
dDxδD(x−X(τ, σ)) Bµν(x) (4.38)

Now the variation of above action (4.36) gives us

δS =

∫
dDx δBµν(x)

(
1

k2
∂ρH

µνρ − jµν
)

(4.39)

Here jµν is the (anti symmetric) current

jµν =
1

2

∫
dτdσδD(x−X(τ, σ)) (∂τX

µ∂σX
ν − ∂τXν∂σX

µ) (4.40)

By the variation principle, we find

1

k2
∂ρH

µνρ = jµν (4.41)

The tensor jµν is conserved quantity like

∂jµν

∂xµ
=

1

k2

∂2Hµνρ

∂xµ∂xρ
= 0 (4.42)

As the above equation give the idea of conservation of jµν but there is a ν free index,

which means that jµν is the set of conserved current labeled by (ν) a free index. And

the charge density, as the zeroth component of jµν , since the charge density (j̄0) of the

Kalb Ramond field is then j0k, here k will be running over the spatial value. Similarly

from the above equation (4.42), we find ∇.~j0 = 0 and from the charge density we can

easily find the charge of string, Q̄ as

~Q =

∫
ddx ~j0 (4.43)
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To understand it more, using the static gauge X0 = τ = t and then simplifying the

equation (4.40), we get

~j0(~x, t) =
1

2

∫
dσδ

(
~x− ~X(t, σ)

)
~X ′(t, σ) (4.44)

From this, we get the idea that the charge density is tangent to the every point on

string and lies along orientation of the string.

In the order to write this in more explicit form that the string density depends upon

the orientation, for this let a long static string stretched along the xl, then the string

can be describe as

X1(τ, σ) = f(σ) , X2 = X3 = .... = Xd = 0 (4.45)

Here f(σ) is the function of σ with the range of −∞ to ∞, this function will be either

increasing or decreasing. Now using the above equation (4.45) and solving the equation

(4.44), then we get

j01(x1, ..., xd; t) =
1

2
sgn(f ′)δ(x2)δ(x3)...δ(xd) =

1

2
sgn(f ′)δ(x⊥) (4.46)

Here sgn(f ′) is for the sign of f ′. This result show explicitly that the charge density ~j0

depends upon the orientation or the sign of f ′(σ).

4.3.2 Visualizing string charge

In the order to visualize the charge of string, let us consider we have a static string

for which jik = 0 ( i,k are spatial components), since for a static string, the equation

(4.41) becomes as
∂H ikρ

∂xρ
= 0 (4.47)

By this H are to be time independent so H ijk = 0 and the other equation is

∂Hokl

∂xl
= k2jok (4.48)

Now let us introduce a new vector ~BH . This is called field strength dual to H and

which can be define as

H0kl = εklm ~BH (4.49)
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Here εijk is the anti symmetric Levi-civita symbol. Since the above equation (4.48)

then becomes

(∇ × ~BH)k = k2j0k (4.50)

Now from this equation we can write

∇ × ~BH = k2~j0 (4.51)

This equation is the Ampere’s equation, where ~BH is the magnetic field. Integrating

the above equation (4.51) over a curve Γ of a two dimensional surface S. so we get

1

k2

∮
Γ

~BH .d~l =

∫
S

~j0.d~a (4.52)

By this equation, we get the idea that the curve Γ is link to a string and the strings

number N which is associated with Γ is define as

1

2
N =

1

k2

∮
Γ

~BH .d~l =

∫
S

~j0.d~a (4.53)

Here N is the number of strings which is linked by the curve Γ.

4.3.3 Strings ending on D-branes

As by the quantization of closed strings, there arises a massless field called Kalb Ramond

field which lives over the all spacetime and the string can couple electrically with it to

get charged. Now considering the charged string which attached to D-branes, for this,

the action for the string couple to Kalb Ramond field, is written as

SB = −1

2

∫
dτdσ εαβ∂αX

µ∂βX
νBµν(X(τ, σ)) (4.54)

Here εαβ is the two dimensional indices α, β = 0, 1, anti symmetric with ε01 = 1. Now

using the above action and calculating the variation in SB, which we find that

δSB = −
∫
dτdσ (∂τ (Λν∂σX

ν)− ∂σ(Λν∂τX
µ)) (4.55)

Here we use

δBµν(X) =
∂Λν

∂Xµ
− ∂Λµ

∂Xν
(4.56)
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The arguments of Λ are the string coordinates X(τ, σ)due to the arguments of Bµν .

As from equation (4.55), the two total derivative in which the time derivative give no

contribution, since this means that Λ are vanishes at the end of time. For a closed string

both the derivative vanishes while for the open string, there introduces a boundary

contributions terms, which in not vanishes. In the order to find δBµν for an open

string, let the string coordinates along the brane are Xm and the string coordinates

normal to the brane are Xa. Since we can write this as

Xµ = (Xm, Xa) , µ = (m, a) (4.57)

If this D-brane is Dp-brane, then (m = 0, 1, ...p) and solving the equation (4.55) for

Xµ = (Xm, Xa) coordinates, so the coordinates Xa are DD for which ∂τX
a = 0 and

the limits we take the σ ∈ [0, π] then we get

δSB =

∫
dτ Λm∂τX

m|σ=π −
∫
dτ Λm∂τX

m|σ=0 (4.58)

Here we get the two boundary terms and hence, the gauge invariance has failed. From

this we got the idea that the string charge conservation failed at the end points of the

string. In the order to restore the gauge invariance, we should add some terms which

give the electric charges to the end points of the string. then the Action can be written

as

S = SB +

∫
dτ Am(X)∂τX

m|σ=π −
∫
dτ Am(X)∂τX

m|σ=0 (4.59)

As whenever we vary Λµ (i.e. δBµν = ∂µΛν−∂νΛµ ), then we have to also vary Maxwell

field Aµ on D-brane, like wise δAm = −Λm, and the two terms have opposite sign which

show that the end points of string, which lies on Dp-brane, are oppositely charged. This

action (4.59) restored the string charge conservation and we got the idea that the string

end points have the opposite charge due to the Maxwell gauge field Am and by this we

restore the conservation of charge invariance.

The Maxwell action is also not invariant, as it is proportional to F 2, like

δFmn = ∂mδAn − ∂nδAm = −∂mΛn + ∂nΛm = −δBmn (4.60)
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To make it invariant, we should add Bmn into Maxwell field Fmn such that

Fmn ≡ Fmn +Bmn , δFmn = 0 (4.61)

This Fmn is called the field strength on D-brane and the Lagrangian density on D-brane

is proportional to −1
4
FmnFmn , so expanding it

− 1

4
FmnFmn = −1

4
BmnBmn −

1

4
FmnFmn −

1

2
FmnBmn (4.62)

As the last term has some interesting physical significance, expanding it as

− 1

2
FmnBmn = −F 0kB0k + ... (4.63)

In the order to understand the physical significance of this term, let as the action for

string charge, second term in (4.36), can be written as

≡ −
∫
dDx Bµν(x) jµν(x) (4.64)

This equation tells us that string charge density j0k couples to B0k . Since anything

couple to B0k will carry string charge so it means that F 0k will represent the string

charge on D-brane but as F 0k is equal to the electric field (F 0k = Ek), which gives the

idea that the electric field lines will carry the string charge on D-branes.

4.4 D-brane charges and stable D-branes in Type

II

There are also other extended objects rather than strings that carry charge i.e. Dp-

branes. To study the charge of a Dp-branes, let start from our previous concept of

charge that the string carry charge when they couple to Kalb Ramond gauge field, so

this coupling is written as

−
∫
dτ dσ ∂τX

µ∂σX
νBµν(X(τ ,σ)) (4.65)
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Now generalizing this idea like, a Dp-brane will be electrically charge if it coupled to a

massless anti symmetric tensor field of indices (p + 1 ). As Dp-brane has (p+ 1 ) di-

mensions and is parameterize τ by and the set of its coordinates (σ1, σ2, ..., σp). Let the

space time coordinates which describe the position of this brane is Xµ(τ, σ1, σ2, ..., σp)

with µ = 0, 1, ...d, and the anti symmetric tensor field is describe by Aµµ1µ2...µp(x) then

the generalize coupling from (4.65) is written as

Sp = −
∫
dτ dσ1..dσp ∂τX

µ∂σ1Xµ1 ...∂σpX
µpAµµ1µ2...µp(X

µ(τ, σ1, σ2, ..., σp)) (4.66)

Kalb Ramond gauge field is the only massless anti symmetric tensor in bosonic closed

string theory and there is no other massless anti symmetric tensor which means that the

Dp-branes cannot be charged in bosonic string theory. While the type II superstring

theories have some additional anti symmetric massless tensor in (R - R ) sectors, as

listed in (3.64) and (3.65)

(R - R ) the massless fields of type IIA: Aµ, Aµνρ (4.67)

(R - R ) the massless fields of type IIA: A,Aµν , Aµνρσ (4.68)

This means that Aµ coupled to the D0-branes and Aµνρ coupled to the D2-branes while,

Aµν coupled to the D1-branes and Aµνρσ coupled to the D3-branes. And the field A does

not couple to any D-brane (it coupled electrically to the object called, D-instanton).

Summarizing these as

TypeIIA : D0, D2, (4.69)

TypeIIB : D1, D3. (4.70)

These branes are the stable charged and cannot decay into closed or open string states,

while the bosonic D-branes are unstable due to the existence of tachyons, and carry no

charge. Similarly in type IIA superstring theory, the Dp-branes with even are stable

but are unstable in type IIB superstring theory while, in type IIB superstring theory,

the Dp-branes with odd p are stable but are unstable in type IIA superstring theory.

All the stable D-branes of type II superstring theories are charged and the Dp-branes
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which is not appeared in the above lists (4.69) and (4.70), like D4, D6, and D8 of type

IIA superstring theory while the D5, D7, and D9 of type IIB superstring theory, means

that these are carrying the magnetic charges for either (R - R ) gauge fields in listed

above in (4.67) and (4.68) or for the other (R - R ) states that we not includes in the

discussion [3, 7, 27, 28].

The (electric) charge of the Dp-brane has the simple physical significance, when the p

(spatial dimensions) are curled up to a circles and Dp-brane is wrapping around, the

resulting compact space. Since here, p compact space directions will lies on D-brane

and others space time directions, which defined here, the lower dimensional spacetime,

will be normal to the brane. Hence, the lower-dimensional observer which has only

access to the non compact directions and will see the brane as a point particle.

Let (x1, ...., xp) be the compact directions and (X1, ...., Xp) be their corresponding coor-

dinates of brane. If compact directions are curled up to the circles of radii (R1, ...., Rp)

and assuming the parameters σk ∈ [0, 2π] then

Xk(τ, σ1, ..., σp) = Rkσk , k = 1, ..., p (4.71)

Here the repeated index k is not summed. This represent the wrapped Dp-branes and

the coordinates Xk are running from zero to 2πRk. Let the non compact dimensions

be the Xm with m index is for the non compact directions, then

Xm(τ, σ1, ..., σp) = xk(τ) (4.72)

This equation shows that, Dp-brane appeared as the point particle to the observer

which has the lower-dimensions. These assumptions made the equation (4.66) as

Sp = −
∫
dτ dσ1..dσp ∂τX

µR1...RpAµ 12...p(X(τ, σ1, σ2, ..., σp)) (4.73)

Since the µ will take the values over the non compact directions, µ = m, then the above

equation (4.73) becomes

Sp = −
∫
dτ dσ1..dσp ∂τX

mR1...RpAm 12..p

(
Xm(τ), Xk(σk)

)
(4.74)
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Finally, let the part of A...field which is independent of compact coordinates i.e. Am 12..p(x
m(τ)),

then the above equation (4.74) becomes

Sp = −R1...Rp

∫
dτ dσ1..dσp ∂τx

mAm 12..p(x
m(τ)) (4.75)

By solving this integral, we find

Sp = − Vp
(α′)p/2

∫
dτ ∂τx

mĀm(xm(τ)) = − Vp
(ls)p

∫
Ām dxm (4.76)

Here Vp is the volume of compact space, Vp = (2πR1)....(2πRp) , And ls is the string

length ls = (α′)1/2. And the gauge field Ām as 1
(α′)p/2

Ām(xm(τ)) = Am 12...p(xm(τ)).

The equation (4.76) recognized that the coupling of the point particle to the Maxwell

field Ām which means that the Dp-brane appeared as a charged point particle. From

this the charge Q of the brane is

Q =
Vp

(ls)p
(4.77)

The charge Q depends upon the volume of the branes [7].



STRING DUALITIES

Duality is generally used for the relationship between the two systems which have very

different descriptions, but identical physics. There are two types of dualities in string

theory, T-duality and S-duality.1 In many cases, the T-duality implies that the two

different geometries of the extra dimensions are physically equivalent i.e. the circle of

radius (R) is equivalent to the circle of (α′R−1) radius. As there are five superstring

theories which looks like the different theories from one another, but the T-duality

relates the two type II superstring theories and the two Heterotic superstring theories.

Similarly, S-duality relates, string’s coupling constant gs to (g−1
s ), in the same ways as

like the T-duality. S-duality relates the type I superstring theory to Heterotic SO (32)

string theory, and type IIB superstring theory relates to itself.

To deal with the T-duality, we should first discuss the effects on the string when one of

the spatial dimensions has curled up to compact space.

5.1 T-duality and closed strings

5.1.1 5.1.1 Mode expansions for compact dimension

Let us consider one of the spatial dimension be curled up,2 in free bosonic string theory

i.e. the X25 dimension is curled up into a circle of radius R. Now we are going to check

the effects of this on closed string [7, 29], as before we have taken the closed string

1Where some author writes T for target ‘while some use it for toroidal and S is for Strong coupling.
2By identification we can compact a dimension i.e. x ∼ x+ 2πR

69
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periodicity condition as

Xµ(τ, σ) = Xµ(τ, σ + 2π) (5.1)

This periodicity condition is used whenever the closed string moving in a non compact

dimensions. As usual we will use the light cone coordinates. When there is a compact

dimension, let say X25 ≡ X and the light cone coordinate are

X+ , X− , X2, X3, ..., X24︸ ︷︷ ︸
Xi

, X (5.2)

Then the periodicity condition becomes as

X(τ, σ) = X(τ, σ + 2π) +m(2πR) (5.3)

Here m is the number, called the winding number, and defined as, the number of times

that the string winds around the circle of compact dimension and its sign depend upon

the direction of winding. For other non compact dimensions, µ 6= 25 the equation (5.1)

holds. Let defines the winding w in the terms of the winding number m and the radius

of the compact space as

w ≡ mR

α′
(5.4)

By this the above periodicity condition in equation (5.3) becomes as

X(τ, σ) = X(τ, σ + 2π) + 2πα′w (5.5)

The mode expansions for the this equation (5.5) can be similarly derived as we have

done before, the expansion become as

XL(u) =
1

2
xL0 +

√
α′

2
ᾱ0u+ i

√
α′

2

∑
n6=0

1

n
ᾱne

−inu (5.6)

XR(v) =
1

2
xR0 +

√
α′

2
ᾱ0v + i

√
α′

2

∑
n6=0

1

n
ᾱne

−inv (5.7)

And from these two equations we get

ᾱ0 − α0 =
√

2α′ (5.8)
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As we see that ᾱ0 is equal to α0 for zero winding. By calculating the momentum along

the compact direction like

P =
1

2πα′

2π∫
0

(ẊL + ẊR)dσ =
1√
2α′

(ᾱ0+α0) (5.9)

Form solving these two equations (5.8) and (5.9), we get

α0 =

√
α′

2
(p− w)

ᾱ0 =

√
α′

2
(p+ w) (5.10)

Using these new definition by which we get

X(τ, σ) = x0 + α′pτ + α′wσ + i

√
α′

2

∑
n6=0

1

n
e−inτ (αne

inσ + ᾱne
−inσ) (5.11)

This is the mode expansion of compact dimension and by this we can get easily

Ẋ +X ′ =
√

2α′
∑
n∈Z

ᾱne
−in(τ+σ) (5.12)

Ẋ −X ′ =
√

2α′
∑
n∈Z

αne
−in(τ−σ) (5.13)

5.1.2 Quantization and commutation relations

For quantization we adopted the similar method like the modes becomes operators and

starting from the commutation relation between the momentum P τ (τ, σ) and the string

compact dimension, X which is

[X(τ, σ), P τ (τ, σ′)] = iδ(σ − σ′) (5.14)

Similarly the other commutation relations, will become by same method as we done

before for non compact dimensions, as

[ᾱm, ᾱn] = [αm, αn] = mδm+n,0 , [αm, ᾱn] = 0 (5.15)
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Now by the explicit form of ᾱ0 and α0 , we get

[p, w] = 0 (5.16)

Since ᾱ0 and α0 commuting with ᾱn, αn which means that

[p, ᾱn] = [p, αn] = [w, αn] = [w, ᾱn] = 0 (5.17)

And from equation (5.14) we easily find that

[x0, α0] = [x0, ᾱn] = i

√
α′

2
(5.18)

And using the explicit form of ᾱ0 and α0 we find

[x0, p] = i , [x0, w] = 0 (5.19)

As we see that the winding w commutes with all the operators which appear in X.

This gives the idea that the winding w is a constant or just a constant number. More

physically the winding w is an operator which gives the Eigen values of w corresponding

to various possible windings of strings. The quantization is only possible for those closed

string sectors which has some fixed winding w. As along the compact dimension, the

string would act as like a point particle that is moving on a circle3 since the momentum

will be then quantize and can be written as

p =
n

R
, n ∈ Z (5.20)

Here n is named as Kaluza Klein excitation number. Since both the operators p and w

have discrete values.

5.1.3 Constraint and mass spectrum

For the mass spectrum, we begin from the Virasoro operators in which the sum over

transverse l is splits into a sum over i and a term due to compact dimension, as

L̄⊥0 =
1

2
ᾱl0ᾱ

l
0 + N̄⊥ =

1

4
pipi + ᾱ0ᾱ0 + N̄⊥

3By winding, we loss and gain some states for string, while for particle, we just lost states when

we compact a dimension by identification because the particle cannot wrap around circle to gives new

states.
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L⊥0 =
1

2
αl0α

l
0 +N⊥ =

1

4
pipi + α0α0 +N⊥ (5.21)

All the oscillators of X l and X will contribute to the number operators N̄⊥ and N⊥

[2]. Thus we find that

L⊥0 − L̄⊥0 =
1

2
(α0α0 − ᾱ0ᾱ0) +N⊥ − N̄⊥

= −α′pw +N⊥ − N̄⊥ (5.22)

Since L⊥0 − L̄⊥0 does not vanish here which imposed a constraint that

N⊥ − N̄⊥ = α′pw (5.23)

As both the number operators having the numbers Eigen values, so by the quantization

of both p and w makes the above equation (5.23) more physical as

N⊥ − N̄⊥ = n m (5.24)

This gives the level matching condition and now the mass squared operators, M2 =

2p+p− − pipi becomes as

M2 = p2 + w2 +
2

α′
(N⊥ + N̄⊥ − 2) (5.25)

This means that both the momentum p and the winding w give the contribution to the

mass squared operators [3, 7].

5.1.4 State Space of compactified closed strings

As there are additional terms in mass squared operators so for the ground states we

will add the additional labels such that∣∣p+, ~pT ; n,m
〉

, n,m ∈ Z (5.26)

And the state space can be constructed by applying the creation operators on the

ground states like[
∞∏
r=1

24∏
i=2

(
ai†r
)λi,r][ ∞∏

s=1

24∏
j=2

(
āj†s
)λ̄j,s][ ∞∏

k=1

(
a†k

)λk][ ∞∏
l=1

(
ā†l

)λ̄l] ∣∣p+, ~p
T

; n,m
〉

(5.27)
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And the number operators which will act on above state space are

N⊥ =
∞∑
r=1

24∑
i=2

r λi,r +
∞∑
k=1

k λk , N̄⊥ =
∞∑
s=1

24∑
j=2

s λ̄j,s +
∞∑
l=1

l λ̄l (5.28)

The mass squared operators can also be written as

M2 =
( n
R

)2

+

(
mR

α′

)2

+
2

α′
(N⊥ + N̄⊥ − 2) (5.29)

This is the mass squared operators for both none zero momentum and winding for the

modified level matching condition N⊥ − N̄⊥ = n m

5.2 T-Duality for Closed Strings

As the mass squared operators depend upon the compactified radius R and there is a

remarkable property that if we replace the radius R by a radius R̃ = α′R−1 and n by

m then the mass squared operators remain the same, this symmetry is called T-duality

for the closed string and the radii R and R̃ are dual radii.

R ↔ α′R−1 ≡ R̃ (5.30)

Hence the mass squared operators for both the dual radii are same as

M2 (R; n, m) = M2
(
R̃; m, n

)
(5.31)

This gives the idea that if we start a theory having a small compactified radius R, we

can transform to a dual theory which have the large radius R̄ [7].now for a complete

dual theory, let us define a dual coordinate (compact coordinate) operator

X̃ ≡ XL(τ + σ)−XR(τ − σ) (5.32)

The mode expansions for dual coordinate X̃ are

X̃(τ, σ) = q0 + α′wτ + α′pσ + i

√
α′

2

∑
n6=0

1

n
e−inτ (ᾱne

−inσ − αneinσ) (5.33)
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By comparing this with equation (5.11), we find thatx0 → q0

q0 → x0


 p→ w

w → p


αn → −αn

ᾱn → ᾱn

 (5.34)

The dual momentum P̃τ becomes as

P̃τ ≡ 1

2πα′
∂τX̃ =

1

2πα′
(ẊL − ẊR) (5.35)

The commutation relations for (X̃ ,P̃τ ) can be calculated by the same manner as we

have done for (X , Pτ ). The Hamiltonian for both (X , Pτ ) and (X̃ ,P̃τ ) is same and

written as

H =
2

α′
(pipi + p2 + w2) +N⊥ + N̄⊥ − 2 (5.36)

In the order to make a map between these two (X, Pτ ) and (X̃, P̃τ ), the above (5.34)

transform as x0 → q̃0

q0 → x̃0


 p→ w̃

w → p̃


αn → −α̃n

ᾱn → ˜̄αn

 (5.37)

This map makes the physical equivalence of the two different theories and hence, T-

duality is the symmetry, which exists between the different string theories. A complete

summery is given in the following table (5.1)

Table: (5.1) complete dual theory
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5.2.1 Type II superstrings and T-duality

Let us consider X9 coordinate is curled up into a circle of radius R in type II superstring

theories and the T-duality transformation carried out on this coordinate as

X9
L → X9

L and X9
R → −X9

R

This interchanged the momentum and the winding numbers similarly, the word sheet

fermions will also transform under T-duality as

ψ9
L → ψ9

L and ψ9
R → −ψ9

R

This means that the T-duality reversed the chirality of the right moving ground states of

Ramond sector. As the relative chirality of both left and right moving ground states is

the thing which distinguished the type IIA and type IIB theories. If one is compactified

on a circle of R, let say Type IIA, then the T-duality gives the type IIB which will be

compactified on R̃ [3].

5.3 T-duality of open strings

5.3.1 T-duality and open strings

In the case of open strings, the situation is a little bit different when we compact a

dimension because the open string cannot winds around the compact dimension. Let

we have a D25-brane and a compactified X25 circle having the radius R, the open string

has quantize momentum p25 but no winding but after the T-duality transformation,

we will have a D24-brane and a compactified X25 circle of radius R̃. The Dirichlet

boundary conditions will impose a zero momentum constraint but the open string will

have winding now. The open string mass squared of the two theories will coincide when

R̃ = α′R−1, because of the momentum states contribute to M2 in the first theory in

the same way as the open string winding states contribute to M2 in the second theory.

By permitting the duality conversion to change the D-brane, we can write it as

(D25; R) → (D24; R̃)
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Now to find how the T-duality in the case of open strings, let us start from the assump-

tion that we have space filling D25-brane i.e. the open strings have NN-type coordinates

and let the compactified dimension X25(τ, σ) ≡ X(τ, σ), for this the mode expansion

can be written as

X(τ, σ) = x0 +
√

2α′α0τ + i
√

2α′
∑
n6=0

1

n
αncosσe

−inτ (5.38)

With

α0 =
√

2α′p =
√

2α′
n

R
(5.39)

Now separating the above string coordinate (5.38) into left moving and right moving,

as

X(τ, σ) = XL(τ + σ) +XR(τ − σ) (5.40)

Where

XL =
1

2
(x0 + q0) +

√
α′

2
α0(τ + σ) +

i

2

√
2α′
∑
n6=0

1

n
αne

−inτe−inσ

XR =
1

2
(x0 − q0) +

√
α′

2
α0(τ − σ) +

i

2

√
2α′
∑
n6=0

1

n
αne

−inτe+inσ (5.41)

Here q0 is an arbitrary constant. For the T-duality transformation, let the dual coordi-

nate is

X̃(τ, σ) ≡ XL(τ + σ)−XR(τ − σ) (5.42)

For this X̃ the mode expansions are

X̃(τ, σ) = q0 +
√

2α′α0σ + i
√

2α′
∑
n6=0

1

n
αn sinσe−inτ (5.43)

This equation is some thing like equation (4.16) in which a string is stretched from one

D-brane to another D-brane, and hence, there is a correspondences between the above

equation (5.43) and (4.16), and gives the idea that the coordinate X̃ is of DD type i.e.

The end points are fixed as ∂τX̃ = 0 for the end points, σ = 0 and σ = π. The open

string stretches when σ goes from 0 to π such as

X̃(τ, π)− X̃(τ, 0) =
√

2α′α0(π − 0) = 2πR̃n (5.44)
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Since n will have any possible integer values, the physics behind this are that, infi-

nite collections of D24-branes having uniform spacing 2πR̃ along the compactified X25

direction. These configurations will be physically equivalent to the single D24-brane

which is at some fixed positions on the circle of radius R̃. We notice that the T-duality

maps the Neumann boundary conditions into Dirichlet boundary conditions as

∂σX = X ′L(τ + σ)−X ′R(τ − σ) = ∂τX̃

∂τX = X ′L(τ + σ) +X ′R(τ − σ) = ∂σX̃ (5.45)

T-duality has transformed the open string with Neumann boundary conditions, on a

circle of radius R to an open string with Dirichlet boundary conditions, on a circle

of radius R̃. Now let we have D25-brane in a word in which k spatial dimensions are

compactified into circles, Then the T-duality will transformation on each circle will give

a physically equivalent world in which we will have a D(25 - k )-brane and each circle

will be replaced by a circle with dual radius. And generally, if we have a Dp-brane

which is stretched around a compact dimension, T-duality along this direction will give

a D(p - 1 )-brane at some fixed position on a circle of dual radius [7].

5.3.2 Open strings and Wilson lines

To study the effects and its dual picture, of open strings on D-branes having the gauge

fields which are characterizing by holonomies. Let us start from a compact dimension

on circle and on this, a flat potential4 will have non trivial physical effects as like

Aharanov-Bohm effect. As when the component of the gauge potential along the circle

of compactified dimension takes none zero constant values, it gives the holonomy W or

Wilson line, which can be written as

W ≡ exp(iw) = exp

(
iq

∮
dx Ax

)
(5.46)

Here Ax is the gauge potential along the compact direction x. As w = q
∮
dx Ax lives on

a unit circle due to compact dimension, so it means that w ∈ [0, 2π] and w = q
∮
dx Ax

4The potential which gives the vanishing field strength
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is some thing like the angle θ such that

θ ≡ w = q

∮
dx Ax (5.47)

Since the Wilson line W ≡ exp(iθ) is a gauge invariant and the θ gauge equivalents

will gives same holonomy W . For a constant gauge potential Ax the above equation

becomes

q Ax =
θ

2πR
(5.48)

Now let us consider the open strings which have the opposite charges on the end points,

so that the string will act as a neutral and the Wilson line will be no effects. If a D-

brane wraps around the compact dimension then the mass-squared operators can be

written as

M2 = p2 +
1

α′
(N⊥ − 1) , p =

l

R
(5.49)

In case of open string which having opposite charges on their end points and which

lies on the same Dp-brane then shifts in momentum 5 is as p − qAx + qAx = p. Now

lets us consider the two Dp-branes and the string stretching between these two, as each

Dp-branes has own Maxwell field. Let the negatively charged end points lies on first

Dp-brane and the positively charged end points lies on the second Dp-branes then the

momentum will be shifting from p to p− qA1 + qA2 and can be written explicitly as

l

R
→ l

R
− θ2

2πR
+

θ1

2πR
(5.50)

The mass squared operator then becomes as

M2 =

(
2πl − (θ2 − θ1)

2πR

)2

+
1

α′
(N⊥ − 1) , l ∈ Z (5.51)

If θ1 = θ2 then as a result the effects of holonomies will be cancel out and the equation

will be reduces to equation (5.49). The T-duality picture of the two Dp-branes having

the different parameters of θ will be consisting the two D(p - 1 )-branes having the

different (angular) positions due to the values of θ [3, 7].

5For point particle the addition of Wilson line make a shift in p as p-qA.
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5.4 Electromagnetic fields on D-branes and T-duality

5.4.1 Maxwell fields coupling to open strings

In the presence of background Maxwell fields, the string end points will couple to

Maxwell potential Am. As we have written this coupling terms in equation (4.59),

adding this to the string action

S =

∫
dτdσL(Ẋ,X ′) +

∫
dτ Am(X)∂τX

m|σ=π −
∫
dτ Am(X)∂τX

m|σ=0 (5.52)

Now let us consider those background fields which has constant electromagnetic field6

strength Fmn, for this let define the gauge potential

Am(x) =
1

2
Fmnx

m (5.53)

Putting this gauge potential in the above action (5.52) and then by using the variation,

we find the boundary conditions as

Pσm + Fmn∂τX
n = 0, σ = 0, π (5.54)

We get this by taking the usual Dirichlet boundary condition δXa = 0 for the coor-

dinates normal to the brane. There are the background electromagnetic fields which

changed the boundary conditions. Now using the explicit form of the Pσm and simplify-

ing, we find

∂σXm − 2πα′Fmn∂τX
n = 0, σ = 0, π (5.55)

This is the boundary condition for open string in the case of background field.

5.4.2 D-branes with Electric fields and T-dualities

Let us consider a D-brane which wraps around x25 compact dimension and carrying

constant electric fields along x25 such that

F25,0 = E25 ≡ E (5.56)

6The background field will be purely electric if F0i(= −Fi0) and purely magnetic if Fij .
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Since the boundary conditions (5.55) becomes as

∂σX0 − 2πα′F25,0∂τX
25 = 0

∂σX25− 2πα′F25,0∂τX
0 = 0 (5.57)

As X0 = −X0 and let X25 ≡ X then the above equations becomes

∂σX
0 − E∂τX = 0

∂σX − E∂τX0 = 0 (5.58)

Here E is the dimensionless electric field

E ≡ 2πα′E (5.59)

Now writing the above equations (5.58) in a more beautiful way, for this let ∂± ≡
1
2
(∂τ ± ∂σ) and by simplifying, we get

∂+

X0

X

 =

 1+E2
1−E2

2E
1−E2

2E
1−E2

1+E2
1−E2

 ∂−

X0

X

 (5.60)

This is the desired form of the boundary conditions (5.58) in the form of matrix. And

the duality relations becomes

∂+X = ∂+X̃ , ∂−X = −∂−X̃ (5.61)

In the order to find a dual description, let us consider a D(p - 1 )-brane which is

moving with a constant velocity along the compact dimension. Let we have two frame

of reference S and S ′. The S ′ is the rest frame of D(p - 1 )-brane while the relative

parameter boost of these two are β = v/c, where is the speed of moving brane. Let the

string coordinates in S ′ are X ′0 and X̃ ′ then the Lorentz transformation can be written

as

X ′0 = γ(X0 − βX̃)

X̃ ′ = γ(−βX0 + X̃) (5.62)
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Now using the duality relations and simplifying, we find

∂+

X0

X

 =

 1+β2

1−β2
2β

1−β2

2β
1−β2

1+β2

1−β2

 ∂−

X0

X

 (5.63)

These are the boundary conditions for the dual D(p - 1 )-brane. Comparing these to

equation (5.60) then we get

E = 2πα′E = β (5.64)

This shows that a moving D(p - 1 )-brane with the boost parameter β = v/c is actually

the T-dual to the Dp-brane which is wrapped around on the dual circle having the

electric field E = β along in the direction of circle. Since the T-duality relates the

Dp-brane with electric field is physically equal to the moving D(p - 1 )-brane with no

electric field [7, 28].

5.4.3 D-branes with Magnetic fields and T-dualities

Now we will consider the magnetic fields in background. For this, let a Dp-brane having

its two directions lies on (x2, x̃3) plane, x̃3 is compactified to a circle of radius R̃3 such

that both x2 and x̃3 give a cylinder of circumference of 2πR̃3. Let the open string

coordinates are X2 and X̃3, which are Neumann. After T-duality on X̃3, gives X3 as a

Dirichlet, since the dual picture is now a D(p - 1 )-brane which is stretch along X2 at

some fixed position X3 = 0. Now the magnetic field on this Dp-brane is let F23 = B.

For this the boundary conditions (5.55) becomes as

∂σX
2 − B∂τX̃3 = 0

∂σX̃
3 + B∂τX2 = 0 (5.65)

Here B is the dimensionless electric field

B ≡ 2πα′B (5.66)

And similarly we can write these boundary conditions as

∂+

X2

X̃3

 =

 1−B2
1+B2

2B
1+B2

− 2B
1+B2

1−B2
1+B2

 ∂−

X2

X̃3

 (5.67)
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These are the boundary condition in the presence of background magnetic fields. In

the case of dual picture, let a D(p-1)-brane which have tilted on the cylinder, then the

boundary conditions can be written in the form of X ′2 and X
′3 that is rotated by an

angle α . The and are Neumann and Dirichlet and the proper rotation can be written

as X ′2

X ′3

 =

 cosα sinα

− sinα cosα

 X2

X3

 (5.68)

Using the duality relation and simplifying, we get

∂+

X2

X̃3

 =

 cos 2α − sin 2α

sin 2α cos 2α

 ∂−

X2

X̃3

 (5.69)

Now comparing this result with the boundary conditions (5.67), first let the diagonals

elements which gives
1− B2

1 + B2
= cos 2α (5.70)

Simplifying this, we get B = ± tanα, we will take the negative sign such as

B = 2πα′B = − tanα (5.71)

This equation gives that the zero magnetic field cannot rotate the D-brane and it will

required an infinite magnetic field to rotate it. But putting the B = − tanα, we can

easily confirm the off diagonals. In equation (5.71) the negative sign is necessary for the

confirmation of the off diagonals elements. Since the titled D-brane is the dual picture

of the D-brane which have magnetic fields [7].

5.5 String coupling and the dilaton

The massless scalar field dilaton has an interesting property such as its expectation

value can controls the coupling of string and this coupling is a dimensionless number

which can set the strength of the interactions of the strings.

In string theory, the string coupling is not a constant and can be written in the form
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of dilaton field. The closed string coupling gs can be evaluated from the dilaton field

φ(x), such as

gs ∼ eφ

The string coupling gs is the not an adjustable parameter but a dynamical parameter in

string theory. The dynamical nature of coupling is an ideal property for the unification

of all the other interactions. Whenever the string coupling is small then the amplitudes

for the string interactions can be easily calculable by using the Riemann surfaces. The

Riemann surfaces can also allow us to understand the infinites which come in the

amplitudes of general relativity [3, ?].

5.6 S-duality

Another kind of duality which is called S-duality which relates the string coupling gs

to 1/gs as likes the T-duality which relates the radius R to α′R−1. The S-duality

relates the type I superstring theory to the SO(32) Heterotic superstring theory, and

the type IIB superstring theory to itself. As when the coupling gs is small then we

use the perturbation theory but whenever the coupling gs is large then we can use the

S-duality i.e. the large coupling gs of the type I superstring theory is equivalent to the

weak coupling gs of SO(32) Heterotic theory. S-duality tell us that how these three

superstring theories behave at strong coupling but when the coupling is large, in Type

IIA and E8 ×E8 Heterotic, then both of them developed an eleventh dimension of size

the lsgs . The 11th dimension is a circle in the type IIA and a line interval in the

Heterotic7.

7Under the T-duality, one can get easily g̃s =
√
α′

R gs.
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M-theory is a new type of quantum theory which lives in 11 dimensions of spacetime. At

the low energies, it is approximately equivalent to supergravity, a classical field theory

lives in 11-dimensions of space time, but the M-theory is much more than supergravity

[3, 7, 30, 31, 32].
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Appendix A

The Massless States Of Closed

String

As the massless level of closed string, the general state of fixed momentum. We write

it as ∑
l,j

Rlja
l†
1 ā

j†
1

∣∣p+, ~pT
〉

Here Rlj are the elements of an arbitrary square matrix of the size (D−2). Any square

matrix can be decomposed into its symmetric part and its antisymmetric part as

Rlj =
1

2
(Rlj +Rjl) +

1

2
(Rlj −Rjl) ≡ Slj + Alj

And the symmetric part Slj can be written as

Slj =

(
Slj −

1

D − 2
δljS

)
+

1

D − 2
δljS

with S ≡ Sll = δljSlj The 1st term is traceless as

δlj
(
Slj −

1

D − 2
δljS

)
= S − 1

D − 2
δljδljS = 0

86



Hence Rlj is decomposed into a traceless matrix plus a multiple of the unit matrix. Let

say the traceless part of Rlj is Ŝlj and S ′ = S
D−2

then we have

Rlj = Ŝlj + Alj + S ′δlj

Hence we decomposed the Matrix Rlj into a symmetric-traceless part, an antisym-

metric and a traceless part. Since we split the total massless states into three linear

independent states as ∑
l,j

Ŝlja
l†
1 ā

j†
1

∣∣p+, ~pT
〉

(A-1)

∑
l,j

Alja
l†
1 ā

j†
1

∣∣p+, ~pT
〉

(A-2)

S ′al†1 ā
j†
1

∣∣p+, ~pT
〉

(A-3)

The equation (A-1) is similar to the quantum theory of the free gravitational field states.

Hence equation (A-1) represents Graviton states. The equation (A-2) corresponds to

the one-particle states of the Kalb-Ramond field, an antisymmetric tensor field Bµν

with two indices. The equation (A-3) corresponds to a one-particle state of a massless

scalar field. This field is called the dilaton [7].
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Appendix B

The Spinors Algebra In 2D

As the Clifford algebra satisfies

{Γµ,Γν} = 2ηµν

In 2D it gives

Γ2
1 = η11 , Γ2

2 = η22 , Γ1Γ2 + Γ2Γ1 = 0.

Lorentizian:

In this case we have

Γ2
1 = +1 , Γ2

2 = −1 , Γ1Γ2 + Γ2Γ1 = 0

Now we can choose the representation of these operators as a matrices such that

Γ1 = σ1 =

 0 1

1 0

 , Γ2 = −iσ2 =

 0 −1

1 0

 .

And the generator of the spin(1, 1) is then given by

Γ12 =
1

4
[Γ1,Γ2] =

1

2
Γ1Γ2 =

1

2
σ3 =

 1
2

0

0 −1
2

 ,
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with

eγΓ12 = e
γ1
2
σ3 =

 e
γ
2 0

0 e−
γ
2

 .

Given a vector v = v1Γ1 + v2Γ2 the Lorentz transformation is then given by

v 7→ eγΓ12ve−γΓ12 ,

By simplifying, we get

7→

 0 e+γ(v1+v2)

e−γ(v1−v2) 0

 .

And hence  v1

v2

 7→
 cosh γ sinh γ

sinh γ cosh γ

 v1

v2

 .

Thus the Clifford algebra generated by {1, σ1,−iσ2, σ3} is the same as a 2 × 2 real

matrices and the even part of the Clifford algebra Cl(1, 1) is generated by 1 and σ3

both of which are the diagonal matrices and therefore Cl(1, 1)even ∼= < ⊗ <. Because

the Γ12 is real and diagonal therefore the irreducible representations of spin(1, 1) are

one dimensional (Weyl) and real (Majorana). They transform as

ψ+ 7→ e+ γ
2ψ (Positive chirality)

ψ− 7→ e−
γ
2ψ(Negative chirality)

Euclidean:

In the case of Euclidean, we have

Γ2
1 = +1 , Γ2

2 = +1 , Γ1Γ2 + Γ2Γ1 = 0

Now by the similar way we can choose the representations of these operators as matrices

Γ1 = σ1 =

 0 1

1 0

 , Γ2 = σ3 =

 1 0

0 −1

 .

The generator of spin(2) is then given by

Γ12 =
1

4
[Γ1,Γ2] =

1

2
Γ1Γ2 =

−i
2
σ2 =

 0 −1
2

1
2

0

 ,
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With

eγΓ12 = e−i
γ1
2
σ2 =

 cos(γ
2
) − sin(γ

2
)

sin(γ
2
) cos(γ

2
)

 .

Given a vector v = v1Γ1 + v2Γ2 then the spin(2)

v 7→ eγΓ12ve−γΓ12 ,

By simplifying, we get v1

v2

 7→
 cos γ sin γ

− sin γ cos γ

 v1

v2

 .

Thus the Clifford algebra generated by {1, σ1,−iσ2, σ3} is the same as a 2 × 2 real

matrices and the even part of the Clifford algebra Cl(2) is generated by 1 and Γ1Γ2

since (Γ1Γ2)2 = −1 therefore Cl(1, 1)even ∼= C and the spinors transforms as ψ1

ψ2

 7→
 cos(γ

2
) − sin(γ

2
)

sin(γ
2
) cos(γ

2
)

 ψ1

ψ2

 .

We can also form the irreducible representation by taking

ψ+ = ψ1 + iψ2, ψ− = ψ1 − iψ2.

ψ± transform under Spin(2) as

ψ+ 7→ e+i γ
2ψ+(Positive chirality)

ψ− 7→ e−i
γ
2ψ−(Negative chirality)

The chirality is the eigenvalue under

Γ3 = Γ1Γ2 =

 0 −1

1 0


 ψ1

ψ2

 7→ Γ3

 ψ1

ψ2

 =

 −ψ2

+ψ1
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and

ψ+ 7→ iψ+, ψ− 7→ −iψ−.

Thus in both Lorentzian and Euclidean signature, we have chiral (Weyl) spinors. The

supersymmetry generators are spinors and in the two dimensions we can choose p

Weyl spinors of positive chirality and q Weyl of negative chirality. This gives us (p, q)

supersymmetry in the two dimensions [33, 34, 35].
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