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1. Departamento de Matemáticas, Universidad Nacional de Colombia, AA 14490, Bogotá, Colombia
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§1. Introduction

A lattice path of length n is a sequence of points P1, P2, . . . , Pn with n > 1 such that each point

Pi belongs to the plane integer lattice and each two consecutive points Pi and Pi+1 connect

by a line segment. We will consider lattice paths in Z × Z using three step types: a rise step

U = (1, 1), a fall step D = (1,−1) and a Fk,l−colored length horizontal step Hl = (l, 0) for

every positive integer l, such that Hl is colored by means of Fk,l colors, where Fk,l is the l-th

k-Fibonacci number.

Many kinds of generalizations of the Fibonacci numbers have been presented in the litera-

ture [10,11] and the corresponding references. Such as those of k-Fibonacci numbers Fk,n and

the k-Smarandache-Fibonacci numbers Sk,n. For any positive integer number k, the k-Fibonacci

sequence, say {Fk,n}n∈N, is defined recurrently by

Fk,0 = 0, Fk,1 = 1, Fk,n+1 = kFk,n + Fk,n−1, for n > 1.

The generating function of the k-Fibonacci numbers is fk(x) =
x

1 − kx− x2
, [4,6]. This

sequence was studied by Horadam in [9]. Recently, Falcón and Plaza [6] found the k-Fibonacci

numbers by studying the recursive application of two geometrical transformations used in the

four-triangle longest-edge (4TLE) partition. The interested reader is also referred to [1, 3, 4, 5,

6, 12, 13, 16] for further information about this.

1Received November 14, 2013, Accepted May 20, 2014.
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A generalized Fk,l-colored Motzkin path or simply k-Fibonacci path is a sequence of rise,

fall and Fk,l−colored length horizontal steps (l = 1, 2, · · · ) running from (0, 0) to (n, 0) that

never pass below the x-axis. We denote by MFk,n
the set of all k-Fibonacci paths of length n

and Mk =
⋃∞

n=0 MFk,n
. In Figure 1 we show the set MF2,3 .

×2 ×2 ×5

Figure 1 k-Fibonacci Paths of length 3, |MF2,3 | = 13

A grand k-Fibonacci path is a k-Fibonacci path without the condition that never going

below the x-axis. We denote by M∗
Fk,n

the set of all grand k-Fibonacci paths of length n and

M∗
k =

⋃∞
n=0 M∗

Fk,n
. A prefix k-Fibonacci path is a k-Fibonacci path without the condition that

ending on the x-axis. We denote by PMFk,n
the set of all prefix k-Fibonacci paths of length

n and PMk =
⋃∞

n=0 PMFk,n
. Analogously, we have the family of prefix grand k-Fibonacci

paths. We denote by PM∗
Fk,n

the set of all prefix grand k-Fibonacci paths of length n and

PM∗
k =

⋃∞
n=0 PM∗

Fk,n
.

In this paper, we study the generating function for the k-Fibonacci paths, grand k-

Fibonacci paths, prefix k-Fibonacci paths, and prefix grand k-Fibonacci paths, according to the

length. We use Counting Automata Methodology (CAM) [2], which is a variation of the method-

ology developed by Rutten [14] called Coinductive Counting. Counting Automata Methodology

uses infinite weighted automata, weighted graphs and continued fractions. The main idea of

this methodology is find a counting automaton such that there exist a bijection between all

words recognized by an automaton M and the family of combinatorial objects. From the

counting automaton M is possible find the ordinary generating function (GF) of the family of

combinatorial objects [4].

§2. Counting Automata Methodology

The terminology and notation are mainly those of Sakarovitch [13]. An automaton M is a

5-tuple M = (Σ, Q, q0, F, E), where Σ is a nonempty input alphabet, Q is a nonempty set of

states of M, q0 ∈ Q is the initial state of M, ∅ 6= F ⊆ Q is the set of final states of M and

E ⊆ Q × Σ ×Q is the set of transitions of M. The language recognized by an automaton M
is denoted by L(M). If Q,Σ and E are finite sets, we say that M is a finite automaton [15].

Example 2.1 Consider the finite automaton M = (Σ, Q, q0, F, E) where Σ = {a, b}, Q =

{q0, q1}, F = {q0} and E = {(q0, a, q1), (q0, b, q0), (q1, a, q0)}. The transition diagram of M is

as shown in Figure 2. It is easy to verify that L(M) = (b ∪ aa)∗.
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q0 q1- -�? a

a

b

Figure 2 Transition diagram of M, Example 1

Example 2.2 Consider the infinite automaton MD = (Σ, Q, q0, F, E), where Σ = {a, b},
Q = {q0, q1, · · · }, F = {q0} and E = {(qi, a, qi+1), (qi+1, b, qi) : i ∈ N}. The transition diagram

of MD is as shown in Figure 3.

q0 q1 q2 q3- -� -� -�a a a

b b b

Figure 3 Transition diagram of MD

The language accepted by MD is

L(MD) = {w ∈ Σ∗ : |w|a = |w|b and for all prefix v of w, |v|b ≤ |v|a} .

An ordinary generating function F =
∑∞

n=0 fnz
n corresponds to a formal language L if

fn = |{w ∈ L : |w| = n}|, i.e., if the n-th coefficient fn gives the number of words in L with

length n.

Given an alphabet Σ and a semiring K. A formal power series or formal series S is a

function S : Σ∗ → K. The image of a word w under S is called the coefficient of w in S and

is denoted by sw. The series S is written as a formal sum S =
∑

w∈Σ∗ sww. The set of formal

power series over Σ with coefficients in K is denoted by K 〈〈Σ∗〉〉.
An automaton over Σ∗ with weights in K, or K-automaton over Σ∗ is a graph labelled with

elements of K 〈〈Σ∗〉〉, associated with two maps from the set of vertices to K 〈〈Σ∗〉〉. Specifically,

a weighted automaton M over Σ∗ with weights in K is a 4-tuple M = (Q, I,E, F ) where Q is

a nonempty set of states of M, E is an element of K 〈〈Σ∗〉〉Q×Q called transition matrix. I is

an element of K 〈〈Σ∗〉〉Q, i.e., I is a function from Q to K 〈〈Σ∗〉〉. I is the initial function of M
and can also be seen as a row vector of dimension Q, called initial vector of M and F is an

element of K 〈〈Σ∗〉〉Q. F is the final function of M and can also be seen as a column vector of

dimension Q, called final vector of M.

We say that M is a counting automaton if K = Z and Σ∗ = {z}∗. With each automaton, we

can associate a counting automaton. It can be obtained from a given automaton replacing every

transition labelled with a symbol a, a ∈ Σ, by a transition labelled with z. This transition is

called a counting transition and the graph is called a counting automaton of M. Each transition
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from p to q yields an equation

L(p)(z) = zL(q)(z) + [p ∈ F ] + · · · .

We use Lp to denote L(p)(z). We also use Iverson’s notation, [P ] = 1 if the proposition P is

true and [P ] = 0 if P is false.

2.1 Convergent Automata and Convergent Theorems

We denote by L(n)(M) the number of words of length n recognized by the automaton M,

including repetitions.

Definition 2.3 We say that an automaton M is convergent if for all integer n > 0, L(n)(M)

is finite.

The proof of following theorems and propositions can be found in [2].

Theorem 2.4(First Convergence Theorem) Let M be an automaton such that each vertex

(state) of the counting automaton of M has finite degree. Then M is convergent.

Example 2.5 The counting automaton of the automaton MD in Example 2 is convergent.

The following definition plays an important role in the development of applications because

it allows to simplify counting automata whose transitions are formal series.

Definition 2.6 Let M be an automaton, and let f(z) =
∑∞

n=0 fnz
n be a formal power series

with fn ∈ N for all n > 0 and f0 = 0. In a counting automaton of M the set of counting

transitions from state p to state q, without intermediate final states, see Figure 4 (left), is

represented by a graph with a single edge labeled by f(z), see Figure 4(right).

p * p q- -f(z)jR - -- -- - - - -- - -- - *...

...

......

- - -: - z* - j...

- -1 q* j
q

RRR
...

.......

︸ ︷︷ ︸

n− 1 states, n transitions

f1 times

f2 times

f3 times

fn times

Figure 4 Transitions from the state p to q and its transition in parallel



24 Rodrigo De Castro and José L. Ramı́rez

This kind of transition is called a transition in parallel. The states p and q are called visible

states and the intermediate states are called hidden states.

Example 2.7 In Figure 5 (left) we display a counting automaton M1 without transitions in

parallel, i.e., every transition is label by z. The transitions from state q1 to q2 correspond to

the series
1 −

√
1 − 4z

2
= z+ z2 + 2z3 + 5z4 + 14z5 + · · · . However, this automaton can also be

represented using transitions in parallel. Figure 5 (right) displays two examples.

q0

q1

q2

??????????
- -66� R
?

R
?
?
?
??? ?
?
????

����

M1

q0

q2

q1

q0

q1

q2

3 ?Y
q3: �k -

??
M2 :

M3 :

...........

2z + z2

2z

1−
√

1−4z
2

2z

2z

z z−z
√

1−4z
2

Figure 5 Counting automata with transitions in parallel

Theorem 2.8(Second Convergence Theorem) Let M be an automaton, and let

f q
1 (z), f q

2 (z), · · · , be transitions in parallel from state q ∈ Q in a counting automaton of M.

Then M is convergent if the series

F q(z) =

∞∑

k=1

f q
k (z)

is a convergent series for each visible state q ∈ Q of the counting automaton.

Proposition 2.9 If f(z) is a polynomial transition in parallel from state p to q in a finite

counting automaton M, then this gives rise to an equation in the system of GFs equations of

M
Lp = f(z)Lq + [p ∈ F ] + · · · .

Proposition 2.10 Let M be a convergent automaton such that a counting automaton of M
has a finite number of visible states q0, q1, · · · , qr, in which the number of transitions in parallel

starting from each state is finite. Let f qt

1 (z), f qt

2 (z), · · · , f qt

s(t)(z) be the transitions in parallel

from the state qt ∈ Q. Then the GF for the language L(M) is Lq0(z). It is obtained by solving
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the system of r + 1 GFs equations

L(qt)(z) = f qt

1 (z)L(qt1)(z) + f qt

2 (z)L(qt2)(z) + · · · + f qt

s(t)(z)L(qts(t)
)(z) + [qt ∈ F ],

with 0 ≤ t ≤ r, where qtk
is the visible state joined with qt through the transition in parallel f qt

k ,

and L(qtk
) is the GF for the language accepted by M if qtk

is the initial state.

Example 2.11 The system of GFs equations associated with M2, see Example 2.7, is







L0 = (2z + z2)L1 + 1

L1 =
1 −

√
1 − 4z

2
L2

L2 = 2zL0.

Solving the system for L0, we find the GF for the language M2 and therefore of M1 and M3

L0 =
1

1 − (2z2 + z3)(1 −
√

1 − 4z)
= 1 + 4z3 + 6z4 + 10z5 + 40z6 + 114z7 + · · · .

2.2 An Example of the Counting Automata Methodology (CAM)

A counting automaton associated with an automaton M can be used to model combinatorial

objects if there is a bijection between all words recognized by the automaton M and the com-

binatorial objects. Such method, along with the previous theorems and propositions constitute

the Counting Automata Methodology (CAM), see [2].

We distinguish three phases in the CAM:

(1) Given a problem of enumerative combinatorics, we have to find a convergent automaton

M (see Theorems 2.4 and 2.8), whose GF is the solution of the problem.

(2) Find a general formula for the GF of M′, where M′ is an automaton obtained from M
truncating a set of states or edges see Propositions 2.9 and 2.10. Sometimes we find a relation

of iterative type, such as a continued fraction.

(3) Find the GF f(z) to which converge the GFs associated to each M′, which is guaranteed

by the convergences theorems.

Example 2.12 A Motzkin path of length n is a lattice path of Z × Z running from (0, 0) to

(n, 0) that never passes below the x-axis and whose permitted steps are the up diagonal step

U = (1, 1), the down diagonal step D = (1,−1) and the horizontal step H = (1, 0). The number

of Motzkin paths of length n is the n-th Motzkin number mn, sequence A0010061. The number

of words of length n recognized by the convergent automaton MMot, see Figure 6, is the nth

Motzkin number and its GF is

M (z) =

∞∑

i=0

miz
i =

1 − z −
√

1 − 2z − 3z2

2z2
.

1Many integer sequences and their properties are found electronically on the On-Line Encyclopedia of Se-
quences [17].
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q0 q1 q2 q3- .....
-� -� -�z z z

z z z

? ? ? ?z
MMot:

z z z

Figure 6 Convergent automaton associated with Motzkin paths

In this case the edge from state qi to state qi+1 represents a rise, the edge from the state

qi+1 to qi represents a fall and the loops represent the level steps, see Table 1.

(qi, z, qi+1) ∈ E ⇔ (qi+1, z, qi) ∈ E ⇔ (qi, z, qi) ∈ E ⇔

Table 1 Bijection between MMot and Motzkin paths

Moreover, it is clear that a word is recognized by MMot if and only if the number of steps

to the right and to the left coincide, which ensures that the path is well formed. Then

mn = |{w ∈ L(MMot) : |w| = n}| = L(n)(MMot).

Let MMots, s ≥ 1 be the automaton obtained from MMot, by deleting the states qs+1, qs+2, . . . .

Therefore the system of GFs equations of MMots is







L0 = zL0 + zL1 + 1,

Li = zLi−1 + zLi + zLi+1, 1 ≤ i ≤ s− 1,

Ls = zLs−1 + zLs.

Substituting repeatedly into each equation Li, we have

L0 =
H

1 −
F 2

1 −
F 2

...

1 − F 2







s times,

where F =
z

1 − z
and H =

1

1 − z
. Since MMot is convergent, then as s → ∞ we obtain a

convergent continued fraction M of the GF of MMot. Moreover,

M =
H

1 − F 2
(

M
H

).
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Hence z2M2 − (1 − z)M + 1 = 0 and

M(z) =
1 − z ±

√
1 − 2z − 3z2

2z2
.

Since ǫ ∈ L(MMot), M → 0 as z → 0. Hence, we take the negative sign for the radical in M(z).

§3. Generating Function for the k-Fibonacci Paths

In this section we find the generating function for k-Fibonacci paths, grand k-Fibonacci paths,

prefix k-Fibonacci paths and prefix grand k-Fibonacci paths, according to the length.

Lemma 3.1([2]) The GF of the automaton MLin, see Figure 7, is

E(z) =
1

1 − h0 (z) −
f0 (z) g0 (z)

1 − h1 (z) −
f1 (z) g1 (z)

. . .

,

where fi(z), gi(z) and hi(z) are transitions in parallel for all integer i > 0.

0 1 2 3- .....
-� -� -�h0 h1 h2 h3

f0

g0

? ? ? ?f1

g1

f2

g2

Figure 7 Linear infinite counting automaton MLin

The last lemma coincides with Theorem 1 in [7] and Theorem 9.1 in [14]. However, this

presentation extends their applications, taking into account that fi(z), gi(z) and hi(z) are GFs,

which can be GFs of several variables.

Corollary 3.2 If for all integers i ≥ 0, fi(z) = f(z), gi(z) = g(z) and hi(z) = h(z) in MLin,

then the GF is

B(z) =
1 − h(z) −

√

(1 − h(z))2 − 4f(z)g(z)

2f(z)g(z)
(1)

=
∞∑

n=0

∞∑

m=0

Cn

(
m+ 2n

m

)

(f (z) g (z))n (h(z))m (2)

=
1

1 − h (z) −
f (z) g (z)

1 − h (z) −
f (z) g (z)

1 − h (z) −
f (z) g (z)

. . .

, (3)
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where Cn is the nth Catalan number, sequence A000108.

Theorem 3.3 The generating function for the k-Fibonacci paths according to the their length

is

Tk(z) =

∞∑

i=0

|MFk,i
|zi (4)

=
1 − (k + 1)z − z2 −

√

(1 − (k + 1)z − z2)2 − 4z2(1 − kz − z2)2

2z2(1 − kz − z2)
(5)

=
1

1 − z
1−kz−z2 −

z2

1 − z
1−kz−z2 −

z2

1 − z
1−kz−z2 −

z2

. . .

(6)

and

[
zt
]
Tk(z) =

t∑

n=0

t−2n∑

m=0

(
m+ 2n

m

)

CnF
(m)
k,t−2n−m+1,

where Cn is the n-th Catalan number and F
(r)
k,j is a convolved k-Fibonacci number.

Convolved k-Fibonacci numbers F
(r)
k,j are defined by

f
(r)
k (x) = (1 − kx− x2)−r =

∞∑

j=0

F
(r)
k,j+1x

j , r ∈ Z
+.

Note that

F
(r)
k,m+1 =

∑

j1+j2+···+jr=m

Fk,j1+1Fk,j2+1 · · ·Fk,jr+1.

Moreover, using a result of Gould[8, p.699] on Humbert polynomials (with n = j,m = 2, x =

k/2, y = −1, p = −r and C = 1), we have

F
(r)
k,j+1 =

⌊j/2⌋
∑

l=0

(
j + r − l − 1

j − l

)(
j − l

l

)

kj−2l.

Ramı́rez [13] studied some properties of convolved k-Fibonacci numbers.

Proof Equations (5) and (6) are clear from Corollary 3.2 taking f(z) = z = g(z) and

h(z) =
z

1 − kz − z2
. Note that h(z) is the GF of k-Fibonacci numbers. In this case the edge

from state qi to state qi+1 represents a rise, the edge from the state qi+1 to qi represents a fall

and the loops represent the Fk,l−colored length horizontal steps (l = 1, 2, · · · ). Moreover, from
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Equation (2), we obtain

Tk(z) =

∞∑

n=0

∞∑

m=0

Cn

(
m+ 2n

m

)

z2n

(
z

1 − kz − z2

)m

=

∞∑

n=0

∞∑

m=0

Cn

(
m+ 2n

m

)

z2n+m

(
1

1 − kz − z2

)m

=

∞∑

n=0

∞∑

m=0

Cn

(
m+ 2n

m

)

z2n+m
∞∑

i=0

F
(m)
k,i+1z

i

=

∞∑

n=0

∞∑

m=0

∞∑

i=0

CnF
(m)
k,i+1

(
m+ 2n

m

)

z2n+m+i,

taking s = 2n+m+ i

Tk(z) =
∞∑

n=0

∞∑

m=0

∞∑

s=2n+m

CnF
(m)
k,s−2n−m+1

(
m+ 2n

m

)

zs.

Hence
[
zt
]
Tk(z) =

t∑

n=0

t−2m∑

m=0

CnF
(m)
k,t−2n−m+1

(
m+ 2n

m

)

. 2
In Table 2 we show the first terms of the sequence |MFk,i

| for k = 1, 2, 3, 4.

k Sequence

1 1, 1, 3, 8, 23, 67, 199, 600, 1834, 5674, 17743, . . .

2 1, 1, 4, 13, 47, 168, 610, 2226, 8185, 30283, 112736, · · ·
3 1, 1, 5, 20, 89, 391, 1735, 7712, 34402, 153898, 690499, · · ·
4 1, 1, 6, 29, 155, 820, 4366, 23262, 124153, 663523, 3551158, · · ·

Table 2 Sequences |MFk,i
| for k = 1, 2, 3, 4

Definition 3.4 For all integers i ≥ 0 we define the continued fraction Ei(z) by:

Ei(z) =
1

1 − hi (z) −
fi (z) gi (z)

1 − hi+1 (z) −
fi+1 (z) gi+1 (z)

. . .

,

where fi(z), gi(z), hi(z) are transitions in parallel for all integers positive i.
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Lemma 3.5([2]) The GF of the automaton MBLin, see Figure 8, is

Eb(z) =
1

1 − h0(z) − f0(z)g0(z)E1(z) − f ′
0(z)g

′
0(z)E

′
1(z)

,

where fi(z), f
′
i(z), gi(z), g

′
i(z), hi(z) and h′i(z) are transitions in parallel for all i ∈ Z.

0 1 26 -� -�MBLin:

h0 h1 h2
f0

g0

? ? ? ?f1

g1

-1-2
-� -�? ?h′2 h′1 f ′

0

g′0

f ′
1

g′1

Figure 8 Linear infinite counting automaton MBLin

Corollary 3.6 If for all integers i, fi(z) = f(z) = f ′
i(z), gi(z) = g(z) = g′i(z) and hi(z) =

h(z) = h′i(z) in MBLin, then the GF

Bb(z) =
1

√

(1 − h(z))2 − 4f(z)g(z)
(7)

=
1

1 − h(z) −
2f(z)g(z)

1 − h(z) −
f(z)g(z)

1 − h(z) −
f(z)g(z)

. . .

, (8)

where f(z), g(z) and h(z) are transitions in parallel. Moreover, if f(z) = g(z), then the GF

Bb(z) =
1

1 − h(z)
+

∞∑

n=1

∞∑

k=0

∞∑

l=0

2n n

n+ 2k

(
n+ 2k

k

)(
l + 2n+ 2k

l

)

f(z)2n+2kh(z)l. (9)

Theorem 3.7 The generating function for the grand k-Fibonacci paths according to the their

length is

T ∗
k (z) =

∞∑

i=0

|M∗
Fk,i

|zi =
1 − kz − z2

√

(1 − (k + 1)z − z2)2 − 4z2(1 − kz − z2)2
(10)

=
1

1 − z
1−kz−z2 −

2z2

1 − z
1−kz−z2 −

z2

1 − z
1−kz−z2 −

z2

. . .

(11)
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and

[
zt
]
T ∗

k (z) = F
(1)
k+1,t +

t∑

n=1

t∑

m=0

t−2n−2m∑

l=0

2n n

n+ 2m

(
n+ 2m

m

)(
l + 2n+ 2m

l

)

F
(l)
k,t−2n−2m−l+1,

(12)

with t > 1.

Proof Equations (10) and (11) are clear from Corollary 3.6, taking f(z) = z = g(z) and

h(z) = z
1−kz−z2 . Moreover, from Equation (9), we obtain

T ∗
k (z) =

1

1 − z
1−kz−z2

+

∞∑

n=1

∞∑

m=0

∞∑

l=0

2n n

n+ 2m

(
n+ 2m

m

)(
l + 2n+ 2m

l

)

z2n+2m

(
z

1 − kz − z2

)l

= 1 +

∞∑

j=0

F
(1)
k+1,jz

j +

∞∑

n=1

∞∑

m=0

∞∑

l=0

∞∑

u=0

2n n

n+ 2m

(
n+ 2m

m

)(
l + 2n+ 2m

l

)

F
(l)
k,uz

2n+2m+u+1,

taking s = 2n+ 2m+ l + u

T ∗
k (z) = 1 +

∞∑

j=0

F
(1)
k+1,jz

j+

∞∑

n=1

∞∑

m=0

∞∑

l=0

∞∑

s=2n+2m+l

2n n

n+ 2m

(
n+ 2m

m

)(
l + 2n+ 2m

l

)

F
(l)
k,s−2n−2m−lz

s.

Therefore, Equation (12) is clear. 2
In Table 3 we show the first terms of the sequence |M∗

Fk,i
| for k = 1, 2, 3, 4.

k Sequence

1 1, 4, 11, 36, 115, 378, 1251, 4182, 14073, 47634, · · ·
2 1, 5, 16, 63, 237, 920, 3573, 14005, 55156, 218359, · · ·
3 1, 6, 23, 108, 487, 2248, 10371, 48122, 223977, 1046120, · · ·
4 1, 7, 32, 177, 949, 5172, 28173, 153963, 842940, 4624581, · · ·

Table 3 Sequences |M∗
Fk,i

| for k = 1, 2, 3, 4 and i > 1

In Figure 9 we show the set M∗
F2,3

.

×2 ×2 ×5

Figure 9 Grand k-Fibonacci Paths of length 3, |M∗
F2,3

| = 16
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Lemma 3.8([2]) The GF of the automaton FinN(MLin), see Figure 10, is

G(z) = E(z) +
∞∑

j=1

(
j−1
∏

i=0

(fi(z)Ei(z))Ej(z)

)

,

where E(z) is the GF in Lemma 3.1.

0 1 2 3- - - -��I? ? ? ?h0 h1 h2 h3f0 f1 f2

g0 g1 g2

Figure 10 Linear infinite counting automaton FinN(MLin)

Corollary 3.9 If for all integer i > 0, fi(z) = f(z), gi(z) = g(z) and hi(z) = h(z) in

FinN(MLin), then the GF is:

G(z) =
1 − 2f(z)− h(z) −

√

(1 − h(z))2 − 4f(z)g(z)

2f(z) (f(z) + g(z) + h(z) − 1)
(13)

=
1

1 − f(z) − h(z) −
f(z)g(z)

1 − h(z) −
f(z)g(z)

1 − h(z) −
f(z)g(z)

. . .

, (14)

where f(z), g(z) and h(z) are transitions in parallel and B(z) is the GF in Corollary 3.2.

Moreover, if f(z) = g(z) and h(z) 6= 0, then we obtain the GF

G(z) =

∞∑

n=0

∞∑

k=0

∞∑

l=0

n+ 1

n+ k + 1

(
n+ 2k + l

k, l, k + n

)

f2k+n(z)hl(z). (15)

Theorem 3.10 The generating function for the prefix k-Fibonacci paths according to the their

length is

PTk(z) =

∞∑

i=0

|PMFk,i
|zi

=
(1 − 2z)(1 − kz − z2) − z −

√

(1 − z(k + 1) − z2)2 + 4z2(1 − kz − z2)2

2z((1 − kz − z2)(2z − 1) + z)
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and

[
zt
]
PTk(z) =

t∑

n=0

t∑

m=0

t−2m−n∑

l=0

n+ 1

n+m+ 1

(
n+ 2m+ l

m, l,m+ n

)

F
(l)
k,t−2m−n−l+1, t > 0.

Proof The proof is analogous to the proof of Theorem 3.3 and 3.7. 2
In Table 4 we show the first terms of the sequence |PMFk,i

| for k = 1, 2, 3, 4.

k Sequence

1 1, 2, 6, 19, 62, 205, 684, 2298, 7764, 26355, 89820, · · ·
2 1, 2, 7, 26, 101, 396, 1564, 6203, 24693, 98605, 394853, · · ·
3 1, 2, 8, 35, 162, 757, 3558, 16766, 79176, 374579, 1775082, · · ·
4 1, 2, 9, 46, 251, 1384, 7668, 42555, 236463, 1315281, 7322967, · · ·

Table 4 Sequences |PMFk,i
| for k = 1, 2, 3, 4

In Figure 11 we show the set MPF2,3 .

×2 ×2 ×5 ×2

Figure 11 Prefix k-Fibonacci paths of length 3, |PMF2,3 | = 26

Lemma 3.11 The GF of the automaton FinZ(MBLin), see Figure 12, is

H(z) =
EE′

E + E′ − EE′(1 − h0)



1 +

∞∑

j=1

j−1
∏

k=1

fkEkf0Ej +

∞∑

j=1

j−1
∏

k=1

g′kE
′
kg

′
0E

′
j





=
E′(z)G(z) + E(z)G′(z) − E(z)E′(z)

E(z) + E′(z) − E(z)E′(z)(1 − h0(z))
,

where G(z) is the GF in Lemma 3.8 and G′(z), E′(z) are the GFs obtained from G(z) and E(z)

changing f(z) to g′(z) and g(z) to f ′(z).
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0 1 26 -� -�h0 h1 h2
f0

g0

? ? ?f1

g1

-1-2
-� -�? ?h′2 h′1 f ′

0

g′0

f ′
1

g′1

Figure 12 Linear infinite counting automaton FinZ(MBLin)

Moreover, if for all integer i > 0, fi(z) = f(z) = f ′
i(z), gi(z) = g(z) = g′i(z) and hi(z) =

h(z) = h′i(z) in FinZ(MBLin), then the GF is

H(z) =
1

1 − f(z) − g(z) − h(z)
. (16)

Theorem 3.12 The generating function for the prefix grand k-Fibonacci paths according to the

their length is

PT ∗
k (z) =

∞∑

i=0

|PMF∗

k,i
|zi =

1 − kz − z2

1 − (k + 3)z − (1 − 2k)z2 + 2z3
.

it Proof The proof is analogous to the proof of Theorem 3.3 and 3.7. 2
In Table 5 we show the first terms of the sequence |PM∗

Fk,i
| for k = 1, 2, 3, 4.

k Sequence

1 1, 3, 10, 35, 124, 441, 1570, 5591, 19912, 70917, 252574, . . .

2 1, 3, 11, 44, 181, 751, 3124, 13005, 54151, 225492, 938997, . . .

3 1, 3, 12, 55, 264, 1285, 6280, 30727, 150392, 736157, 3603528, . . .

4 1, 3, 13, 68, 379, 2151, 12268, 70061, 400249, 2286780, 13065595 . . .

Table 4 Sequences |PM∗
Fk,i

| for k = 1, 2, 3, 4
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[1] C.Bolat and H. Köse, On the properties of k-Fibonacci numbers, International Journal of

Contemporary Mathematical Sciences, 5(22)(2010), 1097–1105.

[2] R.De Castro, A. Ramı́rez and J. Ramı́rez, Applications in enumerative combinatorics of

infinite weighted automata and graphs, Scientific Annals of Computer Science, accepted,

(2014).



Enumeration of k-Fibonacci Paths Using Infinite Weighted Automata 35

[3] S.Falcón, The k-Fibonacci matrix and the Pascal matrix, Central European Journal of

Mathematics, 9(6)(2011), 1403–1410.

[4] S.Falcón and A. Plaza, The k-Fibonacci sequence and the Pascal 2-triangle, Chaos Solitons

and Fractals, 33(1)(2007), 38–49.

[5] S.Falcón and A. Plaza, On k-Fibonacci sequences and polynomials and their derivatives,

Chaos Solitons and Fractals, 39(3)(2009), 1005–1019.

[6] S.Falcón and A. Plaza, On the Fibonacci k-numbers, Chaos Solitons and Fractals, 32(5)(2007),

1615–1624.

[7] P.Flajolet, Combinatorial aspects of continued fractions, Discrete Mathematics, 32(2)(1980),

125–161.

[8] H.W.Gould, Inverse series relations and other expansions involving Humbert polynomials,

Duke Mathematical Journal, 32(4)(1965), 697–711.

[9] A.F.Horadam, A generalized Fiboncci sequence, American Mathematical Monthly, 68(1961),

455–459.

[10] T.Koshy, Fibonacci and Lucas Numbers with Applications, A Wiley-Interscience Publica-

tion, 2001.

[11] P.Larcombe, O.Bagdasar and E.Fennessey, Horadam sequences: a survey, Bulletin of the

Institute of Combinatorics and its Applications, 67(2013), 49–72.

[12] J.Ramı́rez, Incomplete k-Fibonacci and k-Lucas numbers, Chinese Journal of Mathematics,

(2013).

[13] J.Ramı́rez, Some properties of convolved k-Fibonacci numbers, ISRN Combinatorics, 2013.

[14] J.Rutten, Coinductive counting with weighted automata, Journal of Automata, Languages

and Combinatorics, 8(2)(2003), 319–352.

[15] J.Sakarovitch, Elements of Automata Theory, Cambridge University Press, Cambridge,

2009.

[16] A.Salas, About k-Fibonacci numbers and their associated numbers, International Mathe-

matical Forum, 50(6)(2011), 2473–2479.

[17] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences. https://oeis.org/.


