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Abstract: A classical system of mathematics is homogenous without contradictions. But

it is a little ambiguous for modern mathematics, for instance, the Smarandache geometry.

Let F be a family of things such as those of particles or organizations. Then, how to hold

its global behaviors or true face? Generally, F is not a mathematical system in usual unless

a set, i.e., a system with contradictions. There are no mathematical subfields applicable.

Indeed, the trend of mathematical developing in 20th century shows that a mathemati-

cal system is more concise, its conclusion is more extended, but farther to the true face

for its abandoned more characters of things. This effect implies an important step should

be taken for mathematical development, i.e., turn the way to extending non-mathematics

in classical to mathematics, which also be provided with the philosophy. All of us know

there always exists a universal connection between things in F . Thus there is an underlying

structure, i.e., a vertex-edge labeled graph G for things in F . Such a labeled graph G is

invariant accompanied with F . The main purpose of this paper is to survey how to extend

classical mathematical non-systems, such as those of algebraic systems with contradictions,

algebraic or differential equations with contradictions, geometries with contradictions, and

generally, classical mathematics systems with contradictions to mathematics by the under-

lying structure G. All of these discussions show that a non-mathematics in classical is in

fact a mathematics underlying a topological structure G, i.e., mathematical combinatorics,

and contribute more to physics and other sciences.
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§1. Introduction

A thing is complex, and hybrid with other things sometimes. That is why it is difficult to know

the true face of all things, included in “Name named is not the eternal Name; the unnamable is

the eternally real and naming the origin of all things”, the first chapter of TAO TEH KING [9],

a well-known Chinese book written by an ideologist, Lao Zi of China. In fact, all of things with
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universal laws acknowledged come from the six organs of mankind. Thus, the words “existence”

and “non-existence” are knowledged by human, which maybe not implies the true existence or

not in the universe. Thus the existence or not for a thing is invariant, independent on human

knowledge.

The boundedness of human beings brings about a unilateral knowledge for things in the

world. Such as those shown in a famous proverb “the blind men with an elephant”. In this

proverb, there are six blind men were asked to determine what an elephant looked like by feeling

different parts of the elephant’s body. The man touched the elephant’s leg, tail, trunk, ear,

belly or tusk respectively claims it’s like a pillar, a rope, a tree branch, a hand fan, a wall or a

solid pipe, such as those shown in Fig.1 following. Each of them insisted on his own and not

accepted others. They then entered into an endless argument.

Fig.1

All of you are right! A wise man explains to them: why are you telling it differently is because

each one of you touched the different part of the elephant. So, actually the elephant has all

those features what you all said. Thus, the best result on an elephant for these blind men is

An elephant = {4 pillars}
⋃
{1 rope}

⋃
{1 tree branch}

⋃
{2 hand fans}

⋃
{1 wall}

⋃
{1 solid pipe}

What is the meaning of this proverb for understanding things in the world? It lies in that

the situation of human beings knowing things in the world is analogous to these blind men.

Usually, a thing T is identified with its known characters ( or name ) at one time, and this

process is advanced gradually by ours. For example, let µ1, µ2, · · · , µn be its known and νi, i ≥ 1

unknown characters at time t. Then, the thing T is understood by

T =

(
n⋃

i=1

{µi}

)
⋃

⋃

k≥1

{νk}


 (1.1)

in logic and with an approximation T ◦ =
n⋃

i=1

{µi} for T at time t. This also answered why

difficult for human beings knowing a thing really.
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Generally, let Σ be a finite or infinite set. A rule or a law on a set Σ is a mapping

Σ× Σ · · · × Σ︸ ︷︷ ︸
n

→ Σ for some integers n. Then, a mathematical system is a pair (Σ;R), where

R consists those of rules on Σ by logic providing all these resultants are still in Σ.

Definition 1.1([28]-[30]) Let (Σ1;R1), (Σ2;R2), · · · , (Σm;Rm) be m mathematical system,

different two by two. A Smarandache multi-system Σ̃ is a union
m⋃

i=1

Σi with rules R̃ =
m⋃

i=1

Ri

on Σ̃, denoted by
(
Σ̃; R̃

)
.

Consequently, the thing T is nothing else but a Smarandache multi-system (1.1). However,

these characters νk, k ≥ 1 are unknown for one at time t. Thus, T ≈ T ◦ is only an approximation

for its true face and it will never be ended in this way for knowing T , i.e., “Name named is not

the eternal Name”, as Lao Zi said.

But one’s life is limited by its nature. It is nearly impossible to find all characters νk, k ≥ 1

identifying with thing T . Thus one can only understands a thing T relatively, namely find

invariant characters I on νk, k ≥ 1 independent on artificial frame of references. In fact, this

notion is consistent with Erlangen Programme on developing geometry by Klein [10]: given a

manifold and a group of transformations of the same, to investigate the configurations belonging

to the manifold with regard to such properties as are not altered by the transformations of the

group, also the fountainhead of General Relativity of Einstein [2]: any equation describing the

law of physics should have the same form in all reference frame, which means that a universal

law does not moves with the volition of human beings. Thus, an applicable mathematical theory

for a thing T should be an invariant theory acting on by all automorphisms of the artificial

frame of reference for thing T .

All of us have known that things are inherently related, not isolated in philosophy, which

implies that these is an underlying structure in characters µi, 1 ≤ i ≤ n for a thing T , namely,

an inherited topological graph G. Such a graph G should be independent on the volition of

human beings. Generally, a labeled graph G for a Smarandache multi-space is introduced

following.

Definition 1.2([21]) For any integer m ≥ 1, let
(
Σ̃; R̃

)
be a Smarandache multi-system con-

sisting of m mathematical systems (Σ1;R1), (Σ2;R2), · · · , (Σm;Rm). An inherited topological

structure G[S̃] of
(
Σ̃; R̃

)
is a topological vertex-edge labeled graph defined following:

V (G[S̃]) = {Σ1, Σ2, · · · , Σm},

E(G[S̃]) = {(Σi, Σj)|Σi

⋂
Σj 6= ∅, 1 ≤ i 6= j ≤ m} with labeling

L : Σi → L(Σi) = Σi and L : (Σi, Σj)→ L(Σi, Σj) = Σi

⋂
Σj

for integers 1 ≤ i 6= j ≤ m.

However, classical combinatorics paid attentions mainly on techniques for catering the need

of other sciences, particularly, the computer science and children games by artificially giving

up individual characters on each system (Σ,R). For applying more it to other branch sciences

initiatively, a good idea is pullback these individual characters on combinatorial objects again,
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ignored by the classical combinatorics, and back to the true face of things, i.e., an interesting

conjecture on mathematics following:

Conjecture 1.3(CC Conjecture, [15],[19]) A mathematics can be reconstructed from or turned

into combinatorization.

Certainly, this conjecture is true in philosophy. So it is in fact a combinatorial notion on

developing mathematical sciences. Thus:

(1) One can combine different branches into a new theory and this process ended until it

has been done for all mathematical sciences, for instance, topological groups and Lie groups.

(2) One can selects finite combinatorial rulers and axioms to reconstruct or make general-

izations for classical mathematics, for instance, complexes and surfaces.

From its formulated, the CC conjecture brings about a new way for developing mathematics

, and it has affected on mathematics more and more. For example, it contributed to groups,

rings and modules ([11]-[14]), topology ([23]-[24]), geometry ([16]) and theoretical physics ([17]-

[18]), particularly, these 3 monographs [19]-[21] motivated by this notion.

A mathematical non-system is such a system with contradictions. Formally, let R be

mathematical rules on a set Σ. A pair (Σ; R) is non-mathematics if there is at least one ruler R ∈

R validated and invalided on Σ simultaneously. Notice that a multi-system defined in Definition

1.1 is in fact a system with contradictions in the classical view, but it is cooperated with logic

by Definition 1.2. Thus, it lights up the hope of transferring a system with contradictions to

mathematics, consistent with logic by combinatorial notion.

The main purpose of this paper is to show how to transfer a mathematical non-system, such

as those of non-algebra, non-group, non-ring, non-solvable algebraic equations, non-solvable or-

dinary differential equations, non-solvable partial differential equations and non-Euclidean ge-

ometry, mixed geometry, differential non- Euclidean geometry, · · · , etc. classical mathematics

systems with contradictions to mathematics underlying a topological structure G, i.e., math-

ematical combinatorics. All of these discussions show that a mathematical non-system is a

mathematical system inherited a non-trivial topological graph, respect to that of the classical

underlying a trivial K1 or K2. Applications of these non-mathematic systems to theoretical

physics, such as those of gravitational field, infectious disease control, circulating economical

field can be also found in this paper.

All terminologies and notations in this paper are standard. For those not mentioned here,

we follow [1] and [19] for algebraic systems, [5] and [6] for algebraic invariant theory, [3] and [32]

for differential equations, [4], [8] and [21] for topology and topological graphs and [20], [28]-[31]

for Smarandache systems.

§2. Algebraic Systems

Notice that the graph constructed in Definition 1.2 is in fact on sets Σi, 1 ≤ i ≤ m with

relations on their intersections. Such combinatorial invariants are suitable for algebraic systems.

All operations ◦ : A × A → A on a set A considered in this section are closed and single

valued, i.e., a ◦ b is uniquely determined in A , and it is said to be Abelian if a ◦ b = b ◦ a for
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∀a, b ∈ A .

2.1 Non-Algebraic Systems

An algebraic system is a pair (A ;R) holds with a ◦ b ∈ A for ∀a, b ∈ A and ◦ ∈ R. A

non-algebraic system ¬(A ;R) on an algebraic system (A ;R) is

AS−1: there maybe exist an operation ◦ ∈ R, elements a, b ∈ A with a ◦ b undetermined.

Similarly to classical algebra, an isomorphism on ¬(A ;R) is such a mapping on A that

for ∀◦ ∈ R,

h(a ◦ b) = h(a) ◦ h(b)

holds for ∀a, b ∈ A providing a ◦ b is defined in ¬(A ;R) and h(a) = h(b) if and only if a = b.

Not loss of generality, let ◦ ∈ R be a chosen operation. Then, there exist closed subsets Ci, i ≥ 1

of A . For instance,

〈a〉◦ = {a, a ◦ a, a ◦ a ◦ a, · · · , a ◦ a ◦ · · · ◦ a︸ ︷︷ ︸
k

, · · · }

is a closed subset of A for ∀a ∈ A . Thus, there exists a decomposition A ◦
1 , A ◦

2 , · · · , A ◦
n of A

such that a ◦ b ∈ A ◦
i for ∀a, b ∈ A ◦

i for integers 1 ≤ i ≤ n.

Define a topological graph G[¬(A ; ◦)] following:

V (G[¬(A ; ◦)]) = {A ◦
1 , A ◦

2 , · · · , A ◦
n };

E(G[¬(A ; ◦)]) = {(A ◦
i , A ◦

j ) if A
◦
i

⋂
A

◦
j 6= ∅, 1 ≤ i, 6= j ≤ n}

with labels

L : A
◦
i ∈ V (G[¬(A ; ◦)])→ L(A ◦

i ) = A
◦
i ,

L : (A ◦
i , A ◦

j ) ∈ E(G[¬(A ; ◦)])→ A
◦
i

⋂
A

◦
j for integers 1 ≤ i 6= j ≤ n.

For example, let A ◦
1 = {a, b, c}, A ◦

2 = {a, d, f}, A ◦
3 = {c, d, e}, A ◦

4 = {a, e, f} and

A ◦
5 = {d, e, f}. Calculation shows that A ◦

1

⋂
A ◦

2 = {a}, A ◦
1

⋂
A ◦

3 = {c}, A ◦
1

⋂
A ◦

4 = {a},

A ◦
1

⋂
A ◦

5 = ∅, A ◦
2

⋂
A ◦

3 = {d}, A ◦
2

⋂
A ◦

4 = {a}, A ◦
2

⋂
A ◦

5 = {d, f},A ◦
3

⋂
A ◦

4 = {e},

A ◦
3

⋂
A ◦

5 = {d, e} and A ◦
4

⋂
A ◦

5 = {e, f}. Then, the labeled graph G[¬(A ; ◦)] is shown

in Fig.2.

A ◦
1

A ◦
2

A ◦
3 A ◦

4

A ◦
5

{a} {c} {a}

{d} {e}

{d, e}
{d, f} {e, f}

{a}

Fig.2
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Let h : A → A be an isomorphism on ¬(A ; ◦). Then ∀a, b ∈ A ◦
i ), h(a) ◦ h(b) =

h(a ◦ b) ∈ h(A◦
i ) and h(A◦

i )
⋂

h(A◦
j ) = h(A◦

i

⋂
A◦

j ) = ∅ if and only if A◦
i

⋂
A◦

j = ∅ for integers

1 ≤ i 6= j ≤ n. Whence, if Gh[¬(A ; ◦)] defined by

V (Gh[¬(A ; ◦)]) = {h(A ◦
1 ), h(A ◦

2 ), · · · , h(A ◦
n )};

E(Gh[¬(A ; ◦)]) = {(h(A ◦
i ), h(A ◦

j )) if h(A ◦
i )
⋂

h(A ◦
j ) 6= ∅, 1 ≤ i, 6= j ≤ n}

with labels

Lh : h(A ◦
i ) ∈ V (Gh[¬(A ; ◦)])→ L(h(A ◦

i )) = h(A ◦
i ),

Lh : (h(A ◦
i ), h(A ◦

j )) ∈ E(Gh[¬(A ; ◦)])→ h(A ◦
i )
⋂

h(A ◦
j )

for integers 1 ≤ i 6= j ≤ n. Thus h : A → A induces an isomorphism of graph h∗ :

G[¬(A ; ◦)]→ Gh[¬(A ; ◦)]. We therefore get the following result.

Theorem 2.1 A non-algebraic system ¬(A ; ◦) in type AS−1 inherits an invariant G[¬(A ; ◦)]

of labeled graph.

Let

G[¬(A ;R)] =
⋃

◦∈R

G[¬(A ; ◦)]

be a topological graph on ¬(A ;R). Theorem 2.1 naturally leads to the conclusion for non-

algebraic system ¬(A ;R) following.

Theorem 2.2 A non-algebraic system ¬(A ;R) in type AS−1 inherits an invariant G[¬(A ;R)]

of topological graph.

Similarly, we can also discuss algebraic non-associative systems, algebraic non-Abelian sys-

tems and find inherited invariants G[¬(A ; ◦)] of graphs. Usually, we adopt different notations

for operations in R, which consists of a multi-system (A ;R). For example, R = {+, ·} in an

algebraic field (R; +, ·). If we view the operation + is the same as ·, throw out 0 · a, a · 0 and

1 + a, a + 1 for ∀a ∈ R in R, then (R; +, ·) comes to be a non-algebraic system (R; ·) with

topological graph G[R; ·] shown in Fig.3.

R \ {1} R \ {0}
R \ {0, 1}

Fig.3

2.2 Non-Groups

A group is an associative system (G ; ◦) holds with identity and inverse elements for all elements

in G . Thus, for a, b, c ∈ G , (a ◦ b) ◦ c = a ◦ (b ◦ c), ∃1G ∈ G such that 1G ◦ a = a ◦ 1G = a and

for ∀a ∈ G , ∃a−1 ∈ A G such that a ◦ a−1 = 1G . A non-group ¬(G ; ◦) on a group (G ; ◦) is an

algebraic system in 3 types following:
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AG−1
1 : there maybe exist a1, b1, c1 and a2, b2, c2 ∈ G such that (a1 ◦ b1) ◦ c1 = a1 ◦ (b1 ◦ c1)

but (a2 ◦ b2) ◦ c2 6= a2 ◦ (b2 ◦ c2), also holds with identity 1G and inverse element a−1 for all

elements in a ∈ G .

AG−1
2 : there maybe exist distinct 1G , 1′

G
∈ G such that a1 ◦ 1G = 1G ◦ a1 = a1 and

a2 ◦ 1′
G

= 1′
G
◦ a2 = a2 for a1 6= a2 ∈ G , also holds with associative and inverse elements a−1

on 1G and 1′
G

for ∀a ∈ G .

AG−1
3 : there maybe exist distinct inverse elements a−1, ȧ−1 for a ∈ G , also holds with

associative and identity elements.

Notice that (a ◦ a) ◦ a = a ◦ (a ◦ a) always holds with a ∈ G in an algebraic system.

Thus there exists a decomposition G1, G2, · · · , Gn of G such that (Gi; ◦) is a group for integers

1 ≤ i ≤ n for Type AG−1
1 .

Type AG−1
2 is true only if 1G ◦ 1′

G
6= 1G and 6= 1′

G
. Thus 1G and 1′

G
are local, not a global

identity on G . Define

G (1G ) = {a ∈ G if a ◦ 1G = 1G ◦ a = a}.

Then G (1G ) 6= G (1′
G

) if 1G 6= 1′
G

. Denoted by I(G ) the set of all local identities on G . Then

G (1G ), 1G ∈ I(G ) is a decomposition of G such that (G (1G ); ◦) is a group for ∀1G ∈ I(G ).

Type AG−1
3 is true only if there are distinct local identities 1G on G . Denoted by I(G )

the set of all local identities on G . We can similarly find a decomposition of G with group

(G (1G ); ◦) holds for ∀1G ∈ I(G ) in this type.

Thus, for a non-group ¬(G ; ◦) of AG−1
1 -AG−1

3 , we can always find groups (G1; ◦), (G2; ◦), · · · ,

(Gn; ◦) for an integer n ≥ 1 with G =
n⋃

i=1

Gi. Particularly, if (G ; ◦) is itself a group, then such

a decomposition is clearly exists by its subgroups.

Define a topological graph G[¬(G ; ◦)] following:

V (G[¬(G ; ◦)]) = {G1, G2, · · · , Gn};

E(G[¬(G ; ◦)]) = {(Gi, Gj) if Gi

⋂
Gj 6= ∅, 1 ≤ i, 6= j ≤ n}

with labels

L : Gi ∈ V (G[¬(G ; ◦)])→ L(Gi) = Gi,

L : (Gi, Gj) ∈ E(G[¬(G ; ◦)])→ Gi

⋂
Gj for integers 1 ≤ i 6= j ≤ n.

For example, let G1 = 〈α, β〉, G2 = 〈α, γ, θ〉, G3 = 〈β, γ〉, G4 = 〈β, δ, θ〉 be 4 free Abelian

groups with α 6= β 6= γ 6= δ 6= θ. Calculation shows that G1

⋂
G2 = 〈α〉, G2

⋂
G3 = 〈γ〉,

G3

⋂
G4 = 〈δ〉, G1

⋂
G4 = 〈β〉 and G2

⋂
G4 = 〈θ〉. Then, the topological graph G[¬(G ; ◦)] is

shown in Fig.4.
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G1 G2

G4 G3

〈α〉

〈γ〉

〈δ〉

〈β〉 〈θ〉

Fig.4

For an isomorphism g : G → G on ¬(G ; ◦), it naturally induces a 1-1 mapping g∗ :

V (G[¬(G ; ◦)]) → V (G[¬(G ; ◦)]) such that each g∗(Gi) is also a group and g∗(Gi)
⋂

g∗(Gj) 6= ∅

if and only if Gi

⋂
Gj 6= ∅ for integers 1 ≤ i 6= j ≤ n. Thus g induced an isomorphism g∗ of

graph from G[¬(G ; ◦)] to g∗(G[¬(G ; ◦)]), which implies a conclusion following.

Theorem 2.3 A non-group ¬(G ; ◦) in type AG−1
1 -AG−1

3 inherits an invariant G[¬(G ; ◦)] of

topological graph.

Similarly, we can discuss more non-groups with some special properties, such as those

of non-Abelian group, non-solvable group, non-nilpotent group and find inherited invariants

G[¬(G ; ◦)]. Notice that([19]) any group G can be decomposed into disjoint classes C(H1),

C(H2), · · · , C(Hs) of conjugate subgroups, particularly, disjoint classes Z(a1), Z(a2), · · · , Z(al)

of centralizers with |C(Hi)| = |G : NG (Hi)|, |Z(aj)| = |G : ZG (aj)|, 1 ≤ i ≤ s, 1 ≤ j ≤ l and

|C(H1)|+ |C(H2)|+ · · ·+ |C(Hs)| = |G |, |Z(a1)|+ |Z(a2)|+ · · ·+ |Z(al)| = |G |, where NG (H),

Z(a) denote respectively the normalizer of subgroup H and centralizer of element a in group

G . This fact enables one furthermore to construct topological structures of non-groups with

special classes of groups following:

Replace a vertex Gi by si (or li) isolated vertices labeled with C(H1), C(H2), · · · , C(Hsi
)

(or Z(a1), Z(a2), · · · , Z(ali)) in G[¬(G ; ◦)] and denoted the resultant by Ĝ[¬(G ; ◦)].

We then get results following on non-groups with special topological structures by Theorem

2.3.

Theorem 2.4 A non-group ¬(G ; ◦) in type AG−1
1 -AG−1

3 inherits an invariant Ĝ[¬(G ; ◦)] of

topological graph labeled with conjugate classes of subgroups on its vertices.

Theorem 2.5 A non-group ¬(G ; ◦) in type AG−1
1 -AG−1

3 inherits an invariant Ĝ[¬(G ; ◦)] of

topological graph labeled with Abelian subgroups, particularly, with centralizers of elements in G

on its vertices.

Particularly, for a group the following is a readily conclusion of Theorems 2.4 and 2.5.

Corollary 2.6 A group (G ; ◦) inherits an invariant Ĝ[G ; ◦] of topological graph labeled with

conjugate classes of subgroups (or centralizers) on its vertices, with E(Ĝ[G ; ◦]) = ∅
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2.3 Non-Rings

A ring is an associative algebraic system (R; +, ◦) on 2 binary operations “+”, “◦”, hold with an

Abelian group (R; +) and for ∀x, y, z ∈ R, x◦ (y+z) = x◦y+x◦z and (x+y)◦z = x◦z+y ◦z.

Denote the identity by 0+, the inverse of a by −a in (R; +). A non-ring ¬(R; +, ◦) on a ring

(R; +, ◦) is an algebraic system on operations “+”, “◦” in 5 types following:

AR−1
1 : there maybe exist a, b ∈ R such that a + b 6= b + a, but hold with the associative

in (R; ◦) and a group (R; +);

AR−1
2 : there maybe exist a1, b1, c1 and a2, b2, c2 ∈ R such that (a1 ◦ b1)◦ c1 = a1 ◦ (b1 ◦ c1),

(a2 ◦ b2) ◦ c2 6= a2 ◦ (b2 ◦ c2), but holds with an Abelian group (R; +).

AR−1
3 : there maybe exist a1, b1, c1 and a2, b2, c2 ∈ R such that (a1+b1)+c1 = a1+(b1+c1),

(a2 + b2) + c2 6= a2 + (b2 + c2), but holds with (a ◦ b) ◦ c = a ◦ (b ◦ c), identity 0+ and −a in

(R; +) for ∀a, b, c ∈ R.

AR−1
4 : there maybe exist distinct 0+, 0′+ ∈ R such that a + 0+ = 0+ + a = a and

b + 0′+ = 0′+ + b = b for a 6= b ∈ R, but holds with the associative in (R; +), (R; ◦) and inverse

elements −a on 0+, 0′+ in (R; +) for ∀a ∈ R.

AR−1
5 : there maybe exist distinct inverse elements −a,−ȧ for a ∈ R in (R; +), but holds

with the associative in (R; +), (R; ◦) and identity elements in (R; +).

Notice that (a + a) + a = a + (a + a), a + a = a + a and a ◦ a = a◦ always hold in non-ring

¬(R; +, ◦). Whence, for Types AR−1
1 and AR−1

2 , there exists a decomposition R1, R2, · · · , Rn

of R such that a + b = b + a and (a ◦ b) ◦ c = a ◦ (b ◦ c) if a, b, c ∈ Ri, i.e., each (Ri; +, ◦) is

a ring for integers 1 ≤ i ≤ n. A similar discussion for Types AG−1
1 -AG−1

3 in Section 2.2 also

shows such a decomposition (Ri; +, ◦), 1 ≤ i ≤ n of subrings exists for Types 3 − 5. Define a

topological graph G[¬(R; +, ◦)] by

V (G[¬(R; +, ◦)]) = {R1, R2, · · · , Rn};

E(G[¬(R; +, ◦)]) = {(Ri, Rj) if Ri

⋂
Rj 6= ∅, 1 ≤ i, 6= j ≤ n}

with labels

L : Ri ∈ V (G[¬(R; +, ◦)])→ L(Ri) = Ri,

L : (Ri, Rj) ∈ E(G[¬(R; +, ◦)])→ Ri

⋂
Rj for integers 1 ≤ i 6= j ≤ n.

Then, such a topological graph G[¬(R; +, ◦)] is also an invariant under isomorphic actions

on ¬(R; +, ◦). Thus,

Theorem 2.7 A non-ring ¬(R; +, ◦) in types AR−1
1 -AR−1

5 inherits an invariant G[¬(R; +, ◦)]

of topological graph.

Furthermore, we can consider non-associative ring, non-integral domain, non-division ring,

skew non-field or non-field, · · · , etc. and find inherited invariants G[¬(R; +, ◦)] of graphs. For

example, a non-field ¬(F ; +, ◦) on a field (F ; +, ◦) is an algebraic system on operations “+”,

“◦” in 8 types following:
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AF−1
1 : there maybe exist a1, b1, c1 and a2, b2, c2 ∈ F such that (a1 ◦ b1) ◦ c1 = a1 ◦ (b1 ◦ c1),

(a2 ◦ b2) ◦ c2 6= a2 ◦ (b2 ◦ c2), but holds with an Abelian group (F ; +), identity 1◦, a−1 for a ∈ F

in (F ; ◦).

AF−1
2 : there maybe exist a1, b1, c1 and a2, b2, c2 ∈ F such that (a1+b1)+c1 = a1+(b1+c1),

(a2 + b2) + c2 6= a2 + (b2 + c2), but holds with an Abelian group (F ; ◦), identity 1+, −a for

a ∈ F in (F ; +).

AF−1
3 : there maybe exist a, b ∈ F such that a ◦ b 6= b ◦ a, but hold with an Abelian group

(F ; +), a group (F ; ◦);

AF−1
4 : there maybe exist a, b ∈ F such that a + b 6= b + a, but hold with a group (F ; +),

an Abelian group (F ; ◦);

AF−1
5 : there maybe exist distinct 0+, 0′+ ∈ F such that a + 0+ = 0+ + a = a and b + 0′+ =

0′+ + b = b for a 6= b ∈ F , but holds with the associative, inverse elements −a on 0+, 0′+ in

(F ; +) for ∀a ∈ F , an Abelian group (F ; ◦);

AF−1
6 : there maybe exist distinct 1◦, 1

′
◦ ∈ F such that a ◦ 1◦ = 1◦ ◦ a = a and b ◦ 1′◦ =

1′◦ ◦ b = b for a 6= b ∈ F , but holds with the associative, inverse elements a−1 on 1◦, 1′◦ in (F ; ◦)

for ∀a ∈ F , an Abelian group (F ; +);

AF−1
7 : there maybe exist distinct inverse elements −a,−ȧ for a ∈ F in (F ; +), but holds

with the associative, identity elements in (F ; +), an Abelian group (F ; ◦).

AF−1
8 : there maybe exist distinct inverse elements a−1, ȧ−1 for a ∈ F in (F ; ◦), but holds

with the associative, identity elements in (F ; ◦), an Abelian group (F ; +).

Similarly, we can show that there exists a decomposition (Fi; +, ◦), 1 ≤ i ≤ n of fields for

non-fields ¬(F ; +, ◦) in Types AF−1
1 -AF−1

8 and find an invariant G[¬(F ; +, ◦)] of graph.

Theorem 2.8 A non-ring ¬(F ; +, ◦) in types AF−1
1 -AF−1

8 inherits an invariant G[¬(F ; +, ◦)]

of topological graph.

2.4 Algebraic Combinatorics

All of previous discussions with results in Sections 2.1-2.3 lead to a conclusion alluded in

philosophy that a non-algebraic system ¬(A ;R) constraint with property can be decomposed into

algebraic systems with the same constraints, and inherits an invariant G[¬(A ;R)] of topological

graph labeled with those of algebraic systems, i.e., algebraic combinatorics, which is in accordance

with the notion for developing geometry that of Klein’s. Thus, a more applicable approach for

developing algebra is including non-algebra to algebra by consider various non-algebraic systems

constraint with property, but such a process will never be ended if we do not firstly determine

all algebraic systems. Even though, a more feasible approach is by its inverse, i.e., algebraic

G-systems following:

Definition 2.9 Let (A1;R1), (A2;R2), · · · , (An;Rn) be algebraic systems. An algebraic G-

system is a topological graph G with labeling L : v ∈ V (G) → L(v) ∈ {A1, A2, · · · , An} and

L : (u, v) ∈ E(G)→ L(u)
⋂

L(v) with L(u)
⋂

L(v) 6= ∅, denoted by G[A ,R], where A =
n⋃

i=1

Ai
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and R =
n⋃

i=1

Ri.

Clearly, if G[A ,R] is prescribed, these algebraic systems (A1;R1), (A2;R2), · · · , (An;Rn)

with intersections are determined.

Problem 2.10 Characterize algebraic G-systems G[A ,R], such as those of G-groups, G-rings,

integral G-domain, skew G-fields, G-fields, · · · , etc., or their combination G−{groups, rings},

G− {groups, integral domains}, G− {groups, fields}, G− {rings, fields} · · · . Particularly,

characterize these G-algebraic systems for complete graphs G = K2, K3, K4, path P3, P4 or

circuit C4 of order≤ 4.

In this perspective, classical algebraic systems are nothing else but mostly algebraic K1-

systems, also a few algebraic K2-systems. For example, a field (F ; +, ·) is in fact a K2-group

prescribed by Fig.3.

§3. Algebraic Equations

All equations discussed in this paper are independent, maybe contain one or several unknowns,

not an impossible equality in algebra, for instance 2x+y+z = 0.

3.1 Geometry on Non-Solvable Equations

Let (LES1
4), (LES2

4) be two systems of linear equations following:

(LES1
4)





x = y

x = −y

x = 2y

x = −2y

(LES2
4)





x + y = 1

x + y = 4

x− y = 1

x− y = 4

Clearly, the system (LES1
4) is solvable with x = 0, y = 0 but (LES2

4) is non-solvable because

x + y = 1 is contradicts to that of x + y = 4 and so for x − y = 1 to x − y = 4. Even so, is

the system (LES2
4) meaningless in the world? Similarly, is only the solution x = 0, y = 0 of

system (LES1
4) important to one? Certainly NOT! This view can be readily come into being

by all figures on R2 of these equations shown in Fig.5. Thus, if we denote by





L1 = {(x, y) ∈ R2|x = y}

L2 = {(x, y) ∈ R2|x = −y}

L3 = {(x, y) ∈ R2|x = 2y}

L4 = {(x, y) ∈ R2|x = −2y}





and





L′
1 = {(x, y) ∈ R2|x + y = 1}

L′
2 = {(x, y) ∈ R2|x + y = 4}

L′
3 = {(x, y) ∈ R2|x− y = 1}

L′
4 = {(x, y) ∈ R2|x− y = 4}





,
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- x

y

x + y = 1

x + y = 4

x− y = 1

x− y = 4

O

-
6

x

y

x = yx = −y

x = 2yx = −2y

O

(LES1
4) (LES2

4)

Fig.5

the global behavior of (LES1
4), (LES2

4) are lines L1− L4, lines L′
1 − L′4 on R2 and

L1

⋂
L2

⋂
L3

⋂
L4 = {(0, 0)} but L′

1

⋂
L′

2

⋂
L′

3

⋂
L′

4 = ∅.

Generally, let

(ESm)





f1(x1, x2, · · · , xn) = 0

f2(x1, x2, · · · , xn) = 0

. . . . . . . . . . . . . . . . . . . . . .

fm(x1, x2, · · · , xn) = 0

be a system of algebraic equations in Euclidean space Rn for integers m, n ≥ 1 with non-empty

point set Sfi
⊂ Rn such that fi(x1, x2, · · · , xn) = 0 for (x1, x2, · · · , xn) ∈ Sfi

, 1 ≤ i ≤ m.

Clearly, the system (ESm) is non-solvable or not dependent on

m⋂

i=1

Sfi
= ∅ or 6= ∅.

Conversely, let G be a geometrical space consisting of m parts G1, G2, · · · , Gm in Rn, where,

each Gi is determined by a system of algebraic equations




f
[i]
1 (x1, x2, · · · , xn) = 0

f
[i]
2 (x1, x2, · · · , xn) = 0

. . . . . . . . . . . . . . . . . . . . . . .

f
[i]
mi(x1, x2, · · · , xn) = 0

Then, the system of equations

f
[i]
1 (x1, x2, · · · , xn) = 0

f
[i]
2 (x1, x2, · · · , xn) = 0

. . . . . . . . . . . . . . . . . . . . . . .

f
[i]
mi(x1, x2, · · · , xn) = 0





1 ≤ i ≤ m
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is non-solvable or not dependent on

m⋂

i=1

Gi = ∅ or 6= ∅.

Thus we obtain the following result.

Theorem 3.1 The geometrical figure of equation system (ESm) is a space G consisting of

m parts Gi determined by equation fi(x1, x2, · · · , xn) = 0, 1 ≤ i ≤ m in (ESm), and is non-

solvable if
m⋂

i=1

Gi = ∅. Conversely, if a geometrical space G consisting of m parts,G1, G2, · · · , Gm,

each of them is determined by a system of algebraic equations in Rn, then all of these equations

consist a system (ESm), which is non-solvable or not dependent on
m⋂

i=1

Gi = ∅ or not.

For example, let G be a planar graph with vertices v1, v2, v3, v4 and edges v1v2, v1v3, v2v3,

v3v4, v4v1, shown in Fig.6.

-
6

O
x

y

y = 8

y = 2

x = 2 x = 12

v1 v2

v3v4

Fig.6

Then, a non-solvable system of equations with figure G on R2 consists of

(LE5)





x = 2

y = 8

x = 12

y = 2

3x + 5y = 46.

Thus G is an underlying graph of non-solvable system (LE5).

Definition 3.2 Let (ESmi
) be a solvable system of mi equations





f
[i]
1 (x1, x2, · · · , xn) = 0

f
[i]
2 (x1, x2, · · · , xn) = 0

. . . . . . . . . . . . . . . . . . . . . .

f
[i]
mi(x1, x2, · · · , xn) = 0
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with a solution space Sf [i] in Rn for integers 1 ≤ i ≤ m. A topological graph G[ESm] is defined

by

V (G[ESm]) = {Sf [i] , 1 ≤ i ≤ m};

E(G[ESm]) = {(Sf [i] , Sf [j]) if Sf [i]

⋂
Sf [j] 6= ∅, 1 ≤ i 6= j ≤ m}

with labels

L : Sf [i] ∈ V (G[ESm)])→ L(Sf [i]) = Sf [i] ,

L : (Sf [i] , Sf [j]) ∈ E(G[ESm)])→ Sf [i]

⋂
Sf [j] for integers 1 ≤ i 6= j ≤ m.

Applying Theorem 3.1, a conclusion following can be readily obtained.

Theorem 3.3 A system (ESm) consisting of equations in (ESmi
), 1 ≤ i ≤ m is solvable if and

only if G[ESm] ≃ Km with ∅ 6= S ⊂
m⋂

i=1

Sf [i] . Otherwise, non-solvable, i.e., G[ESm] 6≃ Km, or

G[ESm] ≃ Km but
m⋂

i=1

Sf [i] = ∅.

Let T : (x1, x2, · · · , xn) → (x′
1, x

′
2, · · · , x

′
n) be linear transformation determined by an

invertible matrix [aij ]n×n
, i.e., x′

i = ai1x1+ai2x2+· · ·+ainxn, 1 ≤ i ≤ n and let T (Sf [k]) = S′
f [k]

for integers 1 ≤ k ≤ m. Clearly, T : {Sf [i] , 1 ≤ i ≤ m} → {S′
f [i] , 1 ≤ i ≤ m} and

S′
f [i]

⋂
S′

f [j] 6= ∅ if and only if Sf [i]

⋂
Sf [j] 6= ∅

for integers 1 ≤ i 6= j ≤ m. Consequently, if T : (ESm)← (′ESm), then G[ESm] ≃ G[′ESm].

Thus T induces an isomorphism T ∗ of graph from G[ESm] to G[′ESm], which implies the

following result:

Theorem 3.4 A system (ESm) of equations fi(x) = 0, 1 ≤ i ≤ m inherits an invariant G[ESm]

under the action of invertible linear transformations on Rn.

Theorem 3.4 enables one to introduce a definition following for algebraic system (ESm) of

equations, which expands the scope of algebraic equations.

Definition 3.5 If G[ESm] is the topological graph of system (ESm) consisting of equations in

(ESmi
) for integers 1 ≤ i ≤ m, introduced in Definition 3.2, then G[ESm] is called a G-solution

of system (ESm).

Thus, for developing the theory of algebraic equations, a central problem in front of one

should be:

Problem 3.6 For an equation system (ESm), determine its G-solution G[ESm].

For example, the solvable system (ESm) in classical algebra is nothing else but a Km-

solution with
m⋂

i=1

Sf [i] 6= ∅, as claimed in Theorem 3.3. The readers are refereed to references

[22] or [26] for more results on non-solvable equations.
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3.2 Homogenous Equations

A system (ESm) is homogenous if each of its equations fi(x0, x1, · · · , xn), 1 ≤ i ≤ m is

homogenous, i.e.,

fi(λx0, λx1, · · · , λxn) = λdfi(x0, x1, · · · , xn)

for a constant λ, denoted by (hESm). For such a system, there are always existing a Km-

solution with {xi = 0, 0 ≤ i ≤ n} ⊂
m⋂

i=1

Sf [i] and each fi(x0, x1, · · · , xn) = 0 passes through

O = (0, 0, · · · , 0︸ ︷︷ ︸
n+1

) in Rn. Clearly, an invertible linear transformation T action on such a Km-

solution is also a Km-solution.

However, there are meaningless for such a Km-solution in projective space Pn because O 6∈

Pn. Thus, new invariants for such systems under projective transformations (x′
0, x

′
1, · · · , x

′
n) =

[aij ](n+1)×(n+1) (x0, x1, · · · , xn) should be found, where [aij ](n+1)×(n+1) is invertible. In R2,

two lines P (x, y), Q(x, y) are parallel if they are not intersect. But in P2, this parallelism will

never appears because the Bézout’s theorem claims that any two curves P (x, y, z), Q(x, y, z)

of degrees m, n without common components intersect precisely in mn points. However, de-

noted by I(P, Q) the set of intersections of homogenous polynomials P (x) with Q(x) with

x = (x0, x1, · · · , xn). The parallelism in Rn can be extended to Pn following, which enables one

to find invariants on systems homogenous equations.

Definition 3.7 Let P (x), Q(x) be two complex homogenous polynomials of degree d with x =

(x0, x1, · · · , xn). They are said to be parallel, denoted by P ‖ Q if d ≥ 1 and there are constants

a, b, · · · , c (not all zero) such that for ∀x ∈ I(P, Q), ax0 + bx1 + · · · + cxn = 0, i.e., all

intersections of P (x) with Q(x) appear at a hyperplane on PnC, or d = 1 with all intersections

at the infinite xn = 0. Otherwise, P (x) are not parallel to Q(x), denoted by P 6‖ Q.

Definition 3.8 Let P1(x) = 0, P2(x) = 0, · · · , Pm(x) = 0 be homogenous equations in (hESm).

Define a topological graph G[hESm] in Pn by

V (G[hESm]) = {P1(x), P2(x), · · · , Pm(x)};

E(G[hESm]) = {(Pi(x), Pj(x))|Pi 6‖ Pj , 1 ≤ i, j ≤ m}

with a labeling

L : Pi(x)→ Pi(x), (Pi(x), Pj(x))→ I(Pi, Pj), where 1 ≤ i 6= j ≤ m.

For any system (hESm) of homogenous equations, G[hESm] is an indeed invariant under

the action of invertible linear transformations T on Pn. By definition in [6], a covariant C(ak, x)

on homogenous polynomials P (x) is a polynomial function of coefficients ak and variables x.

We furthermore find a topological invariant on covariants following.

Theorem 3.9 Let (hESm) be a system consisting of covariants Ci(ak, x) on homogenous

polynomials Pi(x) for integers 1 ≤ i ≤ m. Then, the graph G[hESm] is a covariant under the

action of invertible linear transformations T , i.e., for ∀Ci(ak, x) ∈ (ESm), there is Ci′(ak, x) ∈

(ESm) with

Ci′(a
′
k
, x′) = ∆pCi(ak, x)
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holds for integers 1 ≤ i ≤ m, where p is a constant and ∆ is the determinant of T .

Proof Let GT [hESm] be the topological graph on transformed system T (hESm) defined

in Definition 3.8. We show that the invertible linear transformation T naturally induces an

isomorphism between graphs G[hESm] and GT [hESm]. In fact, T naturally induces a mapping

T ∗ : G[hESm] → GT [hESm] on Pn. Clearly, T ∗ : V (G[hESm]) → V (GT [hESm]) is 1 − 1,

also onto by definition. In projective space Pn, a line is transferred to a line by an invertible

linear transformation. Therefore, CT
u ‖ CT

v in T (ESm) if and only if Cu ‖ Cv in (hESm),

which implies that (CT
u , CT

v ) ∈ E(GT [ESm]) if and only if (Cu, Cv) ∈ E(G[hESm]). Thus,

G[hESm] ≃ GT [hESm] with an isomorphism T ∗ of graph.

Notice that I
(
CT

u , CT
v

)
= T (I(Cu, Cv)) for ∀(Cu, Cv) ∈ E(G[hESm]). Consequently, the

induced mapping

T ∗ : V (G[hESm])→ V (GT [hESm]), E(G[hESm])→ E(GT [hESm])

is commutative with that of labeling L, i.e., T ∗ ◦L = L ◦T ∗. Thus, T ∗ is an isomorphism from

topological graph G[hESm] to GT [hESm]. 2
Particularly, let p = 0, i.e., (ESm) consisting of homogenous polynomials P1(x), P2(x),

· · · , Pm(x) in Theorem 3.9. Then we get a result on systems of homogenous equations following.

Corollary 3.10 A system (hESm) of homogenous equations fi(x) = 0, 1 ≤ i ≤ m inherits an

invariant G[hESm] under the action of invertible linear transformations on Pn.

Thus, for homogenous equation systems (hESm), the G-solution in Problem 3.6 should be

substituted by G[hESm]-solution.

§4. Differential Equations

4.1 Non-Solvable Ordinary Differential Equations

For integers m, n ≥ 1, let

Ẋ = Fi(X), 1 ≤ i ≤ m (DES1
m)

be a differential equation system with continuous Fi : Rn → Rn, Ẋ =
dX

dt
such that Fi(0) = 0,

particularly, let

Ẋ = A1X, · · · , Ẋ = AkX, · · · , Ẋ = AmX (LDES1
m)

be a linear ordinary differential equation system of first order with

Ẋ = (ẋ1, ẋ2, · · · , ẋn)t = (
dx1

dt
,
dx2

dt
, · · · ,

dxn

dt
)

and 



x(n) + a
[0]
11x(n−1) + · · ·+ a

[0]
1nx = 0

x(n) + a
[0]
21x(n−1) + · · ·+ a

[0]
2nx = 0

· · · · · · · · · · · ·

x(n) + a
[0]
m1x

(n−1) + · · ·+ a
[0]
mnx = 0

(LDEn
m)
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a linear differential equation system of order n with

Ak =




a
[k]
11 a

[k]
12 · · · a

[k]
1n

a
[k]
21 a

[k]
22 · · · a

[k]
2n

· · · · · · · · · · · ·

a
[k]
n1 a

[k]
n2 · · · a

[k]
nn




and X =




x1(t)

x2(t)

· · ·

xn(t)




,

where, x(n) =
dnx

dtn
, all a

[k]
ij , 0 ≤ k ≤ m, 1 ≤ i, j ≤ n are numbers. Such a system (DES1

m) or

(LDES1
m) (or (LDEn

m)) are called non-solvable if there are no function X(t) (or x(t)) hold with

(DES1
m) or (LDES1

m) (or (LDEn
m)) unless constants. For example, the following differential

equation system

(LDE2
6)





ẍ− 3ẋ + 2x = 0 (1)

ẍ− 5ẋ + 6x = 0 (2)

ẍ− 7ẋ + 12x = 0 (3)

ẍ− 9ẋ + 20x = 0 (4)

ẍ− 11ẋ + 30x = 0 (5)

ẍ− 7ẋ + 6x = 0 (6)

is a non-solvable system.

According to theory of ordinary differential equations ([32]), any linear differential equation

system (LDES1
1) of first order in (LDES1

m) or any differential equation (LDEn
1 ) of order n

with complex coefficients in (LDEn
m) are solvable with a solution basis B = { βi(t)| 1 ≤ i ≤ n}

such that all general solutions are linear generated by elements in B.

Denoted the solution basis of systems (DES1
m) or (LDES1

m) (or (LDEn
m)) of ordinary dif-

ferential equations by B1, B2, · · · , Bm and define a topological graph G[DES1
m] or G[LDES1

m]

(or G[LDEn
m]) in Rn by

V (G[DES1
m]) = V (G[LDES1

m]) = V (G[LDEn
m]) = {B1, B2, · · · , Bm};

E(G[DES1
m]) = E(G[LDES1

m]) = E(G[LDEn
m])

= {(Bi, Bj) if Bi

⋂
Bj 6= ∅, 1 ≤ i, j ≤ m}

with a labeling

L : Bi → Bi, (Bi, Bj)→ Bi

⋂
Bj for 1 ≤ i 6= j ≤ m.

Let T be a linear transformation on Rn determined by an invertible matrix [aij ]n×n
. Let

T : {Bi, 1 ≤ i ≤ m} → {B′
i, 1 ≤ i ≤ m}.

It is clear that B′
i is the solution basis of the ith transformed equation in (DES1

m) or (LDES1
m)

(or (LDEn
m)), and B′

i

⋂
B′

j 6= ∅ if and only if Bi

⋂
Bj 6= ∅. Thus T naturally induces an

isomorphism T ∗ of graph with T ∗ ◦ L = L ◦ T ∗ on labeling L.
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Theorem 4.1 A system (DES1
m) or (LDES1

m) (or (LDEn
m)) of ordinary differential equations

inherits an invariant G[DES1
m] or G[LDES1

m] (or G[LDEn
m]) under the action of invertible

linear transformations on Rn.

Clearly, if the topological graph G[DES1
m] or G[LDES1

m] (or G[LDEn
m]) are determined,

the global behavior of solutions of systems (DES1
m) or (LDES1

m) (or (LDEn
m)) in Rn are

readily known. Such graphs are called respectively G[DES1
m]-solution or G[LDES1

m]-solution

(or G[LDEn
m]-solution) of systems of (DES1

m) or (LDES1
m) (or (LDEn

m)). Thus, for developing

ordinary differential equation theory, an interesting problem should be:

Problem 4.2 For a system of (DES1
m) (or (LDES1

m), or (LDEn
m)) of ordinary differential

equations, determine its G[DES1
m]-solution ( or G[LDES1

m]-solution, or G[LDEn
m]-solution).

For example, the topological graph G[LDE2
6 ] of system (LDE2

6) of linear differential equa-

tion of order 2 in previous is shown in Fig.7.

{et, e2t} {e2t, e3t}

{e3t, e4t}

{e4t, e5t}{e5t, e6t}

{e6t, et}

{e2t}

{e3t}

{e4t}

{e5t}

{e6t}

{et}

Fig.7

4.2 Non-Solvable Partial Differential Equations

Let L1, L2, · · · , Lm be m partial differential operators of first order (linear or non-linear) with

Lk =

n∑

i=1

aki

∂

∂xi

, 1 ≤ k ≤ m.

Then the system of partial differential equations

Li[u(x1, x2, · · · , xn)] = hi, 1 ≤ i ≤ m, (PDESm)

or the Cauchy problem





Li[u] = hi

u(x1, x2, · · · , xn−1, x
0
n) = ̟i, 1 ≤ i ≤ m

(PDESC
m)

is non-solvable if there are no function u(x1, · · · , xn) on a domain D ⊂ Rn with (PDESm)

or (PDESC
m) holds, where hi, 1 ≤ i ≤ m and ̟i 1 ≤ i ≤ m are all continuous functions on

D ⊂ Rn.
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Clearly, the ith partial differential equation is solvable [3]. Denoted by S0
i the solution of

ith equation in (PDESm) or (DEPSC
m). Then the system (PDESm) or (DEPSC

m) of partial

differential equations is solvable only if
m⋂

i=1

S0
i 6= ∅. Because u : Rn → Rn is differentiable, so

the (PDESm) or (DEPSC
m) is solvable only if

m⋂
i=1

S0
i is a non-empty functional set on a domain

D ⊂ Rn. Otherwise, non-solvable, i.e.,
m⋂

i=1

S0
i = ∅ for any domain D ⊂ Rn.

Define a topological graph G[PDESm] or G[DEPSC
m] in Rn by

V (G[PDESm]) = V (G[DEPSC
m]) = {S0

i , 1 ≤ i ≤ m};

E(G[PDESm]) = E(G[DEPSC
m])

= {(S0
i , S0

j ) if S0
i

⋂
S0

j 6= ∅, 1 ≤ i, j ≤ m}

with a labeling

L : S0
i → S0

i , (S0
i , S0

j ) ∈ E(G[PDESm]) = E(G[DEPSC
m])→ S0

i

⋂
S0

j

for 1 ≤ i 6= j ≤ m. Similarly, if T is an invertible linear transformation on Rn, then T (S0
i ) is the

solution of ith transformed equation in (PDESm) or (DEPSC
m), and T (S0

i )
⋂

T (S0
j ) 6= ∅ if and

only if S0
i

⋂
S0

j 6= ∅. Accordingly, T induces an isomorphism T ∗ of graph with T ∗ ◦L = L ◦ T ∗

holds on labeling L. We get the following result.

Theorem 4.3 A system (PDESm) or (DEPSC
m) of partial differential equations of first order

inherits an invariant G[PDESm] or G[DEPSC
m] under the action of invertible linear transfor-

mations on Rn.

Such a topological graph G[PDESm] or G[DEPSC
m] are said to be the G[PDESm]-solution

or G[DEPSC
m]-solution of systems (PDESm) and (DEPSC

m), respectively. For example, the

G[DEPSC
3 ]-solution of Cauchy problem





ut + aux = 0

ut + xux = 0

ut + aux + et = 0

u|t=0 = φ(x)

(DEPSC
3 )

is shown in Fig.8

S[1] S[2] S[3]
S[1]

⋂
S[2] S[2]

⋂
S[3]

Fig.8

Clearly, system (DEPSC
3 ) is contradictory because et 6= 0 for t. However,





ut + aux = 0

u|t=0 = φ(x)





ut + xux = 0

u|t=0 = φ(x)
and





ut + aux + et = 0

u|t=0 = φ(x)
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are solvable with respective solutions S[1] = {φ(x−at)}, S[2] = {φ( x
et )} and S[3] = {φ(x−at)−

et + 1}, and S[1]
⋂

S[2] = {φ(x − at) = φ( x
et )}, S[2]

⋂
S[3] = {φ( x

et ) = φ(x − at) − et + 1}, but

S[1]
⋂

S[3] = ∅.

Similar to ordinary case, an interesting problem on partial differential equations is the

following:

Problem 4.4 For a system of (PDESm) or (DEPSC
m) of partial differential equations, deter-

mine its G[PDESm]-solution or G[DEPSC
m]-solution.

It should be noted that for an algebraically contradictory linear system





Fi(x1, · · · , xn, u, p1, · · · , pn, ) = 0

Fj(x1, · · · , xn, u, p1, · · · , pn, ) = 0,

if

Fk(x1, · · · , xn, u, p1, · · · , pn, ) = 0

is contradictory to one of there two partial differential equations, then it must be contradictory

to another. This fact enables one to classify equations in (LPDESm) by the contradictory

property and determine G[LPDESC
m]. Thus if C1, · · · , Cl are maximal contradictory classes

for equations in (LPDES), then G[LPDESC
m] ≃ K(C1, · · · , Cl), i.e., an l-partite complete

graph. Accordingly, all G[LPDESC
m]-solutions of linear systems (LPDESm) are nothing else

but K(C1, · · · , Cs)-solutions. More behaviors on non-solvable ordinary or partial differential

equations of first order, for instance the global stability can be found in references [25]-[27].

4.3 Equation’s Combinatorics

All these discussions in Sections 3 and 4.2− 4.3 lead to a conclusion that a non-solvable system

(ES) of equations in n variables inherits an invariant G[ES] of topological graph labeled with

those of individually solutions, if it is individually solvable, i.e., equation’s combinatorics by

view it with the topological graph G[ES] in Rn. Thus, for holding the global behavior of a

system (ES) of equations, the right way is not just to determine it is solvable or not, but its

G[ES]-solution. Such a G[ES]-solution is existent by philosophy and enables one to include

non-solvable equations, no matter what they are algebraic, differential, integral or operator

equations to mathematics by G-system following:

Definition 4.5 A G-system (ESm) of equations Oi(X) = 0, 1 ≤ i ≤ m with constraints

C is a topological graph G with labeling L : v ∈ V (G) → L(v) ∈ {SOi
; 1 ≤ i ≤ m} and

L : (u, v) ∈ E(G)→ L(u)
⋂

L(v) with L(u)
⋂

L(v) 6= ∅, denoted by G[ESm], where, SOi
is the

solution space of equation Oi(X) = 0 with constraints C for integers 1 ≤ i ≤ m.

Thus, holding the true face of a thing T characterized by a system (ESm) of equations

needs one to determine its G-system, i.e., G[ESm]-solution, not only solvable or not for its

objective reality.

Problem 4.6 Determine G[ESm] for equation systems (ESm), such as those of algebraic,
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differential, integral, operator equations, or their combination, or conversely, characterize G-

systems of equations for given graphs G, foe example, these G-systems of equations for complete

graphs G = Km, complete bipartite graph K(n1, n2) with n1 + n2 = m, path Pm−1 or circuit

Cm.

By this view, a solvable system (ESm) of equations in classical mathematics is nothing else

but such a Km-system with
⋂

e∈E(Km)

L(e) 6= ∅. However, as we known, more systems of equations

established on characters µi, 1 ≤ i ≤ n for a thing T are non-solvable with contradictions if

n ≥ 2. It is nearly impossible to solve all those systems in classical mathematics. Even so, its

G-systems reveals behaviors of thing T to human beings.

§5. Geometry

As what one sees with an immediately form on things, the geometry proves to be one of

applicable means for portraying things by its homogeneity with distinction. Nevertheless, the

non-geometry can also contributes describing things complying with the Erlangen Programme

that of Klein.

5.1 Non-Spaces

Let K n = {(x1, x2, · · · , xn)} be an n-dimensional Euclidean ( affine or projective ) space with

a normal basis ǫi, 1 ≤ i ≤ n, x ∈ K n and let
−→
V x, x

−→
V be two orientation vectors with end or

initial point at x. Such as those shown in Fig.9.- - - >
x x

−→
V x x

−→
V

−→
V x

x

−→
V

(a) (b)

Fig.9

For point ∀x ∈ K n, we associate it with an invertible linear mapping

µ : {ǫ1, ǫ2, · · · , ǫn} → {ǫ
′
1, ǫ

′
2, · · · , ǫ

′
n}

such that µ(ǫi) = ǫ′i, 1 ≤ i ≤ n, called its weight, i.e.,

(ǫ′1, ǫ
′
2, · · · , ǫ

′
n) = [aij ]n×n

(ǫ1, ǫ2, · · · , ǫn)t

where, [aij ]n×n
is an invertible matrix. Such a space is a weighted space on points in K n,

denoted by (K n, µ) with µ : x → µ(x) = [aij ]n×n
. Clearly, if µ(x1) =

[
a′

ij

]
, µ(x2) =

[
a′′

ij

]
,

then µ(x1) = µ(x2) if and only if there exists a constant λ such that
[
a′

ij

]
n×n

=
[
λa′′

ij

]
n×n

, and

(K n, µ) = Rn ( An or Pn), i.e., n-dimensional Euclidean ( affine or projective space ) if and

only if [aij ]n×n
= In×n for ∀x ∈ K n. Otherwise, non-Euclidean, non-affine or non-projective

space, abbreviated to non-space.
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Notice that
[
a′

ij

]
n×n

=
[
λa′′

ij

]
n×n

is an equivalent relation on invertible n × n matrixes.

Thus, for ∀x0 ∈ K n, define

C (x0) = {x ∈ K
n|µ(x) = λµ(x0), λ ∈ R},

an equivalent set of points to x0. Then there exist representatives Cκ, κ ∈ Λ constituting a

partition of K n in all equivalent sets C (x), x ∈K n of points, i.e.,

K
n =

⋃

κ∈Λ

Cκ with Cκ1

⋂
Cκ2 = ∅ for κ1, κ2 ∈ Λ if κ1 6= κ2,

where Λ maybe countable or uncountable.

Let µ(x) = [aij ]n×n
= Aκ for x ∈ Cκ. For viewing behaviors of orientation vectors in an

equivalent set Cκ of points, define µAκ
: K n → µAκ

(K n) by µAκ
(x) = Aκ. Then (K n, µAκ

)

is also a non-space if Aκ 6= In×n. However, (K n, µAκ
) approximates to K n with homogeneity

because each orientation vector only turns a same direction passing through a point. Thus,

(K n, µAκ
) can be viewed as space K n, denoted by K n

µA
. Define a topological graph G[K n, µ]

by

V (G[K n, µ]) = {K n
µκ

, κ ∈ Λ};

E(G[K n, µ]) = {(K n
µκ1

, K n
µκ2

) if K
n

µκ1

⋂
K

n
µκ2
6= ∅, κ1, κ2 ∈ Λ, κ1 6= κ2}

with labels

L : K
n

µκ
∈ V (G[K n, µ])→ K

n
µκ

,

L : (K n
µκ1

, K n
µκ2

) ∈ E(G[K n, µ])→ K
n

µκ1

⋂
K

n
µκ2

, κ1 6= κ2 ∈ Λ.

Then, we get an overview on (K n, µ) with Euclidean spaces K n
µκ

, κ ∈ Λ by combinatorics.

Clearly, K n
⋂

K n
µκ

= Cκ and K n
µκ1

⋂
K n

µκ2
= ∅ if none of K n

µκ1
, K n

µκ2
being K n. Thus,

G[K n, µ] ≃ K1,|Λ|−1, a star with center K n, such as those shown in Fig.10. Otherwise,

G[K n, µ] ≃ K|Λ|, i.e., |Λ| isolated vertices, which can be turned into K1,|Λ| by adding an

imaginary center vertex K n.

K n

K n
κ1

K n
κ2

K
n
|Λ|−1

C3

C1

C4

C2C|Λ|−1

K n
κ4

K n
κ3

Fig.10



Mathematics on Non-Mathematics — A Combinatorial Contribution 23

Let T be an invertible linear transformation on K n determined by (x′) = [αij ]n×n
(x)t.

Clearly, T : K n → K n, K n
µκ
→ T (K n

κ ) and T (K n
κ1

)
⋂

T (K n
κ2

) 6= ∅ if and only if

K n
κ1

⋂
K n

κ2
6= ∅. Furthermore, one of T (K n

κ1
), T (K n

κ2
) should be K n. Thus T induces an

isomorphism T ∗ from G[K n, µ] to G[T (K n), µ] of graph. Accordingly, we know the result

following.

Theorem 5.1 An n-dimensional non-space (K n, µ) inherits an invariant G[K n, µ], i.e., a

star K1,|Λ|−1 or K1,|Λ| under the action of invertible linear transformations on Kn, where Λ is

an index set such that all equivalent sets Cκ, κ ∈ Λ constitute a partition of space K n.

5.2 Non-Manifolds

Let M be an n-dimensional manifold with an alta A = { (Uλ; ϕλ) | λ ∈ Λ}, where ϕλ : Uλ → Rn

is a homeomorphism with countable Λ. A non-manifold ¬M on M is such a topological space

with ϕ : Uλ → Rnλ for integers nλ ≥ 1, λ ∈ Λ, which is a special but more applicable case of

non-space (Rn, µ). Clearly, if nλ = n for λ ∈ Λ, ¬M is nothing else but an n-manifold.

For an n-manifold M , each Uλ is itself an n-manifold for λ ∈ Λ by definition. Generally, let

Mλ be an nλ-manifold with an alta Aλ = { (Uλκ; ϕλκ) | κ ∈ Λλ}, where ϕλκ : Uλκ → Rnλ . A

combinatorial manifold M̃ on M is such a topological space constituted by Mλ, λ ∈ Λ. Clearly,⋃
λ∈Λ

Λλ is countable. If nλ = n, i.e., all Mλ is an n-manifold for λ ∈ Λ, then the union M of

Mλ, λ ∈ Λ is also an n-manifold with alta

Ã =
⋃

λ∈Λ

Aλ = {(Uλκ; ϕλκ) | κ ∈ Λλ, λ ∈ Λ}.

Theorem 5.2 A combinatorial manifold M̃ is a non-manifold on M , i.e.,

M̃ = ¬M .

Accordingly, we only discuss non-manifolds ¬M . Define a topological graph G[¬M ] by

V (G[¬M ]) = {Uλ, λ ∈ Λ};

E(G[¬M ]) = {(Uλ1 , Uλ2) if Uλ1

⋂
Uλ2 6= ∅, λ1, λ2 ∈ Λ, λ1 6= λ2}

with labels

L : Uλ ∈ V (G[¬M ])→ Uλ,

L : (Uλ1 , Uλ2) ∈ E(¬M ])→ Uλ1

⋂
Uλ2 , λ1 6= λ2 ∈ Λ,

which is an invariant dependent only on alta A of M .

Particularly, if each Uλ is a Euclidean spaces Rλ, λ ∈ Λ, we get another topological graph

G[Rλ, λ ∈ Λ] on Euclidean spaces Rλ, λ ∈ Λ, a special non-manifold called combinatorial

Euclidean space. The following result on ¬M is easily obtained likewise the proof of Theorem

2.1 in [23].
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Theorem 5.3 A non-manifold ¬M on manifold M with alta A = { (Uλ; ϕλ) | λ ∈ Λ} inherits

an topological invariant G[¬M ]. Furthermore, if M is locally compact, G[¬M ] is topological

homeomorphic to G[Rλ, λ ∈ Λ] if ϕ : Uλ → Rnλ , λ ∈ Λ.

It should be noted that Whitney proved that an n-manifold can be topological embedded

as a closed submanifold of R2n+1 with a sharply minimum dimension 2n+ 1 in 1936. Applying

this result, one can easily show that a non-manifold ¬M can be embedded into R2nmax+1 if

nmax = max{nλ ∈ Λ} <∞. Furthermore, let Uλ itself be a subset of Euclidean space Rnmax+1

for λ ∈ Λ, then xnmax+1 = ϕλ(x1, x2, · · · , xnλ
) in Rnmax+1. Thus, one gets an equation

xnmax+1 − ϕλ(x1, x2, · · · , xnλ
) = 0

in Rnmax+1. Particularly, if Λ = {1, 2, · · · , m} is finite, one gets a system (ESm) of equations





xnmax+1 − ϕλ(x1, x2, · · · , xn1) = 0

xnmax+1 − ϕλ(x1, x2, · · · , xn2) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xnmax+1 − ϕλ(x1, x2, · · · , xnm
) = 0

(ESm)

in Rnmax+1. Generally, this system (ESm) is non-solvable, which enables one getting Theorem

3.1 once again.

5.3 Differentiable Non-Manifolds

For ∀Mλ ∈ ¬M , if Mλ is differentiable determined by a system of differential equations

(DESmλ
)





Fλ1(x1, x2, · · · , xn, u, ux1, · · · , uxn
, ux1x2 , · · · , ux1xn

, · · · ) = 0

Fλ2(x1, x2, · · · , xn, u, ux1, · · · , uxn
, ux1x2 , · · · , ux1xn

, · · · ) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fλmλ
(x1, x2, · · · , xn, u, ux1, · · · , uxn

, ux1x2 , · · · , ux1xn
, · · · ) = 0

Then the system (DESm) consisting of systems (DESmλ
), 1 ≤ λ ≤ m of differential equations

with prescribed initial values xi0 , u0, pi0 for integers i = 1, 2, · · · , n is generally non-solvable

with a geometrical figure of differentiable non-manifold ¬M .

Notice that a main characters for points p in non-manifold ¬M is that the number of vari-

ables for determining its position in space is not a constant. However, it can also introduces dif-

ferentials on non-manifolds constrained with ϕκ|Uκ

⋂
Uλ

= ϕλ|Uκ

⋂
Uλ

for ∀(Uκ, ϕκ), (Uλ, ϕλ) ∈

A , and smooth functions f : ¬M → R at a point p ∈ ¬M . Denoted respectively by Xp, Tp¬M

all smooth functions and all tangent vectors v : Xp → R at a point p ∈ ¬M . If ϕ(p) ∈
s⋂

i=1

Rni(p)

and ŝ(p) = dim(
s⋂

i=1

Rni(p)), a simple calculation shows the dimension of tangent vector space

dimTp¬M = ŝ(p) +

s(p)∑

i=1

(ni − ŝ(p))
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with a basis
{

∂

∂xij

∣∣∣∣
p

, 1 ≤ i ≤ s(p), 1 ≤ j ≤ ni with xil = xjl if 1 ≤ l ≤ ŝ(p)

}

and similarly, for cotangent vector space dimT ∗
p¬M = dimTp¬M with a basis

{
dxij |p , 1 ≤ i ≤ s(p), 1 ≤ j ≤ ni with xil = xjl if 1 ≤ l ≤ ŝ(p)

}
,

which enables one to introduce vector field X (¬M) =
⋃

p∈¬M

Xp, tensor field T r
s (¬M) =

⋃
p∈¬M

T r
s (p,¬M), where,

T r
s (p,¬M) = Tp¬M ⊗ · · · ⊗ Tp¬M︸ ︷︷ ︸

r

⊗T ∗
p¬M ⊗ · · · ⊗ T ∗

p¬M︸ ︷︷ ︸
s

and connection D : X (¬M) × T r
s (¬M) → T r

s (¬M) with DXτ = D(X, τ) such that for

∀X, Y ∈ X (¬M), τ, π ∈ T r
s (¬M), λ ∈ R, f ∈ C∞(¬M),

(1) DX+fY τ = DXτ + fDY τ and DX(τ + λπ) = DXτ + λDXπ;

(2) DX(τ ⊗ π) = DXτ ⊗ π + σ ⊗DXπ;

(3) For any contraction C on T r
s (¬M), DX(C(τ)) = C(DXτ).

Particularly, let g ∈ T 0
2 (¬M). If g is symmetrical and positive, then ¬M is called a

Riemannian non-manifold, denoted by (¬M, g). It can be readily shown that there is a unique

connection D on Riemannian non-manifold (¬M, g) with equality

Z(g(X, Y )) = g(DZ , Y ) + g(X, DZY )

holds. Such a D with (¬M, g), denoted by (¬M, g, D) is called a Riemannian non-geometry.

Now let D ∂

∂xkl

∂

∂xij

= Γ
(ij)(kl)
(st)

∂

∂xij

on (Up; ϕ) for point p ∈ (¬M, g, D). Then Γ
(ij)(kl)
(st) =

Γ
(kl)(ij)
(st) and

Γ
(kl)(ij)
st =

1

2
g(st)(uv)(

∂g(kl)(uv)

∂xij

+
∂g(uv)(ij)

∂xkl

−
∂g(kl)(ij)

∂xuv

),

where g = g(kl)(ij)dxkldxij and g(st)(uv) is an element in matrix [g(kl)(ij)]−1.

Similarly, a Riemannian curvature tensor

R : X (¬M)×X (¬M)×X (¬M)×X (¬M)→ C∞(¬M)

of type (0, 4) is defined by R(X, Y, Z, W ) = g(R(Z, W )X, Y ) for ∀X, Y, Z, W ∈ X (¬M) and

with a local form

R = R(ij)(kl)(st)(uv)dxij ⊗ dxkl ⊗ dxst ⊗ dxuv,

where

R(ij)(kl)(st)(uv) =
1

2

(
∂2g(st)(ij)

∂xuv∂xkl

+
∂2g(uv)(kl)

∂xst∂xij

−
∂2g(st)(kl)

∂xuv∂xij

−
∂2g(uv)(ij)

∂xst∂xkl

)

+Γ
(st)(ij)
ab Γ

(uv)(kl)
cd g(cd)(ab) − Γ

(st)(kl)
ab Γ(uv)(ij)cdg(cd)(ab),
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for ∀p ∈ ¬M and g(ij)(kl) = g(
∂

∂xij

,
∂

∂xkl

), which can be also used for measuring the curved

degree of (¬M, g, D) at point p ∈ ¬M (see [16] or [21] for details).

Theorem 5.4 A Riemannian non-geometry (¬M, g, D) inherits an invariant, i.e., the curvature

tensor R : X (¬M)×X (¬M)×X (¬M)×X (¬M)→ C∞(¬M).

5.4 Smarandache Geometry

A fundamental image of geometry G is that of space consisting of point p, line L, plane P ,

etc. elements with inclusions P, L ∋ p and P ⊃ L and a geometrical axiom is a premise

logic function T on geometrical elements p, L, P, · · · ∈ G with T (p, L, P, · · · ) = 1 in classical

geometry. Contrast to the classic, a Smarandache geometry SG is such a geometry with at least

one axiom behaves in two different ways within the same space, i.e., validated and invalided,

or only invalided but in multiple distinct ways. Thus, T (p, L, P, · · · ) = 1, ¬T (p, L, P, · · · ) = 1

hold simultaneously, or 0 < ¬T (p, L, P, · · · ) = I1, I2, · · · , Ik < 1 for an integer k ≥ 2 in SG ,

which enables one to discuss Smarandache geometriy in two cases following:

Case 1. T (p, L, P, · · · ) = 1 ∧ ¬T (p, L, P, · · · ) = 1 in SG .

Denoted by U = T−1(1) ⊂ SG , V = ¬T−1(1) ⊂ SG . Clearly, if U
⋂

V 6= ∅ and there are

p, L, P, · · · ∈ U
⋂

V . Then there must be T (p, L, P, · · · ) = 1 and ¬T (p, L, P, · · · ) = 1 in U
⋂

V ,

a contradiction. Thus, U
⋂

V = ∅ or U
⋂

V 6= ∅ but some of elements p, L, P, · · · ∈ SG for T

are missed in U
⋂

V .

Not loss of generality, let

U =
m⊕

k=1

Uk
C and V =

n⊕

i=1

V i
C ,

where Uk
C , V i

C are respectively connected components in U and V . Define a topological graph

G[U, V ] following:

V (G[U, V ]) = {Uk
C ; 1 ≤ k ≤ m}

⋃
{V i

C ; 1 ≤ i ≤ n};

E(G[U, V ]) = {(Uk
C , V i

C) if Uk
C

⋂
V i

C 6= ∅, 1 ≤ k ≤ m, 1 ≤ i ≤ n}

with labels

L : Uk
C ∈ V (G[U, V ])→ Uk

C , V i
C ∈ V (G[U, V ])→ V i

C

L : (Uk
C , V i

C) ∈ E(G[U, V ])→ Uk
C

⋂
V i

C , 1 ≤ k ≤ m, 1 ≤ i ≤ n.

Clearly, such a graph G[U, V ] is bipartite, i.e., G[U, V ] ≤ Km,n with labels.

Case 2. 0 < ¬T (p, L, P, · · · ) = I1, I2, · · · , Ik < 1, k ≥ 2 in SG .

Denoted by A1 = ¬T−1(I1) ⊂ SG , A2 = ¬T−1(I2) ⊂ SG , · · · , Ak = ¬T−1(Ik) ⊂ SG .

Similarly, if Ai

⋂
Aj 6= ∅ and there are p, L, P, · · · ∈ Ai

⋂
Aj . Then there must be Ai

⋂
Aj = ∅

or Ai

⋂
Aj 6= ∅ but some of elements p, L, P, · · · ∈ SG for T are missed in A1

⋂
Aj for integers

1 ≤ i 6= j ≤ k.
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Let Ai =

mi⊕

l=1

Ail

C with Ail

C , 1 ≤ l ≤ mi connected components in Ai. Define a topological

graph G[Ai, [1, k]] following:

V (G[Ai, [1, k]]) =

k⋃

i=1

{Ail

C ; 1 ≤ l ≤ mi};

E(G[Ai, [1, k]]) =

k⋃

i,j=1

i6=j

{(Ail

C , Ajs

C ) if Ail

C

⋂
Ajs

C 6= ∅, 1 ≤ l ≤ mi, 1 ≤ s ≤ mj}

with labels

L : Ail

C ∈ V (G[Ai, [1, k]])→ Ail

C , Ajs

C ∈ V (G[Ai, [1, k]])→ Ajs

C

L : (Ail

C , Ajs

C ) ∈ E(G[Ai, [1, k]])→ Ail

C

⋂
Ajs

C , 1 ≤ l ≤ mi, 1 ≤ s ≤ mj

for integers 1 ≤ i 6= j ≤ k. Clearly, such a graph G[Ai, [1, k]] is k-partite, i.e., G[Ai, [1, k]] ≤

Km1,m2,··· ,mk
with labels.

For an invertible transformation T on geometry SG , it is clear that T (p), T (L), T (P ), · · ·

also constitute the elements of SG with graphs G[U, V ] and G[Ai, [1, k]] invariant. Thus, we

know

Theorem 5.5 A Smarandache geometry SG inherits a bipartite invariant G[U, V ] or k-partite

G[Ai, [1, k]] under the action of its linear invertible transformations.

5.5 Geometrical Combinatorics

All previous discussions on non-space (K n, µ), non-manifold ¬M or differentiable non-manifold

¬M and Smarandache geometry SG allude a philosophical notion that any non-geometry can be

decomposed into geometries inheriting an invariant G[K n, µ], G[¬M ], G[U, V ] or G[Ai, [1, k]]

of topological graph labeled with those of geometries, i.e., geometrical combinatorics accordant

with that notion of Klein’s. Accordingly, for extending field of geometry, one needs to determine

the inherited invariants G[K n, µ], G[¬M ], G[U, V ] or G[Ai, [1, k]] and then know geometrical

behaviors on non-geometries. But this approach is passive for including non-geometry to ge-

ometry. A more initiative way with realization is geometrical G-systems following:

Definition 5.6 Let (G1;A1), (G2;A2, · · · , (Gm;Am) be m geometrical systems, where Gi, Ai

be respectively the geometrical space and the system of axioms for an integer 1 ≤ i ≤ m.

A geometrical G-system is a topological graph G with labeling L : v ∈ V (G) → L(v) ∈

{G1, G2, · · · , Gm} and L : (u, v) ∈ E(G) → L(u)
⋂

L(v) with L(u)
⋂

L(v) 6= ∅, denoted by

G[G ,A], where G =
m⋃

i=1

Gi and A =
m⋃

i=1

Ai.

Clearly, a geometrical G-system can be applied for holding on the global behavior of systems

G1, G2, · · · , Gm. For example, a geometrical K4−{e}-system is shown in Fig.11, where, R3
i , 1 ≤

i ≤ 4 are Euclidean spaces with dimensional 3 and R3
i

⋂
R3

j maybe homeomorphic to R, R2 or

R3 for 1 ≤ i, j ≤ 4.
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Problem 5.7 Characterize geometrical G-systems G[G ,A]. Particularly, characterize these ge-

ometrical G-systems, such as those of Euclidean geometry, Riemannian geometry, Lobachevshy-

Bolyai-Gauss geometry for complete graphs G = Km, complete k-partite graph Km1,m2,··· ,mk
,

path Pm or circuit Cm.

Problem 5.8 Characterize geometrical G-systems G[G ,A] for topological or differentiable man-

ifold, particularly, Euclidean space, projective space for complete graphs G = Km, complete

k-partite graph Km1,m2,··· ,mk
, path Pm or circuit Cm.

It should be noted that classic geometrical system are mostly K1-systems, such as those

of Euclidean geometry, projective geometry,· · · , etc., also a few K2-systems. For example, the

topological group and Lie group are in fact geometrical K2-systems, but neither Km-system

with m ≥ 3, nor G 6≃ Km-system.

§6. Applications

As we known, mathematical non-systems are generally faced up human beings in scientific

fields. Even through, the mathematical combinatorics contributes an approach for holding on

their global behaviors.

6.1 Economics

A circulating economic system is such a overall balance input-output M(t) =
m⋃

i=1

Mi(t) under-

lying a topological graph G[M(t)] that there are no rubbish in each producing department.

Whence, there is a circuit-decomposition G [M(t)] =
l⋃

i=1

−→
C s such that each output of a produc-

ing department Mi(t), 1 ≤ i ≤ m is on a directed circuit
−→
C s for an integer 1 ≤ s ≤ l, such as

those shown in Fig.12.
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-/ oM1(t)

M2(t) Ms(t)

Fig.12

Assume that there are m producing departments M1(t), M2(t), · · · , Mm(t), xij output

values of Mi(t) for the department Mj(t) and di for the social demand. Let Fi(x1i, x2i, · · · , xni)

be the producing function in Mi(t). Then the input-output model of a circulating economic

system can be characterized by a system of equations





F1(x) =
m∑

j=1

x1j + d1

F2(x) =
m∑

j=1

x2j + d2

. . . . . . . . . . . . . . . . . . . . . .

Fm(x) =
m∑

j=1

xmj + dm

Generally, this system is non-solvable even if it is a linear system. Nevertheless, it is a G-

system of equations. The main task is not finding its solutions, but determining whether it

runs smoothly, i.e., a macro-economic behavior of system.

6.2 Epidemiology

Assume that there are three kind groups in persons at time t, i.e., infected I(t), susceptible

S(t) and recovered R(t) with S(t) + I(t) + R(t) = 1. Then one established the SIR model of

infectious disease as follows:





dS

dt
= −kIS,

dI

dt
= kIS − hI,

S(0) = S0, I(0) = I0, R(0) = 0,

,

which are non-linear equations of first order.

If the number of persons in an area is not constant, let C1, C2, · · · , Cm be m segregation

areas with respective N1, N2, · · · , Nm persons. Assume at time t, there are Ui(t), Vi(t) persons

moving in or away Ci. Thus Si(t) + Ii(t) − Ui(t) + Vi(t) = Ni. Denoted by cij(t) the persons

moving from Ci to Cj for integers 1 ≤ i, j ≤ m. Then

m∑

s=1

csi(t) = Ui(t) and
m∑

s=1

cis(t) = Vi(t).



30 Linfan MAO

A combinatorial model of infectious disease is defined by a topological graph G following:

V (G) = {C1, C2, · · · , Cm},

E (G) = {(Ci, Cj)| there are traffic means from Ci to Cj , 1 ≤ i, j ≤ m},

L (Ci) = Ni, L+(Ci, Cj) = cij for ∀(Ci, Cj) ∈ E
(
Gl
)
, 1 ≤ i, j ≤ m,

such as those shown in Fig.13.

N1 N2

N3 N4

-
?�

6 s 6� �
-Y

c21

c12

c13 c31

c14

c41

c43

c34

c42c24

Fig.13

In this case, the SIR model for areas Ci, 1 ≤ i ≤ m turns to

dSi

dt
= −kIiSi,

dIi

dt
= kIiSi − hIi,

Si(0) = Si0, Ii(0) = Ii0, R(0) = 0,





1 ≤ i ≤ m,

which is a non-solvable system of differential equations.

Even if the number of an area is constant, the SIR model works only with the assumption

that a healed person acquired immunity and will never be infected again. If it does not hold,

the SIR model will not immediately work, such as those of cases following:

Case 1. there are m known virus V1, V2, · · · , Vm with infected rate ki, heal rate hi for

integers 1 ≤ i ≤ m and an person infected a virus Vi will never infects other viruses Vj for

j 6= i.

Case 2. there are m varying V1, V2, · · · , Vm from a virus V with infected rate ki, heal

rate hi for integers 1 ≤ i ≤ m such as those shown in Fig.14.

V1 V2
- - - Vm

Fig.14

However, it is easily to establish a non-solvable differential model for the spread of viruses
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following by combining SIR model:





Ṡ = −k1SI

İ = k1SI − h1I

Ṙ = h1I





Ṡ = −k2SI

İ = k2SI − h2I

Ṙ = h2I

· · ·





Ṡ = −kmSI

İ = kmSI − hmI

Ṙ = hmI

Consider the equilibrium points of this system enables one to get a conclusion ([27]) for

globally control of infectious diseases, i.e., they decline to 0 finally if

0 < S <

m∑

i=1

hi

/
m∑

i=1

ki ,

particularly, these infectious viruses are globally controlled if each of them is controlled in that

area.

6.3 Gravitational Field

What is the true face of gravitation? Einstein’s equivalence principle says that there are no

difference for physical effects of the inertial force and the gravitation in a field small enough,

i.e., considering the curvature at each point in a spacetime to be all effect of gravitation, called

geometrization of gravitation, which finally resulted in Einstein’s gravitational equations ([2])

Rµν −
1

2
Rgµν + λgµν = −8πGT µν

in R4, where Rµν = Rµαν
α = gαβRαµβν , R = gµνRµν are the respective Ricci tensor, Ricci

scalar curvature, G = 6.673 × 10−8cm3/gs2, κ = 8πG/c4 = 2.08 × 10−48cm−1 · g−1 · s2 and

Schwarzschild spacetime with a spherically symmetric Riemannian metric

ds2 = f(t)
(
1−

rg

r

)
dt2 −

1

1− rg

r

dr2 − r2(dθ2 + sin2 θdφ2)

for λ = 0. However, a most puzzled question faced up human beings is whether the dimension

of the universe is really 3? if not, what is the meaning of one’s observations? Certainly, if the

dimension≥ 4, all these observations are nothing else but a projection of the true faces on our

six organs, a pseudo-truth.

For a gravitational field Rn with n ≥ 4, decompose it into dimensional 3 Euclidean spaces

R3
u, R3

v, · · · , R3
w. Then there are Einstein’s gravitational equations:

Rµuνu −
1

2
gµuνuR = −8πGT µuνu ,

Rµvνv −
1

2
gµvνvR = −8πGT µvνv ,

· · · · · · · · · · · · · · · ,

Rµwνw −
1

2
gµwνwR = −8πGT µwνw

for each R3
u, R3

v, · · · , R3
w, such as a K4-system shown in Fig.15,
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R3 R3

P1 P2
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where P1, P2, P3, P4 are the observations. In this case, these gravitational equations can be

represented by

R(µν)(στ) −
1

2
g(µν)(στ)R = −8πGT (µν)(στ)

with a coordinate matrix

[xp] =




x11 · · · x1m̂ · · · x13

x21 · · · x2m̂ · · · x23

· · · · · · · · · · · · · · ·

xm1 · · · xmm̂ · · · xm3




for ∀p ∈ Rn, where m̂ = dim

(
m⋂

i=1

Rni

)
a constant for ∀p ∈

m⋂
i=1

Rni and xil =
xl

m
for 1 ≤

i ≤ m, 1 ≤ l ≤ m̂. Then, by the Projective Principle, i.e., a physics law in a Euclidean space

Rn ≃ R̃ =
n⋃

i=1

R3 with n ≥ 4 is invariant under a projection on R3 from Rn, one can determines

its combinatorial Schwarzschild metric. For example, if m̂ = 4, i.e., tµ = t, rµ = r, θµ = θ and

φµ = φ for 1 ≤ µ ≤ m, then ([18])

ds2 =
m∑

µ=1

(
1−

2Gmµ

c2r

)
dt2 −

m∑

µ=1

(
1−

2Gmµ

c2r

)−1

dr2 −mr2(dθ2 + sin2 θdφ2)

and furthermore, if mµ = M for 1 ≤ µ ≤ m, then

ds2 =

(
1−

2GM

c2r

)
mdt2 −

(
1−

2GM

c2r

)−1

mdr2 −mr2(dθ2 + sin2 θdφ2),

which is the most enjoyed case by human beings. If so, all the behavior of universe can be

realized finally by human beings. But if m̂ ≤ 3, there are infinite underlying connected graphs,

one can only find an approximating theory for the universe, i.e., “Name named is not the eternal

Name”, claimed by Lao Zi.
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